
C++
Notes for ProfessionalsC++

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial C++ group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

600+ pages
of professional hints and tricks

https://goalkicker.com
https://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with C++ 2 ..
Section 1.1: Hello World 2 ...
Section 1.2: Comments 3 ..
Section 1.3: The standard C++ compilation process 5 ..
Section 1.4: Function 5 ..
Section 1.5: Visibility of function prototypes and declarations 8 ...
Section 1.6: Preprocessor 9 ..

Chapter 2: Literals 11 ..
Section 2.1: this 11 ...
Section 2.2: Integer literal 11 ...
Section 2.3: true 12 ...
Section 2.4: false 13 ..
Section 2.5: nullptr 13 ...

Chapter 3: operator precedence 14 ..
Section 3.1: Logical && and || operators: short-circuit 14 ..
Section 3.2: Unary Operators 15 ...
Section 3.3: Arithmetic operators 15 ..
Section 3.4: Logical AND and OR operators 16 ..

Chapter 4: Floating Point Arithmetic 17 ...
Section 4.1: Floating Point Numbers are Weird 17 ..

Chapter 5: Bit Operators 18 ..
Section 5.1: | - bitwise OR 18 ..
Section 5.2: ^ - bitwise XOR (exclusive OR) 18 ..
Section 5.3: & - bitwise AND 20 ...
Section 5.4: << - left shift 20 ...
Section 5.5: >> - right shift 21 ..

Chapter 6: Bit Manipulation 23 ...
Section 6.1: Remove rightmost set bit 23 ...
Section 6.2: Set all bits 23 ..
Section 6.3: Toggling a bit 23 ..
Section 6.4: Checking a bit 23 ...
Section 6.5: Counting bits set 24 ...
Section 6.6: Check if an integer is a power of 2 25 ...
Section 6.7: Setting a bit 25 ...
Section 6.8: Clearing a bit 25 ...
Section 6.9: Changing the nth bit to x 25 ...
Section 6.10: Bit Manipulation Application: Small to Capital Letter 26 ..

Chapter 7: Bit fields 27 ...
Section 7.1: Declaration and Usage 27 ...

Chapter 8: Arrays 28 ...
Section 8.1: Array initialization 28 ..
Section 8.2: A fixed size raw array matrix (that is, a 2D raw array) 29 ..
Section 8.3: Dynamically sized raw array 29 ...
Section 8.4: Array size: type safe at compile time 30 ...
Section 8.5: Expanding dynamic size array by using std::vector 31 ...

Section 8.6: A dynamic size matrix using std::vector for storage 32 ..

Chapter 9: Iterators 35 ...
Section 9.1: Overview 35 ...
Section 9.2: Vector Iterator 38 ..
Section 9.3: Map Iterator 38 ..
Section 9.4: Reverse Iterators 39 ..
Section 9.5: Stream Iterators 40 ..
Section 9.6: C Iterators (Pointers) 40 ..
Section 9.7: Write your own generator-backed iterator 41 ...

Chapter 10: Basic input/output in c++ 43 ...
Section 10.1: user input and standard output 43 ...

Chapter 11: Loops 44 ..
Section 11.1: Range-Based For 44 ..
Section 11.2: For loop 46 ...
Section 11.3: While loop 48 ...
Section 11.4: Do-while loop 49 ..
Section 11.5: Loop Control statements : Break and Continue 50 ..
Section 11.6: Declaration of variables in conditions 51 ...
Section 11.7: Range-for over a sub-range 52 ...

Chapter 12: File I/O 54 ..
Section 12.1: Writing to a file 54 ...
Section 12.2: Opening a file 54 ..
Section 12.3: Reading from a file 55 ...
Section 12.4: Opening modes 57 ...
Section 12.5: Reading an ASCII file into a std::string 58 ..
Section 12.6: Writing files with non-standard locale settings 59 ..
Section 12.7: Checking end of file inside a loop condition, bad practice? 60 ...
Section 12.8: Flushing a stream 61 ..
Section 12.9: Reading a file into a container 61 ...
Section 12.10: Copying a file 62 ...
Section 12.11: Closing a file 62 ..
Section 12.12: Reading a `struct` from a formatted text file 63 ..

Chapter 13: C++ Streams 65 ...
Section 13.1: String streams 65 ..
Section 13.2: Printing collections with iostream 66 ..

Chapter 14: Stream manipulators 68 ...
Section 14.1: Stream manipulators 68 ...
Section 14.2: Output stream manipulators 73 ...
Section 14.3: Input stream manipulators 75 ...

Chapter 15: Flow Control 77 ...
Section 15.1: case 77 ...
Section 15.2: switch 77 ..
Section 15.3: catch 77 ...
Section 15.4: throw 78 ...
Section 15.5: default 79 ..
Section 15.6: try 79 ..
Section 15.7: if 79 ...
Section 15.8: else 80 ..
Section 15.9: Conditional Structures: if, if..else 80 ...

Section 15.10: goto 81 ...
Section 15.11: Jump statements : break, continue, goto, exit 81 ...
Section 15.12: return 84 ...

Chapter 16: Metaprogramming 86 ...
Section 16.1: Calculating Factorials 86 ..
Section 16.2: Iterating over a parameter pack 88 ...
Section 16.3: Iterating with std::integer_sequence 89 ...
Section 16.4: Tag Dispatching 90 ..
Section 16.5: Detect Whether Expression is Valid 90 ...
Section 16.6: If-then-else 92 ...
Section 16.7: Manual distinction of types when given any type T 92 ..
Section 16.8: Calculating power with C++11 (and higher) 93 ...
Section 16.9: Generic Min/Max with variable argument count 94 ...

Chapter 17: const keyword 95 ..
Section 17.1: Avoiding duplication of code in const and non-const getter methods 95 ..
Section 17.2: Const member functions 96 ..
Section 17.3: Const local variables 97 ...
Section 17.4: Const pointers 97 ..

Chapter 18: mutable keyword 99 ..
Section 18.1: mutable lambdas 99 ...
Section 18.2: non-static class member modifier 99 ..

Chapter 19: Friend keyword 101 ..
Section 19.1: Friend function 101 ...
Section 19.2: Friend method 102 ...
Section 19.3: Friend class 102 ..

Chapter 20: Type Keywords 104 ...
Section 20.1: class 104 ..
Section 20.2: enum 105 ..
Section 20.3: struct 106 ..
Section 20.4: union 106 ..

Chapter 21: Basic Type Keywords 108 ..
Section 21.1: char 108 ...
Section 21.2: char16_t 108 ..
Section 21.3: char32_t 108 ...
Section 21.4: int 108 ..
Section 21.5: void 108 ...
Section 21.6: wchar_t 109 ..
Section 21.7: float 109 ...
Section 21.8: double 109 ...
Section 21.9: long 109 ...
Section 21.10: short 110 ..
Section 21.11: bool 110 ..

Chapter 22: Variable Declaration Keywords 111 ..
Section 22.1: decltype 111 ...
Section 22.2: const 111 ..
Section 22.3: volatile 112 ...
Section 22.4: signed 112 ..
Section 22.5: unsigned 112 ..

Chapter 23: Keywords 114 ..

Section 23.1: asm 114 ...
Section 23.2: Dierent keywords 114 ...
Section 23.3: typename 118 ..
Section 23.4: explicit 119 ..
Section 23.5: sizeof 119 ..
Section 23.6: noexcept 120 ..

Chapter 24: Returning several values from a function 122 ...
Section 24.1: Using std::tuple 122 ..
Section 24.2: Structured Bindings 123 ..
Section 24.3: Using struct 124 ...
Section 24.4: Using Output Parameters 125 ..
Section 24.5: Using a Function Object Consumer 126 ..
Section 24.6: Using std::pair 127 ...
Section 24.7: Using std::array 127 ...
Section 24.8: Using Output Iterator 127 ...
Section 24.9: Using std::vector 128 ...

Chapter 25: Polymorphism 129 ..
Section 25.1: Define polymorphic classes 129 ...
Section 25.2: Safe downcasting 130 ...
Section 25.3: Polymorphism & Destructors 131 ..

Chapter 26: References 133 ...
Section 26.1: Defining a reference 133 ...

Chapter 27: Value and Reference Semantics 134 ..
Section 27.1: Definitions 134 ..
Section 27.2: Deep copying and move support 134 ...

Chapter 28: C++ function "call by value" vs. "call by reference" 138 ..
Section 28.1: Call by value 138 ..

Chapter 29: Copying vs Assignment 140 ...
Section 29.1: Assignment Operator 140 ...
Section 29.2: Copy Constructor 140 ...
Section 29.3: Copy Constructor Vs Assignment Constructor 141 ...

Chapter 30: Pointers 143 ...
Section 30.1: Pointer Operations 143 ..
Section 30.2: Pointer basics 143 ..
Section 30.3: Pointer Arithmetic 145 ...

Chapter 31: Pointers to members 147 ...
Section 31.1: Pointers to static member functions 147 ..
Section 31.2: Pointers to member functions 147 ...
Section 31.3: Pointers to member variables 148 ..
Section 31.4: Pointers to static member variables 148 ...

Chapter 32: The This Pointer 150 ..
Section 32.1: this Pointer 150 ...
Section 32.2: Using the this Pointer to Access Member Data 152 ...
Section 32.3: Using the this Pointer to Dierentiate Between Member Data and Parameters 152
Section 32.4: this Pointer CV-Qualifiers 153 ...
Section 32.5: this Pointer Ref-Qualifiers 156 ..

Chapter 33: Smart Pointers 158 ...
Section 33.1: Unique ownership (std::unique_ptr) 158 ..
Section 33.2: Sharing ownership (std::shared_ptr) 159 ..

Section 33.3: Sharing with temporary ownership (std::weak_ptr) 161 ...
Section 33.4: Using custom deleters to create a wrapper to a C interface 163 ..
Section 33.5: Unique ownership without move semantics (auto_ptr) 164 ...
Section 33.6: Casting std::shared_ptr pointers 166 ...
Section 33.7: Writing a smart pointer: value_ptr 166 ...
Section 33.8: Getting a shared_ptr referring to this 168 ..

Chapter 34: Classes/Structures 170 ...
Section 34.1: Class basics 170 ..
Section 34.2: Final classes and structs 170 ..
Section 34.3: Access specifiers 171 ...
Section 34.4: Inheritance 172 ..
Section 34.5: Friendship 174 ..
Section 34.6: Virtual Inheritance 175 ..
Section 34.7: Private inheritance: restricting base class interface 176 ...
Section 34.8: Accessing class members 177 ...
Section 34.9: Member Types and Aliases 178 ...
Section 34.10: Nested Classes/Structures 182 ...
Section 34.11: Unnamed struct/class 186 ...
Section 34.12: Static class members 187 ..
Section 34.13: Multiple Inheritance 191 ...
Section 34.14: Non-static member functions 192 ..

Chapter 35: Function Overloading 195 ...
Section 35.1: What is Function Overloading? 195 ..
Section 35.2: Return Type in Function Overloading 196 ..
Section 35.3: Member Function cv-qualifier Overloading 196 ...

Chapter 36: Operator Overloading 199 ...
Section 36.1: Arithmetic operators 199 ...
Section 36.2: Array subscript operator 200 ...
Section 36.3: Conversion operators 201 ...
Section 36.4: Complex Numbers Revisited 202 ...
Section 36.5: Named operators 206 ...
Section 36.6: Unary operators 208 ...
Section 36.7: Comparison operators 209 ...
Section 36.8: Assignment operator 210 ...
Section 36.9: Function call operator 211 ..
Section 36.10: Bitwise NOT operator 211 ...
Section 36.11: Bit shift operators for I/O 212 ..

Chapter 37: Function Template Overloading 213 ...
Section 37.1: What is a valid function template overloading? 213 ..

Chapter 38: Virtual Member Functions 214 ...
Section 38.1: Final virtual functions 214 ..
Section 38.2: Using override with virtual in C++11 and later 214 ..
Section 38.3: Virtual vs non-virtual member functions 215 ...
Section 38.4: Behaviour of virtual functions in constructors and destructors 216 ..
Section 38.5: Pure virtual functions 217 ...

Chapter 39: Inline functions 220 ...
Section 39.1: Non-member inline function definition 220 ...
Section 39.2: Member inline functions 220 ...
Section 39.3: What is function inlining? 220 ...
Section 39.4: Non-member inline function declaration 221 ...

Chapter 40: Special Member Functions 222 ..
Section 40.1: Default Constructor 222 ..
Section 40.2: Destructor 224 ...
Section 40.3: Copy and swap 225 ...
Section 40.4: Implicit Move and Copy 227 ...

Chapter 41: Non-Static Member Functions 228 ...
Section 41.1: Non-static Member Functions 228 ..
Section 41.2: Encapsulation 229 ..
Section 41.3: Name Hiding & Importing 229 ..
Section 41.4: Virtual Member Functions 231 ..
Section 41.5: Const Correctness 233 ...

Chapter 42: Constant class member functions 235 ..
Section 42.1: constant member function 235 ..

Chapter 43: C++ Containers 236 ..
Section 43.1: C++ Containers Flowchart 236 ..

Chapter 44: Namespaces 237 ..
Section 44.1: What are namespaces? 237 ...
Section 44.2: Argument Dependent Lookup 238 ..
Section 44.3: Extending namespaces 239 ..
Section 44.4: Using directive 239 ..
Section 44.5: Making namespaces 240 ..
Section 44.6: Unnamed/anonymous namespaces 241 ...
Section 44.7: Compact nested namespaces 241 ..
Section 44.8: Namespace alias 241 ..
Section 44.9: Inline namespace 242 ...
Section 44.10: Aliasing a long namespace 244 ..
Section 44.11: Alias Declaration scope 244 ...

Chapter 45: Header Files 246 ...
Section 45.1: Basic Example 246 ...
Section 45.2: Templates in Header Files 247 ...

Chapter 46: Using declaration 248 ..
Section 46.1: Importing names individually from a namespace 248 ..
Section 46.2: Redeclaring members from a base class to avoid name hiding 248 ..
Section 46.3: Inheriting constructors 248 ...

Chapter 47: std::string 250 ...
Section 47.1: Tokenize 250 ...
Section 47.2: Conversion to (const) char* 251 ...
Section 47.3: Using the std::string_view class 251 ..
Section 47.4: Conversion to std::wstring 252 ..
Section 47.5: Lexicographical comparison 253 ...
Section 47.6: Trimming characters at start/end 254 ...
Section 47.7: String replacement 255 ...
Section 47.8: Converting to std::string 256 ...
Section 47.9: Splitting 257 ..
Section 47.10: Accessing a character 258 ..
Section 47.11: Checking if a string is a prefix of another 258 ...
Section 47.12: Looping through each character 259 ..
Section 47.13: Conversion to integers/floating point types 259 ..
Section 47.14: Concatenation 260 ...

Section 47.15: Converting between character encodings 261 ...
Section 47.16: Finding character(s) in a string 262 ...

Chapter 48: std::array 263 ...
Section 48.1: Initializing an std::array 263 ...
Section 48.2: Element access 264 ...
Section 48.3: Iterating through the Array 266 ...
Section 48.4: Checking size of the Array 266 ..
Section 48.5: Changing all array elements at once 266 ...

Chapter 49: std::vector 267 ...
Section 49.1: Accessing Elements 267 ..
Section 49.2: Initializing a std::vector 269 ...
Section 49.3: Deleting Elements 270 ...
Section 49.4: Iterating Over std::vector 272 ...
Section 49.5: vector<bool>: The Exception To So Many, So Many Rules 274 ..
Section 49.6: Inserting Elements 275 ..
Section 49.7: Using std::vector as a C array 276 ...
Section 49.8: Finding an Element in std::vector 277 ..
Section 49.9: Concatenating Vectors 278 ..
Section 49.10: Matrices Using Vectors 279 ...
Section 49.11: Using a Sorted Vector for Fast Element Lookup 280 ..
Section 49.12: Reducing the Capacity of a Vector 281 ...
Section 49.13: Vector size and capacity 281 ..
Section 49.14: Iterator/Pointer Invalidation 283 ..
Section 49.15: Find max and min Element and Respective Index in a Vector 284 ...
Section 49.16: Converting an array to std::vector 284 ..
Section 49.17: Functions Returning Large Vectors 285 ...

Chapter 50: std::map 287 ..
Section 50.1: Accessing elements 287 ..
Section 50.2: Inserting elements 288 ..
Section 50.3: Searching in std::map or in std::multimap 289 ..
Section 50.4: Initializing a std::map or std::multimap 290 ...
Section 50.5: Checking number of elements 291 ..
Section 50.6: Types of Maps 291 ..
Section 50.7: Deleting elements 292 ...
Section 50.8: Iterating over std::map or std::multimap 293 ...
Section 50.9: Creating std::map with user-defined types as key 293 ...

Chapter 51: std::optional 295 ...
Section 51.1: Using optionals to represent the absence of a value 295 ..
Section 51.2: optional as return value 295 ...
Section 51.3: value_or 296 ...
Section 51.4: Introduction 296 ..
Section 51.5: Using optionals to represent the failure of a function 297 ..

Chapter 52: std::function: To wrap any element that is callable 299 ..
Section 52.1: Simple usage 299 ...
Section 52.2: std::function used with std::bind 299 ..
Section 52.3: Binding std::function to a dierent callable types 300 ..
Section 52.4: Storing function arguments in std::tuple 302 ..
Section 52.5: std::function with lambda and std::bind 303 ...
Section 52.6: `function` overhead 304 ..

Chapter 53: std::forward_list 305 ...

Section 53.1: Example 305 ..
Section 53.2: Methods 305 ...

Chapter 54: std::pair 307 ..
Section 54.1: Compare operators 307 ..
Section 54.2: Creating a Pair and accessing the elements 307 ...

Chapter 55: std::atomics 309 ...
Section 55.1: atomic types 309 ..

Chapter 56: std::variant 311 ..
Section 56.1: Create pseudo-method pointers 311 ...
Section 56.2: Basic std::variant use 312 ..
Section 56.3: Constructing a `std::variant` 313 ...

Chapter 57: std::iomanip 314 ..
Section 57.1: std::setprecision 314 ...
Section 57.2: std::setfill 314 ..
Section 57.3: std::setiosflags 314 ...
Section 57.4: std::setw 316 ...

Chapter 58: std::any 317 ..
Section 58.1: Basic usage 317 ..

Chapter 59: std::set and std::multiset 318 ..
Section 59.1: Changing the default sort of a set 318 ..
Section 59.2: Deleting values from a set 320 ..
Section 59.3: Inserting values in a set 321 ...
Section 59.4: Inserting values in a multiset 323 ...
Section 59.5: Searching values in set and multiset 323 ..

Chapter 60: std::integer_sequence 325 ..
Section 60.1: Turn a std::tuple<T...> into function parameters 325 ..
Section 60.2: Create a parameter pack consisting of integers 326 ..
Section 60.3: Turn a sequence of indices into copies of an element 326 ...

Chapter 61: Using std::unordered_map 328 ..
Section 61.1: Declaration and Usage 328 ...
Section 61.2: Some Basic Functions 328 ...

Chapter 62: Standard Library Algorithms 329 ...
Section 62.1: std::next_permutation 329 ...
Section 62.2: std::for_each 329 ...
Section 62.3: std::accumulate 330 ...
Section 62.4: std::find 331 ..
Section 62.5: std::min_element 333 ..
Section 62.6: std::find_if 334 ..
Section 62.7: Using std::nth_element To Find The Median (Or Other Quantiles) 335 ...
Section 62.8: std::count 336 ...
Section 62.9: std::count_if 337 ...

Chapter 63: The ISO C++ Standard 339 ..
Section 63.1: Current Working Drafts 339 ..
Section 63.2: C++17 339 ..
Section 63.3: C++11 340 ...
Section 63.4: C++14 341 ..
Section 63.5: C++98 342 ...
Section 63.6: C++03 342 ...
Section 63.7: C++20 343 ...

Chapter 64: Inline variables 344 ..
Section 64.1: Defining a static data member in the class definition 344 ...

Chapter 65: Random number generation 345 ...
Section 65.1: True random value generator 345 ...
Section 65.2: Generating a pseudo-random number 345 ..
Section 65.3: Using the generator for multiple distributions 346 ..

Chapter 66: Date and time using <chrono> header 347 ..
Section 66.1: Measuring time using <chrono> 347 ..
Section 66.2: Find number of days between two dates 347 ..

Chapter 67: Sorting 349 ...
Section 67.1: Sorting and sequence containers 349 ..
Section 67.2: sorting with std::map (ascending and descending) 349 ..
Section 67.3: Sorting sequence containers by overloaded less operator 351 ...
Section 67.4: Sorting sequence containers using compare function 352 ...
Section 67.5: Sorting sequence containers using lambda expressions (C++11) 353 ..
Section 67.6: Sorting built-in arrays 354 ..
Section 67.7: Sorting sequence containers with specifed ordering 354 ...

Chapter 68: Enumeration 355 ...
Section 68.1: Iteration over an enum 355 ...
Section 68.2: Scoped enums 356 ..
Section 68.3: Enum forward declaration in C++11 357 ..
Section 68.4: Basic Enumeration Declaration 357 ..
Section 68.5: Enumeration in switch statements 358 ...

Chapter 69: Iteration 359 ..
Section 69.1: break 359 ..
Section 69.2: continue 359 ...
Section 69.3: do 359 ...
Section 69.4: while 359 ...
Section 69.5: range-based for loop 360 ...
Section 69.6: for 360 ...

Chapter 70: Regular expressions 361 ...
Section 70.1: Basic regex_match and regex_search Examples 361 ...
Section 70.2: regex_iterator Example 361 ...
Section 70.3: Anchors 362 ..
Section 70.4: regex_replace Example 363 ...
Section 70.5: regex_token_iterator Example 363 ..
Section 70.6: Quantifiers 363 ...
Section 70.7: Splitting a string 365 ..

Chapter 71: Implementation-defined behavior 366 ...
Section 71.1: Size of integral types 366 ...
Section 71.2: Char might be unsigned or signed 368 ..
Section 71.3: Ranges of numeric types 368 ...
Section 71.4: Value representation of floating point types 369 ...
Section 71.5: Overflow when converting from integer to signed integer 369 ..
Section 71.6: Underlying type (and hence size) of an enum 370 ...
Section 71.7: Numeric value of a pointer 370 ...
Section 71.8: Number of bits in a byte 371 ...

Chapter 72: Exceptions 372 ..
Section 72.1: Catching exceptions 372 ..

Section 72.2: Rethrow (propagate) exception 373 ...
Section 72.3: Best practice: throw by value, catch by const reference 374 ...
Section 72.4: Custom exception 375 ...
Section 72.5: std::uncaught_exceptions 377 ..
Section 72.6: Function Try Block for regular function 378 ...
Section 72.7: Nested exception 378 ..
Section 72.8: Function Try Blocks In constructor 380 ...
Section 72.9: Function Try Blocks In destructor 381 ...

Chapter 73: Lambdas 382 ...
Section 73.1: What is a lambda expression? 382 ...
Section 73.2: Specifying the return type 384 ...
Section 73.3: Capture by value 385 ..
Section 73.4: Recursive lambdas 386 ...
Section 73.5: Default capture 388 ...
Section 73.6: Class lambdas and capture of this 388 ...
Section 73.7: Capture by reference 390 ...
Section 73.8: Generic lambdas 390 ...
Section 73.9: Using lambdas for inline parameter pack unpacking 391 ..
Section 73.10: Generalized capture 393 ..
Section 73.11: Conversion to function pointer 394 ...
Section 73.12: Porting lambda functions to C++03 using functors 394 ...

Chapter 74: Value Categories 396 ...
Section 74.1: Value Category Meanings 396 ..
Section 74.2: rvalue 396 ...
Section 74.3: xvalue 397 ...
Section 74.4: prvalue 397 ...
Section 74.5: lvalue 398 ..
Section 74.6: glvalue 398 ...

Chapter 75: Preprocessor 399 ..
Section 75.1: Include Guards 399 ...
Section 75.2: Conditional logic and cross-platform handling 400 ...
Section 75.3: X-macros 401 ...
Section 75.4: Macros 403 ...
Section 75.5: Predefined macros 406 ...
Section 75.6: Preprocessor Operators 408 ..
Section 75.7: #pragma once 408 ..
Section 75.8: Preprocessor error messages 409 ...

Chapter 76: Data Structures in C++ 410 ..
Section 76.1: Linked List implementation in C++ 410 ...

Chapter 77: Templates 413 ..
Section 77.1: Basic Class Template 413 ..
Section 77.2: Function Templates 413 ..
Section 77.3: Variadic template data structures 415 ..
Section 77.4: Argument forwarding 417 ..
Section 77.5: Partial template specialization 418 ..
Section 77.6: Template Specialization 420 ...
Section 77.7: Alias template 420 ...
Section 77.8: Explicit instantiation 420 ..
Section 77.9: Non-type template parameter 421 ...
Section 77.10: Declaring non-type template arguments with auto 422 ..

Section 77.11: Template template parameters 423 ...
Section 77.12: Default template parameter value 424 ...

Chapter 78: Expression templates 425 ...
Section 78.1: A basic example illustrating expression templates 425 ...

Chapter 79: Curiously Recurring Template Pattern (CRTP) 429 ...
Section 79.1: The Curiously Recurring Template Pattern (CRTP) 429 ...
Section 79.2: CRTP to avoid code duplication 430 ..

Chapter 80: Threading 432 ...
Section 80.1: Creating a std::thread 432 ...
Section 80.2: Passing a reference to a thread 434 ...
Section 80.3: Using std::async instead of std::thread 434 ..
Section 80.4: Basic Synchronization 435 ..
Section 80.5: Create a simple thread pool 435 ...
Section 80.6: Ensuring a thread is always joined 437 ...
Section 80.7: Operations on the current thread 438 ..
Section 80.8: Using Condition Variables 439 ...
Section 80.9: Thread operations 441 ...
Section 80.10: Thread-local storage 441 ..
Section 80.11: Reassigning thread objects 442 ..

Chapter 81: Thread synchronization structures 443 ...
Section 81.1: std::condition_variable_any, std::cv_status 443 ..
Section 81.2: std::shared_lock 443 ..
Section 81.3: std::call_once, std::once_flag 443 ...
Section 81.4: Object locking for ecient access 444 ..

Chapter 82: The Rule of Three, Five, And Zero 446 ...
Section 82.1: Rule of Zero 446 ...
Section 82.2: Rule of Five 447 ...
Section 82.3: Rule of Three 448 ..
Section 82.4: Self-assignment Protection 449 ...

Chapter 83: RAII: Resource Acquisition Is Initialization 451 ...
Section 83.1: Locking 451 ...
Section 83.2: ScopeSuccess (c++17) 452 ..
Section 83.3: ScopeFail (c++17) 453 ..
Section 83.4: Finally/ScopeExit 454 ..

Chapter 84: RTTI: Run-Time Type Information 455 ..
Section 84.1: dynamic_cast 455 ..
Section 84.2: The typeid keyword 455 ...
Section 84.3: Name of a type 456 ...
Section 84.4: When to use which cast in c++ 456 ..

Chapter 85: Mutexes 457 ...
Section 85.1: Mutex Types 457 ..
Section 85.2: std::lock 457 ..
Section 85.3: std::unique_lock, std::shared_lock, std::lock_guard 457 ...
Section 85.4: Strategies for lock classes: std::try_to_lock, std::adopt_lock, std::defer_lock 458
Section 85.5: std::mutex 459 ..
Section 85.6: std::scoped_lock (C++ 17) 459 ..

Chapter 86: Recursive Mutex 460 ..
Section 86.1: std::recursive_mutex 460 ...

Chapter 87: Semaphore 461 ..

Section 87.1: Semaphore C++ 11 461 ...
Section 87.2: Semaphore class in action 461 ..

Chapter 88: Futures and Promises 463 ..
Section 88.1: Async operation classes 463 ...
Section 88.2: std::future and std::promise 463 ...
Section 88.3: Deferred async example 463 ...
Section 88.4: std::packaged_task and std::future 464 ..
Section 88.5: std::future_error and std::future_errc 464 ..
Section 88.6: std::future and std::async 465 ...

Chapter 89: Atomic Types 468 ..
Section 89.1: Multi-threaded Access 468 ..

Chapter 90: Type Erasure 470 ..
Section 90.1: A move-only `std::function` 470 ...
Section 90.2: Erasing down to a Regular type with manual vtable 472 ...
Section 90.3: Basic mechanism 475 ...
Section 90.4: Erasing down to a contiguous buer of T 476 ...
Section 90.5: Type erasing type erasure with std::any 477 ...

Chapter 91: Explicit type conversions 482 ...
Section 91.1: C-style casting 482 ..
Section 91.2: Casting away constness 482 ...
Section 91.3: Base to derived conversion 482 ..
Section 91.4: Conversion between pointer and integer 483 ...
Section 91.5: Conversion by explicit constructor or explicit conversion function 484 ...
Section 91.6: Implicit conversion 484 ..
Section 91.7: Enum conversions 484 ...
Section 91.8: Derived to base conversion for pointers to members 486 ..
Section 91.9: void* to T* 486 ...
Section 91.10: Type punning conversion 487 ...

Chapter 92: Unnamed types 488 ...
Section 92.1: Unnamed classes 488 ..
Section 92.2: As a type alias 488 ..
Section 92.3: Anonymous members 488 ...
Section 92.4: Anonymous Union 489 ..

Chapter 93: Type Traits 490 ...
Section 93.1: Type Properties 490 ...
Section 93.2: Standard type traits 491 ...
Section 93.3: Type relations with std::is_same<T, T> 492 ..
Section 93.4: Fundamental type traits 493 ..

Chapter 94: Return Type Covariance 495 ..
Section 94.1: Covariant result version of the base example, static type checking 495 ...
Section 94.2: Covariant smart pointer result (automated cleanup) 495 ..

Chapter 95: Layout of object types 497 ..
Section 95.1: Class types 497 ...
Section 95.2: Arithmetic types 499 ...
Section 95.3: Arrays 500 ..

Chapter 96: Type Inference 501 ..
Section 96.1: Data Type: Auto 501 ..
Section 96.2: Lambda auto 501 ..
Section 96.3: Loops and auto 501 ...

Chapter 97: Typedef and type aliases 503 ..
Section 97.1: Basic typedef syntax 503 ..
Section 97.2: More complex uses of typedef 503 ...
Section 97.3: Declaring multiple types with typedef 504 ...
Section 97.4: Alias declaration with "using" 504 ..

Chapter 98: type deduction 505 ..
Section 98.1: Template parameter deduction for constructors 505 ...
Section 98.2: Auto Type Deduction 505 ...
Section 98.3: Template Type Deduction 506 ...

Chapter 99: Trailing return type 508 ...
Section 99.1: Avoid qualifying a nested type name 508 ...
Section 99.2: Lambda expressions 508 ..

Chapter 100: Alignment 509 ...
Section 100.1: Controlling alignment 509 ..
Section 100.2: Querying the alignment of a type 509 ..

Chapter 101: Perfect Forwarding 511 ..
Section 101.1: Factory functions 511 ..

Chapter 102: decltype 512 ..
Section 102.1: Basic Example 512 ..
Section 102.2: Another example 512 ...

Chapter 103: SFINAE (Substitution Failure Is Not An Error) 513 ..
Section 103.1: What is SFINAE 513 ...
Section 103.2: void_t 513 ...
Section 103.3: enable_if 515 ..
Section 103.4: is_detected 516 ..
Section 103.5: Overload resolution with a large number of options 518 ..
Section 103.6: trailing decltype in function templates 519 ...
Section 103.7: enable_if_all / enable_if_any 520 ..

Chapter 104: Undefined Behavior 522 ..
Section 104.1: Reading or writing through a null pointer 522 ...
Section 104.2: Using an uninitialized local variable 522 ...
Section 104.3: Accessing an out-of-bounds index 523 ..
Section 104.4: Deleting a derived object via a pointer to a base class that doesn't have a virtual destructor

523 ...
Section 104.5: Extending the `std` or `posix` Namespace 523 ..
Section 104.6: Invalid pointer arithmetic 524 ...
Section 104.7: No return statement for a function with a non-void return type 525 ...
Section 104.8: Accessing a dangling reference 525 ..
Section 104.9: Integer division by zero 526 ..
Section 104.10: Shifting by an invalid number of positions 526 ...
Section 104.11: Incorrect pairing of memory allocation and deallocation 526 ...
Section 104.12: Signed Integer Overflow 527 ...
Section 104.13: Multiple non-identical definitions (the One Definition Rule) 527 ..
Section 104.14: Modifying a const object 528 ..
Section 104.15: Returning from a [[noreturn]] function 529 ..
Section 104.16: Infinite template recursion 529 ..
Section 104.17: Overflow during conversion to or from floating point type 530 ..
Section 104.18: Modifying a string literal 530 ...
Section 104.19: Accessing an object as the wrong type 530 ..

Section 104.20: Invalid derived-to-base conversion for pointers to members 531 ...
Section 104.21: Destroying an object that has already been destroyed 531 ...
Section 104.22: Access to nonexistent member through pointer to member 532 ...
Section 104.23: Invalid base-to-derived static cast 532 ..
Section 104.24: Floating point overflow 532 ..
Section 104.25: Calling (Pure) Virtual Members From Constructor Or Destructor 532 ...
Section 104.26: Function call through mismatched function pointer type 533 ..

Chapter 105: Overload resolution 534 ..
Section 105.1: Categorization of argument to parameter cost 534 ...
Section 105.2: Arithmetic promotions and conversions 534 ..
Section 105.3: Overloading on Forwarding Reference 535 ..
Section 105.4: Exact match 536 ...
Section 105.5: Overloading on constness and volatility 536 ..
Section 105.6: Name lookup and access checking 537 ..
Section 105.7: Overloading within a class hierarchy 538 ..
Section 105.8: Steps of Overload Resolution 539 ..

Chapter 106: Move Semantics 541 ..
Section 106.1: Move semantics 541 ...
Section 106.2: Using std::move to reduce complexity from O(n²) to O(n) 541 ...
Section 106.3: Move constructor 544 ..
Section 106.4: Re-use a moved object 546 ..
Section 106.5: Move assignment 546 ..
Section 106.6: Using move semantics on containers 547 ...

Chapter 107: Pimpl Idiom 549 ..
Section 107.1: Basic Pimpl idiom 549 ...

Chapter 108: auto 551 ...
Section 108.1: Basic auto sample 551 ...
Section 108.2: Generic lambda (C++14) 551 ...
Section 108.3: auto and proxy objects 552 ..
Section 108.4: auto and Expression Templates 552 ..
Section 108.5: auto, const, and references 553 ...
Section 108.6: Trailing return type 553 ...

Chapter 109: Copy Elision 555 ...
Section 109.1: Purpose of copy elision 555 ...
Section 109.2: Guaranteed copy elision 556 ..
Section 109.3: Parameter elision 557 ..
Section 109.4: Return value elision 557 ..
Section 109.5: Named return value elision 557 ..
Section 109.6: Copy initialization elision 558 ..

Chapter 110: Fold Expressions 559 ..
Section 110.1: Unary Folds 559 ...
Section 110.2: Binary Folds 559 ...
Section 110.3: Folding over a comma 560 ..

Chapter 111: Unions 561 ...
Section 111.1: Undefined Behavior 561 ...
Section 111.2: Basic Union Features 561 ...
Section 111.3: Typical Use 561 ..

Chapter 112: Design pattern implementation in C++ 563 ..
Section 112.1: Adapter Pattern 563 ..

Section 112.2: Observer pattern 565 ...
Section 112.3: Factory Pattern 568 ..
Section 112.4: Builder Pattern with Fluent API 568 ...

Chapter 113: Singleton Design Pattern 572 ..
Section 113.1: Lazy Initialization 572 ..
Section 113.2: Static deinitialization-safe singleton 573 ..
Section 113.3: Thread-safe Singeton 573 ..
Section 113.4: Subclasses 573 ..

Chapter 114: User-Defined Literals 575 ..
Section 114.1: Self-made user-defined literal for binary 575 ..
Section 114.2: Standard user-defined literals for duration 575 ..
Section 114.3: User-defined literals with long double values 576 ...
Section 114.4: Standard user-defined literals for strings 576 ...
Section 114.5: Standard user-defined literals for complex 577 ..

Chapter 115: Memory management 578 ..
Section 115.1: Free Storage (Heap, Dynamic Allocation ...) 578 ..
Section 115.2: Placement new 579 ...
Section 115.3: Stack 580 ..

Chapter 116: C++11 Memory Model 581 ..
Section 116.1: Need for Memory Model 582 ..
Section 116.2: Fence example 584 ...

Chapter 117: Scopes 585 ...
Section 117.1: Global variables 585 ..
Section 117.2: Simple block scope 585 ..

Chapter 118: static_assert 587 ...
Section 118.1: static_assert 587 ..

Chapter 119: constexpr 588 ...
Section 119.1: constexpr variables 588 ..
Section 119.2: Static if statement 589 ..
Section 119.3: constexpr functions 590 ..

Chapter 120: One Definition Rule (ODR) 592 ...
Section 120.1: ODR violation via overload resolution 592 ...
Section 120.2: Multiply defined function 592 ..
Section 120.3: Inline functions 593 ..

Chapter 121: Unspecified behavior 595 ...
Section 121.1: Value of an out-of-range enum 595 ..
Section 121.2: Evaluation order of function arguments 595 ...
Section 121.3: Result of some reinterpret_cast conversions 596 ...
Section 121.4: Space occupied by a reference 597 ...
Section 121.5: Moved-from state of most standard library classes 597 ...
Section 121.6: Result of some pointer comparisons 598 ...
Section 121.7: Static cast from bogus void* value 598 ..
Section 121.8: Order of initialization of globals across TU 598 ..

Chapter 122: Argument Dependent Name Lookup 600 ...
Section 122.1: What functions are found 600 ...

Chapter 123: Attributes 601 ..
Section 123.1: [[fallthrough]] 601 ..
Section 123.2: [[nodiscard]] 601 ...
Section 123.3: [[deprecated]] and [[deprecated("reason")]] 602 ..

Section 123.4: [[maybe_unused]] 602 ...
Section 123.5: [[noreturn]] 603 ..

Chapter 124: Recursion in C++ 605 ...
Section 124.1: Using tail recursion and Fibonnaci-style recursion to solve the Fibonnaci sequence 605
Section 124.2: Recursion with memoization 605 ..

Chapter 125: Arithmitic Metaprogramming 607 ..
Section 125.1: Calculating power in O(log n) 607 ...

Chapter 126: Callable Objects 609 ..
Section 126.1: Function Pointers 609 ...
Section 126.2: Classes with operator() (Functors) 609 ...

Chapter 127: Client server examples 611 ..
Section 127.1: Hello TCP Client 611 ..
Section 127.2: Hello TCP Server 612 ...

Chapter 128: Const Correctness 616 ..
Section 128.1: The Basics 616 ...
Section 128.2: Const Correct Class Design 616 ...
Section 128.3: Const Correct Function Parameters 618 ...
Section 128.4: Const Correctness as Documentation 620 ..

Chapter 129: Parameter packs 624 ..
Section 129.1: A template with a parameter pack 624 ..
Section 129.2: Expansion of a parameter pack 624 ..

Chapter 130: Build Systems 625 ...
Section 130.1: Generating Build Environment with CMake 625 ..
Section 130.2: Compiling with GNU make 626 ...
Section 130.3: Building with SCons 628 ...
Section 130.4: Autotools (GNU) 628 ..
Section 130.5: Ninja 629 ..
Section 130.6: NMAKE (Microsoft Program Maintenance Utility) 629 ...

Chapter 131: Concurrency With OpenMP 630 ...
Section 131.1: OpenMP: Parallel Sections 630 ...
Section 131.2: OpenMP: Parallel Sections 630 ...
Section 131.3: OpenMP: Parallel For Loop 631 ..
Section 131.4: OpenMP: Parallel Gathering / Reduction 631 ..

Chapter 132: Resource Management 633 ..
Section 132.1: Resource Acquisition Is Initialization 633 ..
Section 132.2: Mutexes & Thread Safety 634 ...

Chapter 133: Storage class specifiers 636 ..
Section 133.1: extern 636 ...
Section 133.2: register 637 ...
Section 133.3: static 637 ...
Section 133.4: auto 638 ...
Section 133.5: mutable 638 ..

Chapter 134: Linkage specifications 640 ...
Section 134.1: Signal handler for Unix-like operating system 640 ...
Section 134.2: Making a C library header compatible with C++ 640 ...

Chapter 135: Digit separators 642 ..
Section 135.1: Digit Separator 642 ...

Chapter 136: C incompatibilities 643 ..

Section 136.1: Reserved Keywords 643 ...
Section 136.2: Weakly typed pointers 643 ...
Section 136.3: goto or switch 643 ..

Chapter 137: Side by Side Comparisons of classic C++ examples solved via C++ vs C++11
vs C++14 vs C++17 644 ...

Section 137.1: Looping through a container 644 ..

Chapter 138: Compiling and Building 645 ..
Section 138.1: Compiling with GCC 645 ...
Section 138.2: Compiling with Visual Studio (Graphical Interface) - Hello World 646 ...
Section 138.3: Online Compilers 651 ...
Section 138.4: Compiling with Visual C++ (Command Line) 653 ..
Section 138.5: Compiling with Clang 656 ..
Section 138.6: The C++ compilation process 656 ...
Section 138.7: Compiling with Code::Blocks (Graphical interface) 658 ..

Chapter 139: Common compile/linker errors (GCC) 661 ...
Section 139.1: undefined reference to `***' 661 ..
Section 139.2: error: '***' was not declared in this scope 661 ..
Section 139.3: fatal error: ***: No such file or directory 663 ...

Chapter 140: More undefined behaviors in C++ 664 ..
Section 140.1: Referring to non-static members in initializer lists 664 ...

Chapter 141: Unit Testing in C++ 665 ...
Section 141.1: Google Test 665 ...
Section 141.2: Catch 665 ...

Chapter 142: C++ Debugging and Debug-prevention Tools & Techniques 667
Section 142.1: Static analysis 667 ..
Section 142.2: Segfault analysis with GDB 668 ..
Section 142.3: Clean code 669 ...

Chapter 143: Optimization in C++ 671 ...
Section 143.1: Introduction to performance 671 ..
Section 143.2: Empty Base Class Optimization 671 ..
Section 143.3: Optimizing by executing less code 672 ..
Section 143.4: Using ecient containers 673 ...
Section 143.5: Small Object Optimization 674 ..

Chapter 144: Optimization 676 ..
Section 144.1: Inline Expansion/Inlining 676 ...
Section 144.2: Empty base optimization 676 ...

Chapter 145: Profiling 678 ...
Section 145.1: Profiling with gcc and gprof 678 ...
Section 145.2: Generating callgraph diagrams with gperf2dot 678 ..
Section 145.3: Profiling CPU Usage with gcc and Google Perf Tools 679 ...

Chapter 146: Refactoring Techniques 681 ...
Section 146.1: Goto Cleanup 681 ..

Credits 682 ..

You may also like 690 ..

1

Please feel free to share this PDF with anyone for free,

latest version of this book can be downloaded from:

https://goalkicker.com/CPlusPlusBook

About

This C++ Notes for Professionals book is compiled from Stack Overflow

Documentation, the content is written by the beautiful people at Stack Overflow.

Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not

affiliated with official C++ group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor

accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

https://goalkicker.com/CPlusPlusBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com

2

Chapter 1: Getting started with C++

Version Standard Release Date

C++98 ISO/IEC 14882:1998 1998-09-01

C++03 ISO/IEC 14882:2003 2003-10-16

C++11 ISO/IEC 14882:2011 2011-09-01

C++14 ISO/IEC 14882:2014 2014-12-15

C++17 TBD 2017-01-01

C++20 TBD 2020-01-01

Section 1.1: Hello World

This program prints Hello World! to the standard output stream:

See it live on Coliru.

Analysis

Let's examine each part of this code in detail:

#include <iostream> is a preprocessor directive that includes the content of the standard C++ header file

iostream.

iostream is a standard library header file that contains definitions of the standard input and output

streams. These definitions are included in the std namespace, explained below.

The standard input/output (I/O) streams provide ways for programs to get input from and output to an

external system -- usually the terminal.

int main() { ... } defines a new function named main. By convention, the main function is called upon

execution of the program. There must be only one main function in a C++ program, and it must always return

a number of the int type.

Here, the int is what is called the function's return type. The value returned by the main function is an exit

code.

By convention, a program exit code of 0 or EXIT_SUCCESS is interpreted as success by a system that

executes the program. Any other return code is associated with an error.

If no return statement is present, the main function (and thus, the program itself) returns 0 by default. In this

example, we don't need to explicitly write return 0;.

All other functions, except those that return the void type, must explicitly return a value according to their

return type, or else must not return at all.

#include <iostream>

int main()

{

std::cout << "Hello World!" << std::endl;

}

http://coliru.stacked-crooked.com/a/ba766ad8ca2fae56

3

std::cout << "Hello World!" << std::endl; prints "Hello World!" to the standard output stream:

std is a namespace, and :: is the scope resolution operator that allows look-ups for objects by name

within a namespace.

There are many namespaces. Here, we use :: to show we want to use cout from the std namespace.

For more information refer to Scope Resolution Operator - Microsoft Documentation.

std::cout is the standard output stream object, defined in iostream, and it prints to the standard

output (stdout).

<< is, in this context, the stream insertion operator, so called because it inserts an object into the

stream object.

The standard library defines the << operator to perform data insertion for certain data types into

output streams. stream << content inserts content into the stream and returns the same, but

updated stream. This allows stream insertions to be chained: std::cout << "Foo" << " Bar"; prints

"FooBar" to the console.

"Hello World!" is a character string literal, or a "text literal." The stream insertion operator for

character string literals is defined in file iostream.

std::endl is a special I/O stream manipulator object, also defined in file iostream. Inserting a

manipulator into a stream changes the state of the stream.

The stream manipulator std::endl does two things: first it inserts the end-of-line character and then it

flushes the stream buffer to force the text to show up on the console. This ensures that the data

inserted into the stream actually appear on your console. (Stream data is usually stored in a buffer and

then "flushed" in batches unless you force a flush immediately.)

An alternate method that avoids the flush is:

where \n is the character escape sequence for the newline character.

The semicolon (;) notifies the compiler that a statement has ended. All C++ statements and class

definitions require an ending/terminating semicolon.

Section 1.2: Comments

A comment is a way to put arbitrary text inside source code without having the C++ compiler interpret it with any

functional meaning. Comments are used to give insight into the design or method of a program.

There are two types of comments in C++:

Single-Line Comments

The double forward-slash sequence // will mark all text until a newline as a comment:

std::cout << "Hello World!\n";

int main()

{

https://msdn.microsoft.com/en-us/library/b451xz31.aspx/
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl

4

C-Style/Block Comments

The sequence /* is used to declare the start of the comment block and the sequence */ is used to declare the end

of comment. All text between the start and end sequences is interpreted as a comment, even if the text is

otherwise valid C++ syntax. These are sometimes called "C-style" comments, as this comment syntax is inherited

from C++'s predecessor language, C:

In any block comment, you can write anything you want. When the compiler encounters the symbol */, it

terminates the block comment:

The above example is valid C++ (and C) code. However, having additional /* inside a block comment might result in

a warning on some compilers.

Block comments can also start and end within a single line. For example:

Importance of Comments

As with all programming languages, comments provide several benefits:

Explicit documentation of code to make it easier to read/maintain

Explanation of the purpose and functionality of code

Details on the history or reasoning behind the code

Placement of copyright/licenses, project notes, special thanks, contributor credits, etc. directly in the source

code.

However, comments also have their downsides:

They must be maintained to reflect any changes in the code

Excessive comments tend to make the code less readable

The need for comments can be reduced by writing clear, self-documenting code. A simple example is the use of

explanatory names for variables, functions, and types. Factoring out logically related tasks into discrete functions

goes hand-in-hand with this.

// This is a single-line comment.

int a; // this also is a single-line comment

int i; // this is another single-line comment

}

int main()

{

/*

* This is a block comment.

*/

int a;

}

int main()

{

/* A block comment with the symbol /*

Note that the compiler is not affected by the second /*

however, once the end-block-comment symbol is

reached, the comment ends.

*/

int a;

}

void SomeFunction(/* argument 1 */ int a, /* argument 2 */ int b);

5

Comment markers used to disable code

During development, comments can also be used to quickly disable portions of code without deleting it. This is

often useful for testing or debugging purposes, but is not good style for anything other than temporary edits. This

is often referred to as “commenting out”.

Similarly, keeping old versions of a piece of code in a comment for reference purposes is frowned upon, as it

clutters files while offering little value compared to exploring the code's history via a versioning system.

Section 1.3: The standard C++ compilation process

Executable C++ program code is usually produced by a compiler.

A compiler is a program that translates code from a programming language into another form which is (more)

directly executable for a computer. Using a compiler to translate code is called compilation.

C++ inherits the form of its compilation process from its "parent" language, C. Below is a list showing the four major

steps of compilation in C++:

1. The C++ preprocessor copies the contents of any included header files into the source code file, generates

macro code, and replaces symbolic constants defined using #define with their values.

2. The expanded source code file produced by the C++ preprocessor is compiled into assembly language

appropriate for the platform.

3. The assembler code generated by the compiler is assembled into appropriate object code for the platform.

4. The object code file generated by the assembler is linked together with the object code files for any library

functions used to produce an executable file.

Note: some compiled code is linked together, but not to create a final program. Usually, this "linked" code

can also be packaged into a format that can be used by other programs. This "bundle of packaged, usable

code" is what C++ programmers refer to as a library.

Many C++ compilers may also merge or un-merge certain parts of the compilation process for ease or for additional

analysis. Many C++ programmers will use different tools, but all of the tools will generally follow this generalized

process when they are involved in the production of a program.

The link below extends this discussion and provides a nice graphic to help. [1]:

http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

Section 1.4: Function

A function is a unit of code that represents a sequence of statements.

Functions can accept arguments or values and return a single value (or not). To use a function, a function call is

used on argument values and the use of the function call itself is replaced with its return value.

Every function has a type signature -- the types of its arguments and the type of its return type.

Functions are inspired by the concepts of the procedure and the mathematical function.

Note: C++ functions are essentially procedures and do not follow the exact definition or rules of

mathematical functions.

Functions are often meant to perform a specific task. and can be called from other parts of a program. A function

must be declared and defined before it is called elsewhere in a program.

http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

6

Note: popular function definitions may be hidden in other included files (often for convenience and reuse

across many files). This is a common use of header files.

Function Declaration

A function declaration is declares the existence of a function with its name and type signature to the compiler.

The syntax is as the following:

In the example above, the int add2(int i) function declares the following to the compiler:

The return type is int.

The name of the function is add2.

The number of arguments to the function is 1:

The first argument is of the type int.

The first argument will be referred to in the function's contents by the name i.

The argument name is optional; the declaration for the function could also be the following:

Per the one-definition rule, a function with a certain type signature can only be declared or defined once in an

entire C++ code base visible to the C++ compiler. In other words, functions with a specific type signature cannot be

re-defined -- they must only be defined once. Thus, the following is not valid C++:

If a function returns nothing, its return type is written as void. If it takes no parameters, the parameter list should

be empty.

Function Call

A function can be called after it has been declared. For example, the following program calls add2 with the value of

2 within the function of main:

Here, add2(2) is the syntax for a function call.

int add2(int i); // The function is of the type (int) -> (int)

int add2(int); // Omitting the function arguments' name is also permitted.

int add2(int i); // The compiler will note that add2 is a function (int) -> int int

add2(int j); // As add2 already has a definition of (int) -> int, the compiler

// will regard this as an error.

void do_something(); // The function takes no parameters, and does not return anything.

// Note that it can still affect variables it has access to.

#include <iostream>

int add2(int i); // Declaration of add2

// Note: add2 is still missing a DEFINITION.

// Even though it doesn't appear directly in code,

// add2's definition may be LINKED in from another object file.

int main()

{

std::cout << add2(2) << "\n"; // add2(2) will be evaluated at this point,

// and the result is printed.

return 0;

}

7

Function Definition

A function definition* is similar to a declaration, except it also contains the code that is executed when the function

is called within its body.

An example of a function definition for add2 might be:

Function Overloading

You can create multiple functions with the same name but different parameters.

Both functions are called by the same name add2, but the actual function that is called depends directly on the

amount and type of the parameters in the call. In most cases, the C++ compiler can compute which function to call.

In some cases, the type must be explicitly stated.

Default Parameters

Default values for function parameters can only be specified in function declarations.

In this example, multiply() can be called with one or two parameters. If only one parameter is given, b will have

default value of 7. Default arguments must be placed in the latter arguments of the function. For example:

Special Function Calls - Operators

There exist special function calls in C++ which have different syntax than name_of_function(value1, value2,

value3). The most common example is that of operators.

Certain special character sequences that will be reduced to function calls by the compiler, such as !, +, -, *, %, and

<< and many more. These special characters are normally associated with non-programming usage or are used for

int add2(int i)

{

// Data that is passed into (int i) will be referred to by the name i

// while in the function's curly brackets or "scope."

int j = i + 2;

return j;

// Definition of a variable j as the value of i+2.

// Returning or, in essence, substitution of j for a function call to

// add2.

}

int add2(int i)

{

int j = i + 2;

return j;

}

// Code contained in this definition will be evaluated

// when add2() is called with one parameter.

int add2(int i, int j) // However, when add2() is called with two parameters, the

{ // code from the initial declaration will be overloaded,

int k = i + j + 2 ; // and the code in this declaration will be evaluated return

k; // instead.

}

int multiply(int a, int b = 7); // b has default value of 7.

int multiply(int a, int b)

{

return a * b;

}

// If multiply() is called with one parameter, the

// value will be multiplied by the default, 7.

int multiply(int a = 10, int b = 20); // This is legal

int multiply(int a = 10, int b); // This is illegal since int a is in the former

8

aesthetics (e.g. the + character is commonly recognized as the addition symbol both within C++ programming as

well as in elementary math).

C++ handles these character sequences with a special syntax; but, in essence, each occurrence of an operator is

reduced to a function call. For example, the following C++ expression:

is equivalent to the following function call:

All operator function names start with operator.

While in C++'s immediate predecessor, C, operator function names cannot be assigned different meanings by

providing additional definitions with different type signatures, in C++, this is valid. "Hiding" additional function

definitions under one unique function name is referred to as operator overloading in C++, and is a relatively

common, but not universal, convention in C++.

Section 1.5: Visibility of function prototypes and declarations

In C++, code must be declared or defined before usage. For example, the following produces a compile time error:

There are two ways to resolve this: putting either the definition or declaration of foo() before its usage in main().

Here is one example:

However it is also possible to "forward-declare" the function by putting only a "prototype" declaration before its

usage and then defining the function body later:

3+3

operator+(3, 3)

int main()

{

foo(2); // error: foo is called, but has not yet been declared

}

void foo(int x) // this later definition is not known in main

{

}

void foo(int x) {} //Declare the foo function and body first

int main()

{

foo(2); // OK: foo is completely defined beforehand, so it can be called here.

}

void foo(int); // Prototype declaration of foo, seen by main

// Must specify return type, name, and argument list types

int main()

{

foo(2); // OK: foo is known, called even though its body is not yet defined

}

void foo(int x) //Must match the prototype

{

// Define body of foo here

}

9

The prototype must specify the return type (void), the name of the function (foo), and the argument list variable

types (int), but the names of the arguments are NOT required.

One common way to integrate this into the organization of source files is to make a header file containing all of the

prototype declarations:

and then provide the full definition elsewhere:

and then, once compiled, link the corresponding object file foo.o into the compiled object file where it is used in

the linking phase, main.o:

An “unresolved external symbol” error occurs when the function prototype and call exist, but the function body is not

defined. These can be trickier to resolve as the compiler won't report the error until the final linking stage, and it

doesn't know which line to jump to in the code to show the error.

Section 1.6: Preprocessor

The preprocessor is an important part of the compiler.

It edits the source code, cutting some bits out, changing others, and adding other things.

In source files, we can include preprocessor directives. These directives tells the preprocessor to perform specific

actions. A directive starts with a # on a new line. Example:

The first preprocessor directive you will meet is probably the

directive. What it does is takes all of something and inserts it in your file where the directive was. The hello world

program starts with the line

This line adds the functions and objects that let you use the standard input and output.

The C language, which also uses the preprocessor, does not have as many header files as the C++ language, but in

C++ you can use all the C header files.

The next important directive is probably the

// foo.h

void foo(int); // prototype declaration

// foo.cpp --> foo.o

#include "foo.h" // foo's prototype declaration is "hidden" in here

void foo(int x) { } // foo's body definition

// main.cpp --> main.o

#include "foo.h" // foo's prototype declaration is "hidden" in here

int main() { foo(2); } // foo is valid to call because its prototype declaration was beforehand.

// the prototype and body definitions of foo are linked through the object files

#define ZERO 0

#include <something>

#include <iostream>

https://stackoverflow.com/questions/5234169/why-do-function-prototypes-include-parameter-names-when-theyre-not-required

10

directive. This tells the preprocessor that as it goes along the file, it should replace every occurrence of something

with something_else. It can also make things similar to functions, but that probably counts as advanced C++.

The something_else is not needed, but if you define something as nothing, then outside preprocessor directives, all

occurrences of something will vanish.

This actually is useful, because of the #if,#else and #ifdef directives. The format for these would be the following:

These directives insert the code that is in the true bit, and deletes the false bits. this can be used to have bits of

code that are only included on certain operating systems, without having to rewrite the whole code.

#define something something_else

#if something==true

//code

#else

//more code

#endif

#ifdef thing_that_you_want_to_know_if_is_defined

//code

#endif

11

Chapter 2: Literals
Traditionally, a literal is an expression denoting a constant whose type and value are evident from its spelling. For

example, 42 is a literal, while x is not since one must see its declaration to know its type and read previous lines of

code to know its value.

However, C++11 also added user-defined literals, which are not literals in the traditional sense but can be used as a

shorthand for function calls.

Section 2.1: this

Within a member function of a class, the keyword this is a pointer to the instance of the class on which the

function was called. this cannot be used in a static member function.

The type of this depends on the cv-qualification of the member function: if X::f is const, then the type of this

within f is const X*, so this cannot be used to modify non-static data members from within a const member

function. Likewise, this inherits volatile qualification from the function it appears in.

Version ≥ C++11

this can also be used in a brace-or-equal-initializer for a non-static data member.

this is an rvalue, so it cannot be assigned to.

Section 2.2: Integer literal

An integer literal is a primary expression of the form

decimal-literal

It is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

int d = 42;

octal-literal

It is the digit zero (0) followed by zero or more octal digits (0, 1, 2, 3, 4, 5, 6, 7)

struct S {

int x;

S& operator=(const S& other) {

x = other.x;

// return a reference to the object being assigned to

return *this;

}

};

struct S;

struct T {

T(const S* s);

// ...

};

struct S {

// ...

T t{this};

};

12

int o = 052

hex-literal

It is the character sequence 0x or the character sequence 0X followed by one or more hexadecimal digits (0, 1, 2, 3,

4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F)

int x = 0x2a; int X = 0X2A;

binary-literal (since C++14)

It is the character sequence 0b or the character sequence 0B followed by one or more binary digits (0, 1)

int b = 0b101010; // C++14

Integer-suffix, if provided, may contain one or both of the following (if both are provided, they may appear in any

order:

unsigned-suffix (the character u or the character U)

unsigned int u_1 = 42u;

long-suffix (the character l or the character L) or the long-long-suffix (the character sequence ll or the

character sequence LL) (since C++11)

The following variables are also initialized to the same value:

Notes

Letters in the integer literals are case-insensitive: 0xDeAdBaBeU and 0XdeadBABEu represent the same number

(one exception is the long-long-suffix, which is either ll or LL, never lL or Ll)

There are no negative integer literals. Expressions such as -1 apply the unary minus operator to the value

represented by the literal, which may involve implicit type conversions.

In C prior to C99 (but not in C++), unsuffixed decimal values that do not fit in long int are allowed to have the type

unsigned long int.

When used in a controlling expression of #if or #elif, all signed integer constants act as if they have type

std::intmax_t and all unsigned integer constants act as if they have type std::uintmax_t.

Section 2.3: true

A keyword denoting one of the two possible values of type bool.

unsigned long long l1 = 18446744073709550592ull; // C++11

unsigned long long l2 = 18'446'744'073'709'550'592llu; // C++14

unsigned long long l3 = 1844'6744'0737'0955'0592uLL; // C++14

unsigned long long l4 = 184467'440737'0'95505'92LLU; // C++14

bool ok = true;

if (!f()) {

ok = false;

goto end;

}

13

Section 2.4: false

A keyword denoting one of the two possible values of type bool.

Section 2.5: nullptr

Version ≥ C++11

A keyword denoting a null pointer constant. It can be converted to any pointer or pointer-to-member type, yielding

a null pointer of the resulting type.

Note that nullptr is not itself a pointer. The type of nullptr is a fundamental type known as std::nullptr_t.

bool ok = true;

if (!f()) {

ok = false;

goto end;

}

Widget* p = new Widget();

delete p;

p = nullptr; // set the pointer to null after deletion

void f(int* p);

template <class T>

void g(T* p);

void h(std::nullptr_t p);

int main() {

f(nullptr); // ok

g(nullptr); // error h(nullptr);

// ok

}

14

Chapter 3: operator precedence

Section 3.1: Logical && and || operators: short-circuit

&& has precedence over ||, this means that parentheses are placed to evaluate what would be evaluated together.

c++ uses short-circuit evaluation in && and || to not do unnecessary executions.

If the left hand side of || returns true the right hand side does not need to be evaluated anymore.

#include <iostream>

#include <string>

using namespace std;

bool True(string id){

cout << "True" << id << endl;

return true;

}

bool False(string id){

cout << "False" << id << endl;

return false;

}

int main(){

bool result;

//let's evaluate 3 booleans with || and && to illustrate operator precedence

//precedence does not mean that && will be evaluated first but rather where

//parentheses would be added

//example 1

result =

False("A") || False("B") && False("C");

// eq. False("A") || (False("B") && False("C"))

//FalseA

//FalseB

//"Short-circuit evaluation skip of C"

//A is false so we have to evaluate the right of ||,

//B being false we do not have to evaluate C to know that the result is false

result =

True("A") || False("B") && False("C");

// eq. True("A") || (False("B") && False("C"))

cout << result << " :=====================" << endl;

//TrueA

//"Short-circuit evaluation skip of B"

//"Short-circuit evaluation skip of C"

//A is true so we do not have to evaluate

// the right of || to know that the result is true

//If || had precedence over && the equivalent evaluation would be:

// (True("A") || False("B")) && False("C")

//What would print

//TrueA

//"Short-circuit evaluation skip of B"

//FalseC

//Because the parentheses are placed differently

//the parts that get evaluated are differently

//which makes that the end result in this case would be False because C is false

15

// volume of a spherical shell = 4 pi R^3 - 4 pi r^3

double vol = 4.0*pi*R*R*R/3.0 - 4.0*pi*r*r*r/3.0;

Section 3.2: Unary Operators

Unary operators act on the object upon which they are called and have high precedence. (See Remarks)

When used postfix, the action occurs only after the entire operation is evaluated, leading to some interesting

arithmetics:

Section 3.3: Arithmetic operators

Arithmetic operators in C++ have the same precedence as they do in mathematics:

Multiplication and division have left associativity(meaning that they will be evaluated from left to right) and they

have higher precedence than addition and subtraction, which also have left associativity.

We can also force the precedence of expression using parentheses (). Just the same way as you would do that in

normal mathematics.

//Addition:

int a = 2+4/2;

//

equal

to:

2+(4/2)

result:

4

int b = (3+3)/2; // equal to: (3+3)/2 result: 3

//With Multiplication

int c = 3+4/2*6; // equal to: 3+((4/2)*6) result: 15

int d = 3*(3+6)/9; // equal to: (3*(3+6))/9 result: 3

//Division and Modulo

int g = 3-3%1; // equal to: 3 % 1 = 0 3 - 0 = 3

int h = 3-(3%1); // equal to: 3 % 1 = 0 3 - 0 = 3

}

int a = 1;

++a; // result: 2

a--; // result: 1

int minusa=-a; // result: -1

bool b = true;

!b; // result: true

a=4;

int c = a++/2;

cout << a <<

endl; int d =

++a/2;

// equal to: (a==4) 4 / 2

// prints 5!

result: 2 ('a' incremented postfix)

// equal to: (a+1) == 6 / 2 result: 3

int arr[4] = {1,2,3,4};

int *ptr1 = &arr[0]; // points to arr[0] which is 1

int *ptr2 = ptr1++; // ptr2 points to arr[0] which is still 1; ptr1 incremented

std::cout << *ptr1++ << std::endl; // prints 2

int e = arr[0]++; // receives the value of arr[0] before it is incremented

std::cout << e << std::endl; // prints 1

std::cout << *ptr2 << std::endl; // prints arr[0] which is now 2

16

int i = 3-3/1%3; // equal to: 3 / 1 = 3 3 % 3 = 0 3 - 0 = 3

int l = 3-(3/1)%3; // equal to: 3 / 1 = 3 3 % 3 = 0 3 - 0 = 3

int m = 3-(3/(1%3)); // equal to: 1 % 3 = 1 3 / 1 = 3 3 - 3 = 0

Section 3.4: Logical AND and OR operators

These operators have the usual precedence in C++: AND before OR.

This code is equivalent to the following:

Adding the parenthesis does not change the behavior, though, it does make it easier to read. By adding these

parentheses, no confusion exist about the intent of the writer.

// You can drive with a foreign license for up to 60 days

bool can_drive = has_domestic_license || has_foreign_license && num_days <= 60;

// You can drive with a foreign license for up to 60 days

bool can_drive = has_domestic_license || (has_foreign_license && num_days <= 60);

17

Chapter 4: Floating Point Arithmetic

Section 4.1: Floating Point Numbers are Weird

The first mistake that nearly every single programmer makes is presuming that this code will work as intended:

The novice programmer assumes that this will sum up every single number in the range 0, 0.01, 0.02, 0.03,

..., 1.97, 1.98, 1.99, to yield the result 199— the mathematically correct answer.

Two things happen that make this untrue:

1. The program as written never concludes. a never becomes equal to 2, and the loop never terminates.

2. If we rewrite the loop logic to check a < 2 instead, the loop terminates, but the total ends up being

something different from 199. On IEEE754-compliant machines, it will often sum up to about 201 instead.

The reason that this happens is that Floating Point Numbers represent Approximations of their assigned

values.

The classical example is the following computation:

Though what we the programmer see is three numbers written in base10, what the compiler (and the underlying

hardware) see are binary numbers. Because 0.1, 0.2, and 0.3 require perfect division by 10—which is quite easy in

a base-10 system, but impossible in a base-2 system— these numbers have to be stored in imprecise formats,

similar to how the number 1/3 has to be stored in the imprecise form 0.333333333333333... in base-10.

float total = 0;

for(float a = 0; a != 2; a += 0.01f)

{ total += a;

}

double a = 0.1;

double b = 0.2;

double c = 0.3;

if(a + b == c)

//This never prints on IEEE754-compliant machines

std::cout << "This Computer is Magic!" << std::endl;

else

std::cout << "This Computer is pretty normal, all things considered." << std::endl;

//64-bit floats have 53 digits of precision, including the whole-number-part.

double a = 0011111110111001100110011001100110011001100110011001100110011010; //imperfect

representation of 0.1

double b = 0011111111001001100110011001100110011001100110011001100110011010; //imperfect

representation of 0.2

double c = 0011111111010011001100110011001100110011001100110011001100110011; //imperfect

representation of 0.3

double a + b = 0011111111010011001100110011001100110011001100110011001100110100; //Note that this

is not quite equal to the "canonical" 0.3!

18

Chapter 5: Bit Operators

Section 5.1: | - bitwise OR

Output

a = 5, b = 12, c = 13

Why

A bit wise OR operates on the bit level and uses the following Boolean truth table:

When the binary value for a (0101) and the binary value for b (1100) are OR'ed together we get the binary value of

1101:

int a = 0 1 0 1

int b = 1 1 0 0 |

int c = 1 1 0 1

The bit wise OR does not change the value of the original values unless specifically assigned to using the bit wise

assignment compound operator |=:

Section 5.2: ^ - bitwise XOR (exclusive OR)

Output

a = 5, b = 9, c = 12

Why

A bit wise XOR (exclusive or) operates on the bit level and uses the following Boolean truth table:

int a = 5;

int b = 12;

// 0101b

// 1100b

int c = a | b; // 1101b

(0x05)

(0x0C)

(0x0D)

std::cout << "a = " << a << ", b = " << b << ", c = " << c <<
std::endl;

true OR true = true

true OR false = true

false OR false = false

int a = 5; // 0101b (0x05)

a |= 12; // a = 0101b | 1101b

int a = 5;

int b = 9;

// 0101b

// 1001b

int c = a ^ b; // 1100b

(0x05)

(0x09)

(0x0C)

std::cout << "a = " << a << ", b = " << b << ", c = " << c <<
std::endl;

true OR true = false

true OR false = true

false OR false = false

19

Notice that with an XOR operation true OR true = false where as with operations true AND/OR true = true,

hence the exclusive nature of the XOR operation.

Using this, when the binary value for a (0101) and the binary value for b (1001) are XOR'ed together we get the binary

value of 1100:

int a = 0 1 0 1

int b = 1 0 0 1 ^

int c = 1 1 0 0

The bit wise XOR does not change the value of the original values unless specifically assigned to using the bit wise

assignment compound operator ^=:

The bit wise XOR can be utilized in many ways and is often utilized in bit mask operations for encryption and

compression.

Note: The following example is often shown as an example of a nice trick. But should not be used in production

code (there are better ways std::swap() to achieve the same result).

You can also utilize an XOR operation to swap two variables without a temporary:

To productionalize this you need to add a check to make sure it can be used.

So though it looks like a nice trick in isolation it is not useful in real code. xor is not a base logical operation,but a

combination of others: a^c=~(a&c)&(a|c)

also in 2015+ compilers variables may be assigned as binary:

int a = 5; // 0101b (0x05)

a ^= 9; // a = 0101b ^ 1001b

int a = 42;

int b = 64;

// XOR swap

a ^= b;

b ^= a;

a ^= b;

std::cout << "a = " << a << ", b = " << b << "\n";

void doXORSwap(int& a, int& b)

{

// Need to add a check to make sure you are not swapping the same

// variable with itself. Otherwise it will zero the value. if

(&a != &b)

{

// XOR swap

a ^= b;

b ^=

a; a

^= b;

}

}

int cn=0b0111;

20

Section 5.3: & - bitwise AND

Output

a = 6, b = 10, c = 2

Why

A bit wise AND operates on the bit level and uses the following Boolean truth table:

When the binary value for a (0110) and the binary value for b (1010) are AND'ed together we get the binary value of

0010:

int a = 0 1 1 0

int b = 1 0 1 0 &

int c = 0 0 1 0

The bit wise AND does not change the value of the original values unless specifically assigned to using the bit wise

assignment compound operator &=:

Section 5.4: << - left shift

Output

a = 1, b = 2

Why

The left bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1), essentially

padding the least significant bits with 0's, so shifting the value of 5 (binary 0000 0101) to the left 4 times (e.g. 5 <<

4) will yield the value of 80 (binary 0101 0000). You might note that shifting a value to the left 1 time is also the same

as multiplying the value by 2, example:

int a = 6;

int b = 10;

// 0110b

// 1010b

int c = a & b; // 0010b

(0x06)

(0x0A)

(0x02)

std::cout << "a = " << a << ", b = " << b << ", c = " << c <<
std::endl;

TRUE AND TRUE = TRUE

TRUE AND FALSE =

FALSE FALSE AND FALSE

= FALSE

int a = 5; // 0101b (0x05)

a &= 10; // a = 0101b & 1010b

int a = 1; // 0001b

int b = a << 1; // 0010b

std::cout << "a = " << a << ", b = " << b <<

std::endl;

int a = 7;

while (a < 200) {

std::cout << "a = " << a <<

std::endl; a <<= 1;

21

But it should be noted that the left shift operation will shift all bits to the left, including the sign bit, example:

Possible output: a = 2147483647, b = -2

While some compilers will yield results that seem expected, it should be noted that if you left shift a signed number

so that the sign bit is affected, the result is undefined. It is also undefined if the number of bits you wish to shift by

is a negative number or is larger than the number of bits the type on the left can hold, example:

The bit wise left shift does not change the value of the original values unless specifically assigned to using the bit

wise assignment compound operator <<=:

Section 5.5: >> - right shift

Output

a = 2, b = 1

Why

The right bit wise shift will shift the bits of the left hand value (a) the number specified on the right (1); it should be

noted that while the operation of a right shift is standard, what happens to the bits of a right shift on a signed

negative number is implementation defined and thus cannot be guaranteed to be portable, example:

It is also undefined if the number of bits you wish to shift by is a negative number, example:

}

a = 7;

while (a < 200) {

std::cout << "a = " << a <<

std::endl; a *= 2;

}

int a = 2147483647; // 0111 1111 1111 1111 1111 1111 1111 1111

int b = a << 1; // 1111 1111 1111 1111 1111 1111 1111 1110

std::cout << "a = " << a << ", b = " << b << std::endl;

int a = 1;

int b = a << -1; // undefined behavior

char c = a << 20; // undefined behavior

int a = 5; // 0101b

a <<= 1; // a = a << 1;

int a = 2; // 0010b

int b = a >> 1; // 0001b

std::cout << "a = " << a << ", b = " << b <<

std::endl;

int a = -2;

int b = a >> 1; // the value of b will be depend on the compiler

int a = 1;

int b = a >> -1; // undefined behavior

22

The bit wise right shift does not change the value of the original values unless specifically assigned to using the bit

wise assignment compound operator >>=:

int a = 2; // 0010b

a >>= 1; // a = a >> 1;

23

Chapter 6: Bit Manipulation

Section 6.1: Remove rightmost set bit

C-style bit-manipulation

Explanation

if n is zero, we have 0 & 0xFF..FF which is zero

else n can be written 0bxxxxxx10..00 and n - 1 is 0bxxxxxx011..11, so n & (n - 1) is 0bxxxxxx000..00.

Section 6.2: Set all bits

C-style bit-manipulation

(See here for an explanation of why this works and is actually the best approach.)

Using std::bitset

Section 6.3: Toggling a bit

C-style bit-manipulation

A bit can be toggled using the XOR operator (^).

Using std::bitset

Section 6.4: Checking a bit

C-style bit-manipulation

The value of the bit can be obtained by shifting the number to the right x times and then performing bitwise AND

(&) on it:

The right-shift operation may be implemented as either an arithmetic (signed) shift or a logical (unsigned) shift. If

std::bitset<4> num(std::string("0100"));

num.flip(2); // num is now 0000 num.flip(0);

// num is now 0001

num.flip(); // num is now 1110 (flips all bits)

template <typename T>

T rightmostSetBitRemoved(T n)

{

// static_assert(std::is_integral<T>::value && !std::is_signed<T>::value, "type should be

unsigned"); // For c++11 and later

return n & (n - 1);

}

x = -1; // -1 == 1111 1111 ... 1111b

std::bitset<10> x;

x.set(); // Sets all bits to '1'

// Bit x will be the opposite value of what it is currently

number ^= 1LL << x;

(number >> x) & 1LL; // 1 if the 'x'th bit of 'number' is set, 0 otherwise

http://stackoverflow.com/a/809341/

24

number in the expression number >> x has a signed type and a negative value, the resulting value is

implementation-defined.

If we need the value of that bit directly in-place, we could instead left shift the mask:

Either can be used as a conditional, since all non-zero values are considered true.

Using std::bitset

Section 6.5: Counting bits set

The population count of a bitstring is often needed in cryptography and other applications and the problem has

been widely studied.

The naive way requires one iteration per bit:

A nice trick (based on Remove rightmost set bit) is:

It goes through as many iterations as there are set bits, so it's good when value is expected to have few nonzero

bits.

The method was first proposed by Peter Wegner (in CACM 3 / 322 - 1960) and it's well known since it appears in C

Programming Language by Brian W. Kernighan and Dennis M. Ritchie.

This requires 12 arithmetic operations, one of which is a multication:

This kind of implementation has the best worst-case behavior (see Hamming weight for further details).

Many CPUs have a specific instruction (like x86's popcnt) and the compiler could offer a specific (non standard)

(number & (1LL << x)); // (1 << x) if the 'x'th bit of 'number' is set, 0 otherwise

std::bitset<4> num(std::string("0010"));

bool bit_val = num.test(1); // bit_val value is set to true;

unsigned value = 1234;

unsigned bits = 0; // accumulates the total number of bits set in `n`

for (bits = 0; value; value >>=

1) bits += value & 1;

unsigned bits = 0; // accumulates the total number of bits set in `n`

for (; value; ++bits)

value &= value - 1;

unsigned popcount(std::uint64_t x)

{

const std::uint64_t m1 = 0x5555555555555555; // binary: 0101...

const std::uint64_t m2 = 0x3333333333333333; // binary: 00110011..

const std::uint64_t m4 = 0x0f0f0f0f0f0f0f0f; // binary: 0000111100001111

x -= (x >> 1) &
m1;

// put count of each 2 bits into those 2 bits

x = (x & m2) + ((x >> 2) & m2); // put count of each 4 bits into those 4 bits

x = (x + (x >> 4)) & m4; // put count of each 8 bits into those 8 bits

return (x * h01) >> 56; // left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...

}

http://cacm.acm.org/
https://en.wikipedia.org/wiki/Hamming_weight

25

built in function. E.g. with g++ there is:

Section 6.6: Check if an integer is a power of 2

The n & (n - 1) trick (see Remove rightmost set bit) is also useful to determine if an integer is a power of 2:

Note that without the first part of the check (n &&), 0 is incorrectly considered a power of 2.

Section 6.7: Setting a bit

C-style bit manipulation

A bit can be set using the bitwise OR operator (|).

Using std::bitset

set(x) or set(x,true) - sets bit at position x to 1.

Section 6.8: Clearing a bit

C-style bit-manipulation

A bit can be cleared using the bitwise AND operator (&).

Using std::bitset

reset(x) or set(x,false) - clears the bit at position x.

Section 6.9: Changing the nth bit to x

C-style bit-manipulation

Using std::bitset

set(n,val) - sets bit n to the value val.

int builtin_popcount (unsigned x);

bool power_of_2 = n && !(n & (n - 1));

// Bit x will be set

number |= 1LL << x;

std::bitset<5> num(std::string("01100"));

num.set(0); // num is now 01101

num.set(2); // num is still 01101

num.set(4,true); // num is now 11110

// Bit x will be cleared

number &= ~(1LL << x);

std::bitset<5> num(std::string("01100"));

num.reset(2); // num is now 01000

num.reset(0); // num is still 01000

num.set(3,false); // num is now 00000

// Bit n will be set if x is 1 and cleared if x is 0.

number ^= (-x ^ number) & (1LL << n);

26

Section 6.10: Bit Manipulation Application: Small to Capital
Letter

One of several applications of bit manipulation is converting a letter from small to capital or vice versa by choosing

a mask and a proper bit operation. For example, the a letter has this binary representation 01(1)00001 while its

capital counterpart has 01(0)00001. They differ solely in the bit in parenthesis. In this case, converting the a letter

from small to capital is basically setting the bit in parenthesis to one. To do so, we do the following:

The code for converting a letter to A letter is

The result is

std::bitset<5> num(std::string("00100"));

num.set(0,true); // num is now 00101

num.set(2,false); // num is now 00001

/**

convert small letter to captial letter.

==

a: 01100001

mask: 11011111 <-- (0xDF) 11(0)11111

:---------

a&mask: 01000001 <-- A letter

***/

#include <cstdio>

int main()

{

char op1 = 'a'; // "a" letter (i.e. small case)

int mask = 0xDF; // choosing a proper mask

printf("a (AND) mask = A\n");

printf("%c & 0xDF = %c\n", op1, op1 & mask);

return 0;

}

$ g++ main.cpp -o test1

$./test1

a (AND) mask = A

a & 0xDF =

A

27

Chapter 7: Bit fields
Bit fields tightly pack C and C++ structures to reduce size. This appears painless: specify the number of bits for

members, and compiler does the work of co-mingling bits. The restriction is inability to take the address of a bit

field member, since it is stored co-mingled. sizeof() is also disallowed.

The cost of bit fields is slower access, as memory must be retrieved and bitwise operations applied to extract or

modify member values. These operations also add to executable size.

Section 7.1: Declaration and Usage

Here, each of these two fields will occupy 1 bit in memory. It is specified by : 1 expression after the variable names.

Base type of bit field could be any integral type (8-bit int to 64-bit int). Using unsigned type is recommended,

otherwise surprises may come.

If more bits are required, replace "1" with number of bits required. For example:

The whole structure is using just 22 bits, and with normal compiler settings, sizeof this structure would be 4 bytes.

Usage is pretty simple. Just declare the variable, and use it like ordinary structure.

struct FileAttributes

{

unsigned int ReadOnly: 1;

unsigned int Hidden: 1;

};

struct Date

{

unsigned int Year : 13; // 2^13 = 8192, enough for "year" representation for long time

unsigned int Month: 4; // 2^4 = 16, enough to represent 1-12 month values.

unsigned int Day: 5; // 32

};

Date d;

d.Year = 2016;

d.Month = 7;

d.Day = 22;

std::cout << "Year:" << d.Year << std::endl <<

"Month:" << d.Month << std::endl <<

"Day:" << d.Day << std::endl;

28

Chapter 8: Arrays
Arrays are elements of the same type placed in adjoining memory locations. The elements can be individually

referenced by a unique identifier with an added index.

This allows you to declare multiple variable values of a specific type and access them individually without needing

to declare a variable for each value.

Section 8.1: Array initialization

An array is just a block of sequential memory locations for a specific type of variable. Arrays are allocated the same

way as normal variables, but with square brackets appended to its name [] that contain the number of elements

that fit into the array memory.

The following example of an array uses the typ int, the variable name arrayOfInts, and the number of elements

[5] that the array has space for:

An array can be declared and initialized at the same time like this

When initializing an array by listing all of its members, it is not necessary to include the number of elements inside

the square brackets. It will be automatically calculated by the compiler. In the following example, it's 5:

It is also possible to initialize only the first elements while allocating more space. In this case, defining the length in

brackets is mandatory. The following will allocate an array of length 5 with partial initialization, the compiler

initializes all remaining elements with the standard value of the element type, in this case zero.

Arrays of other basic data types may be initialized in the same way.

It is also important to take note that when accessing array elements, the array's element index(or position) starts

from 0.

int arrayOfInts[5];

int arrayOfInts[5] = {10, 20, 30, 40, 50};

int arrayOfInts[] = {10, 20, 30, 40, 50};

int arrayOfInts[5] = {10,20}; // means 10, 20, 0, 0, 0

char arrayOfChars[5]; // declare the array and allocate the memory, don't initialize

char arrayOfChars[5] = { 'a', 'b', 'c', 'd', 'e' } ; //declare and initialize

double arrayOfDoubles[5] = {1.14159, 2.14159, 3.14159, 4.14159, 5.14159};

string arrayOfStrings[5] = { "C++", "is", "super", "duper", "great!"};

int array[5] = { 10/*Element no.0*/, 20/*Element no.1*/, 30, 40, 50/*Element no.4*/};

std::cout << array[4]; //outputs 50

std::cout << array[0]; //outputs 10

29

// A fixed size raw array matrix (that is, a 2D raw array).

#include <iostream>

#include <iomanip>

using namespace std;

auto main() -> int

{

int const

int const

int const

{

n_rows = 3;

n_cols = 7;

m[n_rows][n_cols] = // A raw array matrix.

for(int y = 0; y < n_rows; ++y)

{

for(int x = 0; x < n_cols; ++x
)

{

cout << setw(4) <<
m[y][x];

}

cout << '\n';

}

// Note: do NOT use m[y,x]!

}

Section 8.2: A fixed size raw array matrix (that is, a 2D raw
array)

 { 1, 2, 3, 4, 5, 6, 7 },

{ 8, 9, 10, 11, 12, 13, 14 },

{ 15, 16, 17, 18, 19, 20, 21 }

};

Output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

C++ doesn't support special syntax for indexing a multi-dimensional array. Instead such an array is viewed as an

array of arrays (possibly of arrays, and so on), and the ordinary single index notation [i] is used for each level. In

the example above m[y] refers to row y of m, where y is a zero-based index. Then this row can be indexed in turn,

e.g. m[y][x], which refers to the xth item – or column – of row y.

I.e. the last index varies fastest, and in the declaration the range of this index, which here is the number of columns

per row, is the last and “innermost” size specified.

Since C++ doesn't provide built-in support for dynamic size arrays, other than dynamic allocation, a dynamic size

matrix is often implemented as a class. Then the raw array matrix indexing notation m[y][x] has some cost, either

by exposing the implementation (so that e.g. a view of a transposed matrix becomes practically impossible) or by

adding some overhead and slight inconvenience when it's done by returning a proxy object from operator[]. And

so the indexing notation for such an abstraction can and will usually be different, both in look-and-feel and in the

order of indices, e.g. m(x,y) or m.at(x,y) or m.item(x,y).

Section 8.3: Dynamically sized raw array

// Example of raw dynamic size array. It's generally better to use std::vector.

#include <algorithm> // std::sort

#include <iostream>

using namespace std;

auto int_from(istream& in) -> int { int x; in >> x; return x; }

30

A program that declares an array T a[n]; where n is determined a run-time, can compile with certain compilers that

support C99 variadic length arrays (VLAs) as a language extension. But VLAs are not supported by standard C++. This

example shows how to manually allocate a dynamic size array via a new[]-expression,

… then use it, and finally deallocate it via a delete[]-expression:

The array allocated here has indeterminate values, but it can be zero-initialized by just adding an empty

parenthesis (), like this: new int[n](). More generally, for arbitrary item type, this performs a value-initialization.

As part of a function down in a call hierarchy this code would not be exception safe, since an exception before the

delete[] expression (and after the new[]) would cause a memory leak. One way to address that issue is to

automate the cleanup via e.g. a std::unique_ptr smart pointer. But a generally better way to address it is to just

use a std::vector: that's what std::vector is there for.

Section 8.4: Array size: type safe at compile time

auto main()

-> int

{

cout << "Sorting n integers provided by you.\\n"; cout

<< "n? ";

int const n = int_from(cin);

int* a = new int[n]; // ← Allocation of array of n items.

for(int i = 1; i <= n; ++i)

{

cout << "The #" << i << " number, please:

"; a[i-1] = int_from(cin);

}

sort(a, a + n);

for(int i = 0; i < n; ++i) { cout << a[i] << ' ';

} cout << '\\n';

delete[] a;

}

int* a = new int[n]; // ← Allocation of array of n items.

delete[] a;

#include // size_t, ptrdiff_t

// ----------------------------------- Machinery:

using Size = ptrdiff_t;

template< class Item, size_t n >

constexpr auto n_items(Item (&)[n]) noexcept

-> Size

{ return n; }

// ----------------------------------- Usage:

#include

using namespace std;

auto main()

31

-> int

{

int const a[] = {3, 1, 4, 1, 5, 9, 2, 6, 5, 4};

Size const n = n_items(a);

int b[n] = {}; // An array of the same size as a.

(void) b;

cout <}

The C idiom for array size, sizeof(a)/sizeof(a[0]), will accept a pointer as argument and will then generally yield

an incorrect result.

For C++11

using C++11 you can do:

Example:

Up till C++17 (forthcoming as of this writing) C++ had no built-in core language or standard library utility to obtain

the size of an array, but this can be implemented by passing the array by reference to a function template, as shown

above. Fine but important point: the template size parameter is a size_t, somewhat inconsistent with the signed

Size function result type, in order to accommodate the g++ compiler which sometimes insists on size_t for

template matching.

With C++17 and later one may instead use std::size, which is specialized for arrays.

Section 8.5: Expanding dynamic size array by using
std::vector

std::extent<decltype(MyArray)>::value;

char MyArray[] = { 'X','o','c','e' };

const auto n = std::extent<decltype(MyArray)>::value;

std::cout << n << "\n"; // Prints 4

// Example of std::vector as an expanding dynamic size array.

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

// std::sort

// std::vector

int int_from(std::istream& in) { int x = 0; in >> x; return x; }

int main()

{

cout << "Sorting integers provided by you.\n";

cout << "You can indicate EOF via F6 in Windows or Ctrl+D in Unix-land.\n";

vector<int> a; // ← Zero size by default.

while(cin)

{

cout << "One number, please, or indicate EOF: ";

int const x = int_from(cin);

if(!cin.fail()) { a.push_back(x); } // Expands as necessary.

}

sort(a.begin(), a.end());

http://en.cppreference.com/w/cpp/iterator/size
http://en.cppreference.com/w/cpp/iterator/size
http://en.cppreference.com/w/cpp/iterator/size

32

std::vector is a standard library class template that provides the notion of a variable size array. It takes care of all

the memory management, and the buffer is contiguous so a pointer to the buffer (e.g. &v[0] or v.data()) can be

passed to API functions requiring a raw array. A vector can even be expanded at run time, via e.g. the push_back

member function that appends an item.

The complexity of the sequence of n push_back operations, including the copying or moving involved in the vector

expansions, is amortized O(n). “Amortized”: on average.

Internally this is usually achieved by the vector doubling its buffer size, its capacity, when a larger buffer is needed.

E.g. for a buffer starting out as size 1, and being repeatedly doubled as needed for n=17 push_back calls, this

involves 1 + 2 + 4 + 8 + 16 = 31 copy operations, which is less than 2× n = 34. And more generally the sum of this

sequence can't exceed 2× n.

Compared to the dynamic size raw array example, this vector-based code does not require the user to supply (and

know) the number of items up front. Instead the vector is just expanded as necessary, for each new item value

specified by the user.

Section 8.6: A dynamic size matrix using std::vector for
storage

Unfortunately as of C++14 there's no dynamic size matrix class in the C++ standard library. Matrix classes that

support dynamic size are however available from a number of 3rd party libraries, including the Boost Matrix library

(a sub-library within the Boost library).

If you don't want a dependency on Boost or some other library, then one poor man's dynamic size matrix in C++ is

just like

… where vector is std::vector. The matrix is here created by copying a row vector n times where n is the number

of rows, here 3. It has the advantage of providing the same m[y][x] indexing notation as for a fixed size raw array

matrix, but it's a bit inefficient because it involves a dynamic allocation for each row, and it's a bit unsafe because

it's possible to inadvertently resize a row.

A more safe and efficient approach is to use a single vector as storage for the matrix, and map the client code's (x, y)

to a corresponding index in that vector:

int const n = a.size();

for(int i = 0; i < n; ++i) { cout << a[i] << ' ';

} cout << '\n';

}

vector<vector<int>> m(3, vector<int>(7));

// A dynamic size matrix using std::vector for storage.

// -- Machinery:

#include // std::copy

#include // assert

#include // std::initializer_list

#include // std::vector

#include // ptrdiff_t

namespace my {

using Size = ptrdiff_t;

using std::initializer_list;

using std::vector;

33

template< class Item >

class Matrix

{

private:

vector items_;

Size n_cols_;

auto index_for(Size const x, Size const y) const

-> Size

{ return y*n_cols_ + x; }

public:

auto n_rows() const -> Size { return items_.size()/n_cols_; }

auto n_cols() const -> Size { return n_cols_; }

auto item(Size const x, Size const y)

-> Item&

{ return items_[index_for(x, y)]; }

auto item(Size const x, Size const y) const

-> Item const&

{ return items_[index_for(x, y)]; }

Matrix(): n_cols_(0) {}

Matrix(Size const n_cols, Size const n_rows)

: items_(n_cols*n_rows)

, n_cols_(n_cols)

{}

Matrix(initializer_list< initializer_list > const& values)

: items_()

, n_cols_(values.size() == 0? 0 : values.begin()->size())

{

for(auto const& row : values)

{

assert(Size(row.size()) == n_cols_);

items_.insert(items_.end(), row.begin(), row.end());

}

}

};

} // namespace my

// -- Usage:

using my::Matrix;

auto some_matrix()

-> Matrix

{

return

{

{ 1, 2, 3, 4, 5, 6, 7 },

{ 8, 9, 10, 11, 12, 13, 14 },

{ 15, 16, 17, 18, 19, 20, 21 }

};

}

#include

#include

using namespace std;

auto main() -> int

{

Matrix const m = some_matrix();

assert(m.n_cols() == 7);

34

Output:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

The above code is not industrial grade: it's designed to show the basic principles, and serve the needs of students

learning C++.

For example, one may define operator() overloads to simplify the indexing notation.

assert(m.n_rows() == 3);

for(int y = 0, y_end = m.n_rows(); y < y_end; ++y)

{

for(int x = 0, x_end = m.n_cols(); x < x_end; ++x)

{

cout <← Note: not `m[y][x]`!

}

cout <}

}

35

Chapter 9: Iterators

Section 9.1: Overview

Iterators are Positions

Iterators are a means of navigating and operating on a sequence of elements and are a generalized extension of

pointers. Conceptually it is important to remember that iterators are positions, not elements. For example, take the

following sequence:

The sequence contains three elements and four positions

Elements are things within a sequence. Positions are places where meaningful operations can happen to the

sequence. For example, one inserts into a position, before or after element A, not into an element. Even deletion of

an element (erase(A)) is done by first finding its position, then deleting it.

From Iterators to Values

To convert from a position to a value, an iterator is dereferenced:

One can think of an iterator as dereferencing to the value it refers to in the sequence. This is especially useful in

understanding why you should never dereference the end() iterator in a sequence:

In all the sequences and containers found in the C++ standard library, begin() will return an iterator to the first

position, and end() will return an iterator to one past the last position (not the last position!). Consequently, the

names of these iterators in algorithms are oftentimes labelled first and last:

It is also possible to obtain an iterator to any sequence, because even an empty sequence contains at least one

A B C

+---+---+---+---+

| A | B | C | |

+---+---+---+---+

auto my_iterator = my_vector.begin(); // position

auto my_value = *my_iterator; // value

+---+---+---+---+

| A | B | C | |

+---+---+---+---+

↑

|

↑

+-- An iterator here has no value. Do not dereference it!

+-------------- An iterator here dereferences to the value A.

+---+---+---+---+

| A | B | C | |

+---+---+---+---+

↑ ↑

| |

+- first +- last

36

position:

In an empty sequence, begin() and end() will be the same position, and neither can be dereferenced:

The alternative visualization of iterators is that they mark the positions between elements:

and dereferencing an iterator returns a reference to the element coming after the iterator. Some situations where

this view is particularly useful are:

insert operations will insert elements into the position indicated by the iterator,

erase operations will return an iterator corresponding to the same position as the one passed in,

an iterator and its corresponding reverse iterator are located in the same .position between elements

Invalid Iterators

An iterator becomes invalidated if (say, in the course of an operation) its position is no longer a part of a sequence.

An invalidated iterator cannot be dereferenced until it has been reassigned to a valid position. For example:

The many algorithms and sequence member functions in the C++ standard library have rules governing when

iterators are invalidated. Each algorithm is different in the way they treat (and invalidate) iterators.

Navigating with Iterators

As we know, iterators are for navigating sequences. In order to do that an iterator must migrate its position

throughout the sequence. Iterators can advance forward in the sequence and some can advance backwards:

+---+

| |

+---+

+---+

| |

+---+

↑

|

+- empty_sequence.begin()

|

+- empty_sequence.end()

+---+---+---+

| A | B | C |

+---+---+---+

↑

|

+- first

^ ^ ↑

|

+- last

std::vector<int>::iterator first;

{

std::vector<int> foo;

first = foo.begin(); // first is now valid

} // foo falls out of scope and is destroyed

// At this point first is now invalid

auto first = my_vector.begin();

++first; // advance the iterator 1 position

37

Note, second argument of std::distance should be reachable from the first one(or, in other words first should be

less or equal than second).

Even though you can perform arithmetic operators with iterators, not all operations are defined for all types of

iterators. a = b + 3; would work for Random Access Iterators, but wouldn't work for Forward or Bidirectional

Iterators, which still can be advanced by 3 position with something like b = a; ++b; ++b; ++b;. So it is

recommended to use special functions in case you are not sure what is iterator type (for example, in a template

function accepting iterator).

Iterator Concepts

The C++ standard describes several different iterator concepts. These are grouped according to how they behave in

the sequences they refer to. If you know the concept an iterator models (behaves like), you can be assured of the

behavior of that iterator regardless of the sequence to which it belongs. They are often described in order from the

most to least restrictive (because the next iterator concept is a step better than its predecessor):

Input Iterators : Can be dereferenced only once per position. Can only advance, and only one position at a

time.

Forward Iterators : An input iterator that can be dereferenced any number of times.

Bidirectional Iterators : A forward iterator that can also advance backwards one position at a time.

Random Access Iterators : A bidirectional iterator that can advance forwards or backwards any number of

positions at a time.

Contiguous Iterators (since C++17) : A random access iterator that guaranties that underlying data is

contiguous in memory.

Algorithms can vary depending on the concept modeled by the iterators they are given. For example, although

random_shuffle can be implemented for forward iterators, a more efficient variant that requires random access

iterators could be provided.

Iterator traits

Iterator traits provide uniform interface to the properties of iterators. They allow you to retrieve value, difference,

pointer, reference types and also category of iterator:

Category of iterator can be used to specialize algorithms:

std::advance(first, 1); first

= std::next(first);

std::advance(first, -1); first

= std::next(first, 20);

forward

first = std::prev(first, 5);

backward

// advance the iterator 1 position

// returns iterator to the next element

// advance the iterator 1 position backwards

// returns iterator to the element 20 position

// returns iterator to the element 5 position

auto dist = std::distance(my_vector.begin(), first); // returns distance between two iterators.

template<class Iter>

Iter find(Iter first, Iter last, typename std::iterator_traits<Iter>::value_type val) {

while (first != last) {

if (*first == val)

return first;

++first;

}

return last;

}

template<class BidirIt>

38

Categories of iterators are basically iterators concepts, except Contiguous Iterators don't have their own tag, since it

was found to break code.

Section 9.2: Vector Iterator

begin returns an iterator to the first element in the sequence container.

end returns an iterator to the first element past the end.

If the vector object is const, both begin and end return a const_iterator. If you want a const_iterator to be

returned even if your vector is not const, you can use cbegin and cend.

Example:

Output:

1 2 3 4 5

Section 9.3: Map Iterator

An iterator to the first element in the container.

If a map object is const-qualified, the function returns a const_iterator. Otherwise, it returns an iterator.

void test(BidirIt a, std::bidirectional_iterator_tag) {

std::cout << "Bidirectional iterator is used" << std::endl;

}

template<class ForwIt>

void test(ForwIt a, std::forward_iterator_tag) {

std::cout << "Forward iterator is used" << std::endl;

}

template<class Iter>

void test(Iter a) {

test(a, typename std::iterator_traits<Iter>::iterator_category());

}

#include <vector>

#include <iostream>

int main() {

std::vector<int> v = { 1, 2, 3, 4, 5 }; //intialize vector using an initializer_list

for (std::vector<int>::iterator it = v.begin(); it != v.end(); ++it) {

std::cout << *it << " ";

}

return 0;

}

// Create a map and insert some values

std::map<char,int> mymap;

mymap['b'] = 100;

mymap['a'] = 200;

mymap['c'] = 300;

39

Output:

a => 200

b => 100

c => 300

Section 9.4: Reverse Iterators

If we want to iterate backwards through a list or vector we can use a reverse_iterator. A reverse iterator is made

from a bidirectional, or random access iterator which it keeps as a member which can be accessed through base().

To iterate backwards use rbegin() and rend() as the iterators for the end of the collection, and the start of the

collection respectively.

For instance, to iterate backwards use:

A reverse iterator can be converted to a forward iterator via the base() member function. The relationship is that

the reverse iterator references one element past the base() iterator:

In the visualization where iterators mark positions between elements, the relationship is simpler:

// Iterate over all tuples

for (std::map<char,int>::iterator it = mymap.begin(); it != mymap.end(); ++it)

std::cout << it->first << " => " << it->second << '\n';

std::vector<int> v{1, 2, 3, 4, 5};

for (std::vector<int>::reverse_iterator it = v.rbegin(); it != v.rend(); ++it)

{

cout << *it;

} // prints 54321

std::vector<int>::reverse_iterator r = v.rbegin();

std::vector<int>::iterator i = r.base();

assert(&*r == &*(i-1)); // always true if r, (i-1) are dereferenceable

// and are not proxy iterators

+---+---+---+---+---+---+---+

| | 1 | 2 | 3 | 4 | 5 | |

+---+---+---+---+---+---+---+

↑ ↑

| |

rend() |

|

begin()

↑ ↑

| |

rbegin() end()

rbegin().base()

rend().base()

+---+---+---+---+---+

| 1 | 2 | 3 | 4 | 5 |

+---+---+---+---+---+

↑ ↑

| |

| end()

| rbegin()

begin() rbegin().base()

rend()

rend().base()

40

Section 9.5: Stream Iterators

Stream iterators are useful when we need to read a sequence or print formatted data from a container:

The example program will print 1 -- 2 -- 3 -- 4 -- to standard output.

Section 9.6: C Iterators (Pointers)

This code would output the numbers 1 through 5, one on each line like this:

1

2

3

4

// Data stream. Any number of various whitespace characters will be OK.

std::istringstream istr("1\t 2 3 4");

std::vector<int> v;

// Constructing stream iterators and copying data from stream into vector. std::copy(

// Iterator which will read stream data as integers.

std::istream_iterator<int>(istr),

// Default constructor produces end-of-stream iterator.

std::istream_iterator<int>(),

std::back_inserter(v));

// Print vector contents.

std::copy(v.begin(), v.end(),

//Will print values to standard output as integers delimeted by " -- ".

std::ostream_iterator<int>(std::cout, " -- "));

// This creates an array with 5 values.

const int array[] = { 1, 2, 3, 4, 5 };

#ifdef BEFORE_CPP11

// You can use `sizeof` to determine how many elements are in an array.

const int* first = array;

const int* afterLast = first + sizeof(array) / sizeof(array[0]);

// Then you can iterate over the array by incrementing a pointer until

// it reaches past the end of our array.

for (const int* i = first; i < afterLast; ++i) { std::cout

<< *i << std::endl;

}

#else

// With C++11, you can let the STL compute the start and end iterators: for

(auto i = std::begin(array); i != std::end(array); ++i) {

std::cout << *i << std::endl;

}

#endif

41

5

Breaking It Down

This line creates a new integer array with 5 values. C arrays are just pointers to memory where each value is stored

together in a contiguous block.

These lines create two pointers. The first pointer is given the value of the array pointer, which is the address of the

first element in the array. The sizeof operator when used on a C array returns the size of the array in bytes.

Divided by the size of an element this gives the number of elements in the array. We can use this to find the

address of the block after the array.

Here we create a pointer which we will use as an iterator. It is initialized with the address of the first element we

want to iterate over, and we'll continue to iterate as long as i is less than afterLast, which means as long as i is

pointing to an address within array.

Finally, within the loop we can access the value our iterator i is pointing to by dereferencing it. Here the

dereference operator * returns the value at the address in i.

Section 9.7: Write your own generator-backed iterator

A common pattern in other languages is having a function that produces a "stream" of objects, and being able to

use loop-code to loop over it.

We can model this in C++ as

const int array[] = { 1, 2, 3, 4, 5 };

const int* first = array;

const int* afterLast = first + sizeof(array) / sizeof(array[0]);

for (const int* i = first; i < afterLast; ++i) {

std::cout << *i << std::endl;

template<class T>

struct generator_iterator {

using difference_type=std::ptrdiff_t;

using value_type=T;

using pointer=T*;

using reference=T;

using iterator_category=std::input_iterator_tag;

std::optional<T> state;

std::function< std::optional<T>() > operation;

// we store the current element in "state" if we have one: T

operator*() const {

return *state;

}

// to advance, we invoke our operation. If it returns a nullopt

// we have reached the end:

generator_iterator& operator++() {

state = operation();

return *this;

}

generator_iterator operator++(int) {

auto r = *this;

42

++(*this);

return r;

}

// generator iterators are only equal if they are both in the "end" state:

friend bool operator==(generator_iterator const& lhs, generator_iterator const& rhs) { if

(!lhs.state && !rhs.state) return true;

return false;

}

friend bool operator!=(generator_iterator const& lhs, generator_iterator const& rhs) {

return !(lhs==rhs);

}

// We implicitly construct from a std::function with the right signature: generator_iterator(

std::function< std::optional<T>() > f):operation(std::move(f))

{

if (operation)

state = operation();

}

// default all special member functions:

generator_iterator(generator_iterator &&) =default;

generator_iterator(generator_iterator const&) =default;

generator_iterator& operator=(generator_iterator &&) =default;

generator_iterator& operator=(generator_iterator const&) =default;

generator_iterator() =default;

};

live example.

We store the generated element early so we can more easily detect if we are already at the end.

As the function of an end generator iterator is never used, we can create a range of generator iterators by only

copying the std::function once. A default constructed generator iterator compares equal to itself, and to all other

end-generator-iterators.

http://coliru.stacked-crooked.com/a/cbb93f9ff193cdba

43

Chapter 10: Basic input/output in c++

Section 10.1: user input and standard output

#include <iostream>

int main()

{

int value;

std::cout << "Enter a value: " << std::endl;

std::cin >> value;

std::cout << "The square of entered value is: " << value * value << std::endl;

return 0;

}

44

Chapter 11: Loops
A loop statement executes a group of statements repeatedly until a condition is met. There are 3 types of primitive

loops in C++: for, while, and do...while.

Section 11.1: Range-Based For

Version ≥ C++11

for loops can be used to iterate over the elements of a iterator-based range, without using a numeric index or

directly accessing the iterators:

This will iterate over every element in v, with val getting the value of the current element. The following statement:

is equivalent to:

Version ≥ C++17

This change was introduced for the planned support of Ranges TS in C++20.

In this case, our loop is equivalent to:

{

auto&& range = for-range-initializer;

auto begin = begin-expr;

auto end = end-expr; // end is allowed to be a different type than begin in C++17

for (; begin != end; ++ begin) {

for-range-declaration = * begin;

statement

}

}

vector<float> v = {0.4f, 12.5f, 16.234f};

for(auto val: v)

{

std::cout << val << " ";

}

std::cout << std::endl;

for (for-range-declaration : for-range-initializer) statement

{

auto&& range = for-range-initializer; auto

 begin = begin-expr, end = end-expr;

for (; begin != end; ++ begin) {

for-range-declaration = * begin;

statement

}

}

{

auto&& range = v;

auto begin = v.begin(), end =

v.end(); for (; begin != end; ++

 begin) {

auto val = * begin;

std::cout << val << " ";

45

Note that auto val declares a value type, which will be a copy of a value stored in the range (we are copy-initializing

it from the iterator as we go). If the values stored in the range are expensive to copy, you may want to use const

auto &val. You are also not required to use auto; you can use an appropriate typename, so long as it is implicitly

convertible from the range's value type.

If you need access to the iterator, range-based for cannot help you (not without some effort, at least).

If you wish to reference it, you may do so:

You could iterate on const reference if you have const container:

One would use forwarding references when the sequence iterator returns a proxy object and you need to operate

on that object in a non-const way. Note: it will most likely confuse readers of your code.

The "range" type provided to range-based for can be one of the following:

Language arrays:

Note that allocating a dynamic array does not count:

}

}

vector<float> v = {0.4f, 12.5f, 16.234f};

for(float &val: v)

{

std::cout << val << " ";

}

const vector<float> v = {0.4f, 12.5f, 16.234f};

for(const float &val: v)

{

std::cout << val << " ";

}

vector<bool> v(10);

for(auto&& val: v)

{

val = true;

}

float arr[] = {0.4f, 12.5f, 16.234f};

for(auto val: arr)

{

std::cout << val << " ";

}

float *arr = new float[3]{0.4f, 12.5f, 16.234f};

for(auto val: arr) //Compile error.

{

std::cout << val << " ";

}

46

Any type which has member functions begin() and end(), which return iterators to the elements of the type.

The standard library containers qualify, but user-defined types can be used as well:

Any type which has non-member begin(type) and end(type) functions which can found via argument

dependent lookup, based on type. This is useful for creating a range type without having to modify class type

itself:

Section 11.2: For loop

A for loop executes statements in the loop body, while the loop condition is true. Before the loop initialization

statement is executed exactly once. After each cycle, the iteration execution part is executed.

A for loop is defined as follows:

struct Rng

{

float arr[3];

// pointers are iterators

const float* begin() const {return &arr[0];}

const float* end() const {return &arr[3];}

float* begin() {return &arr[0];}

float* end() {return &arr[3];}

};

int main()

{

Rng rng = {{0.4f, 12.5f, 16.234f}};

for(auto val: rng)

{

std::cout << val << " ";

}

}

namespace Mine

{

struct Rng {float arr[3];};

// pointers are iterators

const float* begin(const Rng &rng) {return &rng.arr[0];}

const float* end(const Rng &rng) {return &rng.arr[3];}

float* begin(Rng &rng) {return &rng.arr[0];}

float* end(Rng &rng) {return &rng.arr[3];}

}

int main()

{

Mine::Rng rng = {{0.4f, 12.5f, 16.234f}};

for(auto val: rng)

{

std::cout << val << " ";

}

}

for (/*initialization statement*/; /*condition*/; /*iteration execution*/)

47

int i =

Explanation of the placeholder statements:

initialization statement: This statement gets executed only once, at the beginning of the for loop. You

can enter a declaration of multiple variables of one type, such as 0, a = 2, b = 3. These variables

are only valid in the scope of the loop. Variables defined before the loop with the same name are hidden

during execution of the loop.

condition: This statement gets evaluated ahead of each loop body execution, and aborts the loop if it

evaluates to false.

iteration execution: This statement gets executed after the loop body, ahead of the next condition

evaluation, unless the for loop is aborted in the body (by break, goto, return or an exception being thrown).

You can enter multiple statements in the iteration execution part, such as a++, b+=10, c=b+a.

The rough equivalent of a for loop, rewritten as a while loop is:

The most common case for using a for loop is to execute statements a specific number of times. For example,

consider the following:

A valid loop is also:

An example of hiding declared variables before a loop is:

But if you want to use the already declared variable and not hide it, then omit the declaration part:

Notes:

{

// body of the loop

}

/*initialization*/

while (/*condition*/)

{

// body of the loop; using 'continue' will skip to increment part below

/*iteration execution*/

}

for(int i = 0; i < 10; i++) {

std::cout << i << std::endl;

}

for(int a = 0, b = 10, c = 20; (a+b+c < 100); c--, b++, a+=c) {

std::cout << a << " " << b << " " << c << std::endl;

}

int i = 99; //i = 99

for(int i = 0; i < 10; i++) { //we declare a new variable i

//some operations, the value of i ranges from 0 to 9 during loop execution

}

//after the loop is executed, we can access i with value of 99

int i = 99; //i = 99

for(i = 0; i < 10; i++) { //we are using already declared variable i

//some operations, the value of i ranges from 0 to 9 during loop execution

}

//after the loop is executed, we can access i with value of 10

48

int counter =

The initialization and increment statements can perform operations unrelated to the condition statement, or

nothing at all - if you wish to do so. But for readability reasons, it is best practice to only perform operations

directly relevant to the loop.

A variable declared in the initialization statement is visible only inside the scope of the for loop and is

released upon termination of the loop.

Don't forget that the variable which was declared in the initialization statement can be modified during

the loop, as well as the variable checked in the condition.

Example of a loop which counts from 0 to 10:

Explanation of the code fragments:

0 initializes the variable counter to 0. (This variable can only be used inside of the for loop.)

counter <= 10 is a Boolean condition that checks whether counter is less than or equal to 10. If it is true,

the loop executes. If it is false, the loop ends.

++counter is an increment operation that increments the value of counter by 1 ahead of the next condition

check.

By leaving all statements empty, you can create an infinite loop:

The while loop equivalent of the above is:

However, an infinite loop can still be left by using the statements break, goto, or return or by throwing an

exception.

The next common example of iterating over all elements from an STL collection (e.g., a vector) without using the

<algorithm> header is:

Section 11.3: While loop

A while loop executes statements repeatedly until the given condition evaluates to false. This control statement is

used when it is not known, in advance, how many times a block of code is to be executed.

For example, to print all the numbers from 0 up to 9, the following code can be used:

for (int counter = 0; counter <= 10; ++counter)

{

std::cout << counter << '\n';

}

// counter is not accessible here (had value 11 at the end)

// infinite loop

for (;;)

std::cout << "Never ending!\n";

// infinite loop

while (true)

std::cout << "Never ending!\n";

std::vector<std::string> names = {"Albert Einstein", "Stephen Hawking", "Michael Ellis"};

for(std::vector<std::string>::iterator it = names.begin(); it != names.end(); ++it) {

std::cout << *it << std::endl;

}

int i = 0;

49

Version ≥ C++17

Note that since C++17, the first 2 statements can be combined

To create an infinite loop, the following construct can be used:

There is another variant of while loops, namely the do...while construct. See the do-while loop example for more

information.

Section 11.4: Do-while loop

A do-while loop is very similar to a while loop, except that the condition is checked at the end of each cycle, not at

the start. The loop is therefore guaranteed to execute at least once.

The following code will print 0, as the condition will evaluate to false at the end of the first iteration:

Note: Do not forget the semicolon at the end of while(condition);, which is needed in the do-while construct.

In contrast to the do-while loop, the following will not print anything, because the condition evaluates to false at

the beginning of the first iteration:

Note: A while loop can be exited without the condition becoming false by using a break, goto, or return statement.

while (i < 10)

{

std::cout << i << " ";

++i; // Increment counter

}

std::cout << std::endl; // End of line; "0 1 2 3 4 5 6 7 8 9" is printed to the console

while (int i = 0; i < 10)

//... The rest is the same

while (true)

{

// Do something forever (however, you can exit the loop by calling 'break'

}

int i =0;

do

{

std::cout << i;

++i; // Increment counter

}

while (i < 0);

std::cout << std::endl; // End of line; 0 is printed to the console

int i =0;

while (i < 0)

{

std::cout << i;

++i; // Increment counter

}

std::cout << std::endl; // End of line; nothing is printed to the console

int i = 0;

do

{

50

A trivial do-while loop is also occasionally used to write macros that require their own scope (in which case the

trailing semicolon is omitted from the macro definition and required to be provided by the user):

Section 11.5: Loop Control statements : Break and Continue

Loop control statements are used to change the flow of execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed. The break and continue are

loop control statements.

The break statement terminates a loop without any further consideration.

The above code will print out:

The continue statement does not immediately exit the loop, but rather skips the rest of the loop body and goes to

the top of the loop (including checking the condition).

The above code will print out:

std::cout << i;

++i; // Increment counter

if (i > 5)

{

break;

}

}

while (true);

std::cout << std::endl; // End of line; 0 1 2 3 4 5 is printed to the console

#define BAD_MACRO(x) f1(x); f2(x); f3(x);

// Only the call to f1 is protected by the condition here if

(cond) BAD_MACRO(var);

#define GOOD_MACRO(x) do { f1(x); f2(x); f3(x); } while(0)

// All calls are protected here if

(cond) GOOD_MACRO(var);

for (int i = 0; i < 10; i++)

{

if (i == 4)

break; // this will immediately exit our loop

std::cout << i << '\n';

}

1

2

3

for (int i = 0; i < 6; i++)

{

if (i % 2 == 0) // evaluates to true if i is even

continue; // this will immediately go back to the start of the loop

/* the next line will only be reached if the above "continue"

statement does not execute */

std::cout << i << " is an odd number\n";

}

51

Because such control flow changes are sometimes difficult for humans to easily understand, break and continue

are used sparingly. More straightforward implementation are usually easier to read and understand. For example,

the first for loop with the break above might be rewritten as:

The second example with continue might be rewritten as:

Section 11.6: Declaration of variables in conditions

In the condition of the for and while loops, it's also permitted to declare an object. This object will be considered to

be in scope until the end of the loop, and will persist through each iteration of the loop:

However, it is not permitted to do the same with a do...while loop; instead, declare the variable before the loop,

and (optionally) enclose both the variable and the loop within a local scope if you want the variable to go out of

scope after the loop ends:

1 is an odd number

3 is an odd number

5 is an odd number

for (int i = 0; i < 4; i++)

{

std::cout << i << '\n';

}

for (int i = 0; i < 6; i++)

{

if (i % 2 != 0) {

std::cout << i << " is an odd number\n";

}

}

for (int i = 0; i < 5; ++i) {

do_something(i);

}

// i is no longer in scope.

for (auto& a : some_container) {

a.do_something();

}

// a is no longer in scope.

while(std::shared_ptr<Object> p = get_object()) {

p->do_something();

}

// p is no longer in scope.

//This doesn't compile

do {

s = do_something();

} while (short s > 0);

// Good

short s;

do {

s = do_something();

} while (s > 0);

52

This is because the statement portion of a do...while loop (the loop's body) is evaluated before the expression

portion (the while) is reached, and thus, any declaration in the expression will not be visible during the first iteration

of the loop.

Section 11.7: Range-for over a sub-range

Using range-base loops, you can loop over a sub-part of a given container or other range by generating a proxy

object that qualifies for range-based for loops.

template<class Iterator, class Sentinel=Iterator> struct

range_t {

Iterator b;

Sentinel e;

Iterator begin() const { return b; }

Sentinel end() const { return e; }

bool empty() const { return begin()==end(); }

range_t without_front(std::size_t count=1) const {

if (std::is_same< std::random_access_iterator_tag, typename

std::iterator_traits<Iterator>::iterator_category >{}) {

count = (std::min)(std::size_t(std::distance(b,e)), count);

}

return {std::next(b, count), e};

}

range_t without_back(std::size_t count=1) const {

if (std::is_same< std::random_access_iterator_tag, typename

std::iterator_traits<Iterator>::iterator_category >{}) {

count = (std::min)(std::size_t(std::distance(b,e)), count);

}

return {b, std::prev(e, count)};

}

};

template<class Iterator, class Sentinel>

range_t<Iterator, Sentinel> range(Iterator b, Sentinal e) {

return {b,e};

}

template<class Iterable>

auto range(Iterable& r) {

using std::begin; using std::end;

return range(begin(r),end(r));

}

template<class C>

auto except_first(C& c) {

auto r = range(c);

if (r.empty()) return r;

return r.without_front();

}

now we can do:

and print out

std::vector<int> v = {1,2,3,4};

for (auto i : except_first(v))

std::cout << i << '\n';

2

53

Be aware that intermediate objects generated in the for(:range_expression) part of the for loop will have

expired by the time the for loop starts.

3

4

54

Chapter 12: File I/O
C++ file I/O is done via streams. The key abstractions are:

std::istream for reading text.

std::ostream for writing text.

std::streambuf for reading or writing characters.

Formatted input uses operator>>.

Formatted output uses operator<<.

Streams use std::locale, e.g., for details of the formatting and for translation between external encodings and the

internal encoding.

More on streams: <iostream> Library

Section 12.1: Writing to a file

There are several ways to write to a file. The easiest way is to use an output file stream (ofstream) together with the

stream insertion operator (<<):

Instead of <<, you can also use the output file stream's member function write():

After writing to a stream, you should always check if error state flag badbit has been set, as it indicates whether the

operation failed or not. This can be done by calling the output file stream's member function bad():

Section 12.2: Opening a file

Opening a file is done in the same way for all 3 file streams (ifstream, ofstream, and fstream).

You can open the file directly in the constructor:

std::ofstream os("foo.txt");

if(os.is_open()){

os << "Hello World!";

}

std::ofstream os("foo.txt");

if(os.is_open()){

char data[] = "Foo";

// Writes 3 characters from data -> "Foo".

os.write(data, 3);

}

os << "Hello Badbit!"; // This operation might fail for any reason. if

(os.bad())

// Failed to write!

std::ifstream ifs("foo.txt"); // ifstream: Opens file "foo.txt" for reading only.

std::ofstream ofs("foo.txt"); // ofstream: Opens file "foo.txt" for writing only.

55

Alternatively, you can use the file stream's member function open():

You should always check if a file has been opened successfully (even when writing). Failures can include: the file

doesn't exist, file hasn't the right access rights, file is already in use, disk errors occurred, drive disconnected ...

Checking can be done as follows:

When file path contains backslashes (for example, on Windows system) you should properly escape them:

Version ≥ C++11

or use raw literal:

or use forward slashes instead:

Version ≥ C++11

If you want to open file with non-ASCII characters in path on Windows currently you can use non-standard wide

character path argument:

Section 12.3: Reading from a file

There are several ways to read data from a file.

If you know how the data is formatted, you can use the stream extraction operator (>>). Let's assume you have a file

named foo.txt which contains the following data:

std::fstream iofs("foo.txt"); // fstream: Opens file "foo.txt" for reading and writing.

std::ifstream ifs;

ifs.open("bar.txt"); // ifstream: Opens file "bar.txt" for reading only.

std::ofstream ofs;

ofs.open("bar.txt"); // ofstream: Opens file "bar.txt" for writing only.

std::fstream iofs;

iofs.open("bar.txt"); // fstream: Opens file "bar.txt" for reading and writing.

// Try to read the file 'foo.txt'.

std::ifstream ifs("fooo.txt"); // Note the typo; the file can't be opened.

// Check if the file has been opened successfully. if

(!ifs.is_open()) {

// The file hasn't been opened; take appropriate actions here.

throw CustomException(ifs, "File could not be opened");

}

// Open the file 'c:\\folder\\foo.txt' on Windows.

std::ifstream ifs("c:\\\\folder\\\\foo.txt"); // using escaped backslashes

// Open the file 'c:\\folder\\foo.txt' on Windows.

std::ifstream ifs(R"(c:\\folder\\foo.txt)"); // using raw literal

// Open the file 'c:\\folder\\foo.txt' on Windows.

std::ifstream ifs("c:/folder/foo.txt");

// Open the file 'п рим е р\\foo.txt' on Windows.

std::ifstream ifs(LR"(п рим е р\\foo.txt)"); // using wide characters with raw literal

56

Then you can use the following code to read that data from the file:

The stream extraction operator >> extracts every character and stops if it finds a character that can't be stored or if

it is a special character:

For string types, the operator stops at a whitespace () or at a newline (\n).

For numbers, the operator stops at a non-number character.

This means that the following version of the file foo.txt will also be successfully read by the previous code:

The stream extraction operator >> always returns the stream given to it. Therefore, multiple operators can be

chained together in order to read data consecutively. However, a stream can also be used as a Boolean expression

(as shown in the while loop in the previous code). This is because the stream classes have a conversion operator

for the type bool. This bool() operator will return true as long as the stream has no errors. If a stream goes into an

error state (for example, because no more data can be extracted), then the bool() operator will return false.

Therefore, the while loop in the previous code will be exited after the input file has been read to its end.

If you wish to read an entire file as a string, you may use the following code:

John Doe 25 4 6 1987

Jane Doe 15 5 24 1976

// Define variables.

std::ifstream is("foo.txt");

std::string firstname, lastname;

int age, bmonth, bday, byear;

// Extract firstname, lastname, age, bday month, bday day, and bday year in that order.

// Note: '>>' returns false if it reached EOF (end of file) or if the input data doesn't

// correspond to the type of the input variable (for example, the string "foo" can't be

// extracted into an 'int' variable).

while (is >> firstname >> lastname >> age >> bmonth >> bday >> byear)

// Process the data that has been read.

John

Doe 25

4 6 1987

Jane

Doe

15 5

24

1976

// Opens 'foo.txt'.

std::ifstream is("foo.txt");

std::string whole_file;

// Sets position to the end of the file.

is.seekg(0, std::ios::end);

// Reserves memory for the file.

whole_file.reserve(is.tellg());

// Sets position to the start of the file.

is.seekg(0, std::ios::beg);

57

This code reserves space for the string in order to cut down on unneeded memory allocations.

If you want to read a file line by line, you can use the function getline():

If you want to read a fixed number of characters, you can use the stream's member function read():

After executing a read command, you should always check if the error state flag failbit has been set, as it

indicates whether the operation failed or not. This can be done by calling the file stream's member function fail():

Section 12.4: Opening modes

When creating a file stream, you can specify an opening mode. An opening mode is basically a setting to control

how the stream opens the file.

(All modes can be found in the std::ios namespace.)

An opening mode can be provided as second parameter to the constructor of a file stream or to its open() member

function:

It is to be noted that you have to set ios::in or ios::out if you want to set other flags as they are not implicitly set

by the iostream members although they have a correct default value.

If you don't specify an opening mode, then the following default modes are used:

ifstream - in

ofstream - out

fstream - in and out

The file opening modes that you may specify by design are:

// Sets contents of 'whole_file' to all characters in the file.

whole_file.assign(std::istreambuf_iterator<char>(is),

std::istreambuf_iterator<char>());

std::ifstream is("foo.txt");

// The function getline returns false if there are no more lines. for

(std::string str; std::getline(is, str);) {

// Process the line that has been read.

}

std::ifstream is("foo.txt");

char str[4];

// Read 4 characters from the file.

is.read(str, 4);

is.read(str, 4); // This operation might fail for any reason.

if (is.fail())

// Failed to read!

std::ofstream os("foo.txt", std::ios::out | std::ios::trunc);

std::ifstream is;

is.open("foo.txt", std::ios::in | std::ios::binary);

http://en.cppreference.com/w/cpp/string/basic_string/getline
http://en.cppreference.com/w/cpp/string/basic_string/getline
http://en.cppreference.com/w/cpp/string/basic_string/getline

58

Mode Meaning For Description

app append Output Appends data at the end of the file.

binary binary Input/Output Input and output is done in binary.

in input Input Opens the file for reading.

out output Output Opens the file for writing.

trunc truncate Input/Output Removes contents of the file when opening.

ate at end Input Goes to the end of the file when opening.

Note: Setting the binary mode lets the data be read/written exactly as-is; not setting it enables the translation of

the newline '\n' character to/from a platform specific end of line sequence.

For example on Windows the end of line sequence is CRLF ("\r\n"). Write:

"\n" => "\r\n"

Read: "\r\n" => "\n"

Section 12.5: Reading an ASCII file into a std::string

The rdbuf() method returns a pointer to a streambuf that can be pushed into buffer via the

stringstream::operator<< member function.

Another possibility (popularized in Effective STL by Scott Meyers) is:

This is nice because requires little code (and allows reading a file directly into any STL container, not only strings)

but can be slow for big files.

NOTE: the extra parentheses around the first argument to the string constructor are essential to prevent the most

vexing parse problem.

Last but not least:

std::ifstream f("file.txt");

if (f)

{

std::stringstream buffer;

buffer << f.rdbuf();

f.close();

// The content of "file.txt" is available in the string `buffer.str()`

}

std::ifstream f("file.txt");

if (f)

{

std::string str((std::istreambuf_iterator<char>(f)),

std::istreambuf_iterator<char>());

// Operations on `str`...

}

std::ifstream f("file.txt");

if (f)

{

f.seekg(0, std::ios::end);

http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_ios/rdbuf
http://en.cppreference.com/w/cpp/io/basic_streambuf
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt
http://rads.stackoverflow.com/amzn/click/0201749629
http://www.aristeia.com/

59

which is probably the fastest option (among the three proposed).

Section 12.6: Writing files with non-standard locale settings

If you need to write a file using different locale settings to the default, you can use std::locale and

std::basic_ios::imbue() to do that for a specific file stream:

Guidance for use:

You should always apply a local to a stream before opening the file.

Once the stream has been imbued you should not change the locale.

Reasons for Restrictions: Imbuing a file stream with a locale has undefined behavior if the current locale is not

state independent or not pointing at the beginning of the file.

UTF-8 streams (and others) are not state independent. Also a file stream with a UTF-8 locale may try and read the

BOM marker from the file when it is opened; so just opening the file may read characters from the file and it will

not be at the beginning.

Explicitly switching to the classic "C" locale is useful if your program uses a different default locale and you want to

const auto size = f.tellg();

std::string str(size, ' ');

f.seekg(0);

f.read(&str[0], size);

f.close();

// Operations on `str`...

}

#include <iostream>

#include <fstream>

#include <locale>

int main()

{

std::cout << "User-preferred locale setting is "

<< std::locale("").name().c_str() << std::endl;

// Write a floating-point value using the user's preferred locale.

std::ofstream ofs1;

ofs1.imbue(std::locale(""));

ofs1.open("file1.txt");

ofs1 << 78123.456 << std::endl;

// Use a specific locale (names are system-dependent)

std::ofstream ofs2; ofs2.imbue(std::locale("en_US.UTF-

8")); ofs2.open("file2.txt");

ofs2 << 78123.456 << std::endl;

// Switch to the classic "C" locale

std::ofstream ofs3;

ofs3.imbue(std::locale::classic());

ofs3.open("file3.txt");

ofs3 << 78123.456 << std::endl;

}

http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/locale/locale
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue
http://en.cppreference.com/w/cpp/io/basic_ios/imbue

60

ensure a fixed standard for reading and writing files. With a "C" preferred locale, the example writes

If, for example, the preferred locale is German and hence uses a different number format, the example writes

(note the decimal comma in the first line).

Section 12.7: Checking end of file inside a loop condition, bad
practice?

eof returns true only after reading the end of file. It does NOT indicate that the next read will be the end of

stream.

You could correctly write:

but

is simpler and less error prone.

Further references:

std::ws: discards leading whitespace from an input stream

std::basic_ios::fail: returns true if an error has occurred on the associated stream

78,123.456

78,123.456

78123.456

78 123,456

78,123.456

78123.456

while (!f.eof())

{

// Everything is OK

f >> buffer;

// What if *only* now the eof / fail bit is set?

/* Use `buffer` */

}

while (!f.eof())

{

f >> buffer >> std::ws;

if (f.fail())

break;

/* Use `buffer` */

}

while (f >> buffer)

{

/* Use `buffer` */

}

http://en.cppreference.com/w/cpp/io/basic_ios/eof
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail
http://en.cppreference.com/w/cpp/io/basic_ios/fail

61

Section 12.8: Flushing a stream

File streams are buffered by default, as are many other types of streams. This means that writes to the stream may

not cause the underlying file to change immediately. In oder to force all buffered writes to take place immediately,

you can flush the stream. You can do this either directly by invoking the flush() method or through the std::flush

stream manipulator:

There is a stream manipulator std::endl that combines writing a newline with flushing the stream:

Buffering can improve the performance of writing to a stream. Therefore, applications that do a lot of writing

should avoid flushing unnecessarily. Contrary, if I/O is done infrequently, applications should consider flushing

frequently in order to avoid data getting stuck in the stream object.

Section 12.9: Reading a file into a container

In the example below we use std::string and operator>> to read items from the file.

In the above example we are simply iterating through the file reading one "item" at a time using operator>>. This

same affect can be achieved using the std::istream_iterator which is an input iterator that reads one "item" at a

time from the stream. Also most containers can be constructed using two iterators so we can simplify the above

code to:

We can extend this to read any object types we like by simply specifying the object we want to read as the template

parameter to the std::istream_iterator. Thus we can simply extend the above to read lines (rather than words)

like this:

std::ofstream os("foo.txt");

os << "Hello World!" << std::flush;

char data[3] = "Foo";

os.write(data, 3);

os.flush();

// Both following lines do the same thing os

<< "Hello World!\n" << std::flush;

os << "Hello world!" << std::endl;

std::ifstream file("file3.txt");

std::vector<std::string> v;

std::string s;

while(file >> s) // keep reading until we run out

{

v.push_back(s);

}

std::ifstream file("file3.txt");

std::vector<std::string> v(std::istream_iterator<std::string>{file},

std::istream_iterator<std::string>{});

// Unfortunately there is no built in type that reads line using >>

// So here we build a simple helper class to do it. That will convert

// back to a string when used in string context. struct

Line

62

Section 12.10: Copying a file

Version ≥ C++17

With C++17 the standard way to copy a file is including the <filesystem> header and using copy_file:

The filesystem library was originally developed as boost.filesystem and finally merged to ISO C++ as of C++17.

Section 12.11: Closing a file

Explicitly closing a file is rarely necessary in C++, as a file stream will automatically close its associated file in its

destructor. However, you should try to limit the lifetime of a file stream object, so that it does not keep the file

handle open longer than necessary. For example, this can be done by putting all file operations into an own scope

({}):

Calling close() explicitly is only necessary if you want to reuse the same fstream object later, but don't want to

keep the file open in between:

{

// Store data here

std::string data;

// Convert object to string

operator std::string const&() const {return data;}

// Read a line from a stream.

friend std::istream& operator>>(std::istream& stream, Line& line)

{

return std::getline(stream, line.data);

}

};

std::ifstream file("file3.txt");

// Read the lines of a file into a container.

std::vector<std::string> v(std::istream_iterator<Line>{file},

std::istream_iterator<Line>{});

std::ifstream src("source_filename", std::ios::binary);

std::ofstream dst("dest_filename", std::ios::binary);

dst << src.rdbuf();

std::fileystem::copy_file("source_filename", "dest_filename");

std::string const prepared_data = prepare_data();

{

// Open a file for writing.

std::ofstream output("foo.txt");

// Write data.

output << prepared_data;

} // The ofstream will go out of scope here.

// Its destructor will take care of closing the file properly.

// Open the file "foo.txt" for the first time.

std::ofstream output("foo.txt");

// Get some data to write from somewhere. std::string

const prepared_data = prepare_data();

http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem/copy_file

63

Section 12.12: Reading a `struct` from a formatted text file

Version ≥ C++11

struct info_type

{

std::string name;

int age;

float height;

// we define an overload of operator>> as a friend function which

// gives in privileged access to private data members

friend std::istream& operator>>(std::istream& is, info_type& info)

{

// skip whitespace

is >> std::ws;

std::getline(is, info.name);

is >> info.age;

is >> info.height;

return is;

}

};

void func4()

{

auto file = std::ifstream("file4.txt");

std::vector<info_type> v;

for(info_type info; file >> info;) // keep reading until we run out

{

// we only get here if the read succeeded

v.push_back(info);

}

for(auto const& info: v)

{

std::cout << " name: " << info.name << '\n';

std::cout << " age: " << info.age << " years" <<

'\n'; std::cout << "height: " << info.height << "lbs" <<

'\n'; std::cout << '\n';

}

}

// Write data to the file "foo.txt".

output << prepared_data;

// Close the file "foo.txt".

output.close();

// Preparing data might take a long time. Therefore, we don't open the output file stream

// before we actually can write some data to it.

std::string const more_prepared_data = prepare_complex_data();

// Open the file "foo.txt" for the second time once we are ready for writing. output.open("foo.txt");

// Write the data to the file "foo.txt".

output << more_prepared_data;

// Close the file "foo.txt" once again.

output.close();

64

file4.txt

Output:

Wogger Wabbit

2

6.2

Bilbo Baggins

111

81.3

Mary Poppins

29

154.8

name: Wogger Wabbit

age: 2 years height:

6.2lbs

name: Bilbo Baggins

age: 111 years

height: 81.3lbs

name: Mary Poppins

age: 29 years

height: 154.8lbs

65

Chapter 13: C++ Streams

Section 13.1: String streams

std::ostringstream is a class whose objects look like an output stream (that is, you can write to them via

operator<<), but actually store the writing results, and provide them in the form of a stream.

Consider the following short code:

The line

creates such an object. This object is first manipulated like a regular stream:

Following that, though, the resulting stream can be obtained like this:

(the string result will be equal to "the answer to everything is 42").

This is mainly useful when we have a class for which stream serialization has been defined, and for which we want a

string form. For example, suppose we have some class

To get the string representation of a foo object,

we could use

#include <sstream>

#include <string>

using namespace std;

int main()

{

ostringstream ss;

ss << "the answer to everything is " <<

42; const string result = ss.str();

}

ostringstream ss;

ss << "the answer to everything is " << 42;

const string result = ss.str();

class foo

{

// All sort of stuff here.

};

ostream &operator<<(ostream &os, const foo &f);

foo f;

ostringstream ss;

ss << f;

const string result = ss.str();

http://www.cplusplus.com/reference/sstream/ostringstream/
http://www.cplusplus.com/reference/sstream/ostringstream/
http://www.cplusplus.com/reference/sstream/ostringstream/

66

Then result contains the string representation of the foo object.

Section 13.2: Printing collections with iostream

Basic printing

std::ostream_iterator allows to print contents of an STL container to any output stream without explicit loops.

The second argument of std::ostream_iterator constructor sets the delimiter. For example, the following code:

will print

Implicit type cast

std::ostream_iterator allows to cast container's content type implicitly. For example, let's tune std::cout to print

floating-point values with 3 digits after decimal point:

and instantiate std::ostream_iterator with float, while the contained values remain int:

so the code above yields

despite std::vector holds ints.

Generation and transformation

std::generate, std::generate_n and std::transform functions provide a very powerful tool for on-the-fly data

manipulation. For example, having a vector:

we can easily print boolean value of "x is even" statement for each element:

or print the squared element:

std::vector<int> v = {1,2,3,4};

std::copy(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " ! "));

1 ! 2 ! 3 ! 4 !

std::cout << std::setprecision(3);

std::fixed(std::cout);

std::vector<int> v = {1,2,3,4};

std::copy(v.begin(), v.end(), std::ostream_iterator<float>(std::cout, " ! "));

1.000 ! 2.000 ! 3.000 ! 4.000 !

std::vector<int> v = {1,2,3,4,8,16};

std::boolalpha(std::cout); // print booleans alphabetically

std::transform(v.begin(), v.end(), std::ostream_iterator<bool>(std::cout, " "),

[](int val) {

return (val % 2) == 0;

});

std::transform(v.begin(), v.end(), std::ostream_iterator<int>(std::cout, " "),

[](int val) {

return val * val;

67

Printing N space-delimited random numbers:

Arrays

As in the section about reading text files, almost all these considerations may be applied to native arrays. For

example, let's print squared values from a native array:

});

const int N = 10;

std::generate_n(std::ostream_iterator<int>(std::cout, " "), N, std::rand);

int v[] = {1,2,3,4,8,16};

std::transform(v, std::end(v), std::ostream_iterator<int>(std::cout, " "),

[](int val) {

return val * val;

});

68

Chapter 14: Stream manipulators
Manipulators are special helper functions that help controlling input and output streams using operator >> or

operator <<.

They all can be included by #include <iomanip>.

Section 14.1: Stream manipulators

std::boolalpha and std::noboolalpha - switch between textual and numeric representation of booleans.

std::showbase and std::noshowbase - control whether prefix indicating numeric base is used.

std::dec (decimal), std::hex (hexadecimal) and std::oct (octal) - are used for changing base for integers.

Default values are std::ios_base::noshowbase and std::ios_base::dec.

If you want to see more about std::istringstream check out the <sstream> header.

std::uppercase and std::nouppercase - control whether uppercase characters are used in floating-point and

hexadecimal integer output. Have no effect on input streams.

std::cout << std::boolalpha << 1;

// Output: true

std::cout << std::noboolalpha << false;

// Output: 0

bool boolValue;

std::cin >> std::boolalpha >> boolValue;

std::cout << "Value \"" << std::boolalpha << boolValue

<< "\" was parsed as " << std::noboolalpha << boolValue;

// Input: true

// Output: Value "true" was parsed as 0

#include <sstream>

std::cout << std::dec << 29 << ' - '

<< std::hex << 29 << ' - '

<< std::showbase << std::oct << 29 << ' - '

<< std::noshowbase << 29 '\n';

int number;

std::istringstream("3B") >> std::hex >> number;

std::cout << std::dec << 10;

// Output: 22 - 1D - 35 - 035

// 59

std::cout << std::hex << std::showbase

<< "0x2a with nouppercase: " << std::nouppercase << 0x2a << '\n'

<< "1e-10 with uppercase: " << std::uppercase << 1e-10 << '\n'

}

// Output: 0x2a with nouppercase: 0x2a

// 1e-10 with uppercase: 1E-10

http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/booalpha
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/showbase
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/manip/hex
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/header/sstream
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase
http://en.cppreference.com/w/cpp/io/manip/uppercase

69

Default is std::nouppercase.

std::setw(n) - changes the width of the next input/output field to exactly n.

The width property n is resetting to 0 when some functions are called (full list is here).

Default is std::setw(0).

std::left, std::right and std::internal - modify the default position of the fill characters by setting

std::ios_base::adjustfield to std::ios_base::left, std::ios_base::right and std::ios_base::internal

correspondingly. std::left and std::right apply to any output, std::internal - for integer, floating-point and

monetary output. Have no effect on input streams.

#include <locale>

...

std::cout.imbue(std::locale("en_US.utf8"));

std::cout << std::left << std::showbase << std::setfill('*')

<< "flt: " << std::setw(15) << -9.87 << '\n'

<< "hex: " << std::setw(15) << 41 << '\n'

<< " $: " << std::setw(15) << std::put_money(367, false) << '\n'

<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n'

<< "usd: " << std::setw(15)

<< std::setfill(' ') << std::put_money(367, false) << '\n';

// Output:

// flt: -9.87**********

// hex: 41*************

// $: $3.67**********

// usd: USD *3.67******

// usd: $3.67

std::cout << std::internal << std::showbase << std::setfill('*')

<< "flt: " << std::setw(15) << -9.87 << '\n'

<< "hex: " << std::setw(15) << 41 << '\n'

<< " $: " << std::setw(15) << std::put_money(367, false) << '\n'

<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n'

<< "usd: " << std::setw(15)

<< std::setfill(' ') << std::put_money(367, true) << '\n';

std::cout << "no setw:" << 51 << '\n'

<< "setw(7): " << std::setw(7) << 51 << '\n'

<< "setw(7), more output: " << 13

<< std::setw(7) << std::setfill('*') << 67 << ' ' << 94 << '\n';

char* input = "Hello, world!"; char

arr[10];

std::cin >> std::setw(6) >> arr;

std::cout << "Input from \"Hello, world!\" with setw(6) gave \"" << arr << "\"\n";

// Output: 51

// setw(7): 51

// setw(7), more output: 13*****67 94

// Input: Hello, world!

// Output: Input from "Hello, world!" with setw(6) gave "Hello"

http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/setw
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/manip/left
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags

70

#include <sstream>

...

double f;

std::istringstream is("0x1P-1022");

double f = std::strtod(is.str().c_str(), NULL);

std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';

// Output:

// The number 0.01 in fixed: 0.070000

// The number 0.01 in scientific: 7.000000e-02

// The number 0.01 in hexfloat: 0x1.1eb851eb851ecp-4

// The number 0.01 in default: 0.07

// Parsing 0x1P-1022 as hex gives 2.22507e-308

Default is std::left.

std::fixed, std::scientific, std::hexfloat [C++11] and std::defaultfloat [C++11] - change formatting for

floating-point input/output.

std::fixed sets the std::ios_base::floatfield to std::ios_base::fixed,

std::scientific - to std::ios_base::scientific,

std::hexfloat - to std::ios_base::fixed | std::ios_base::scientific and

std::defaultfloat - to std::ios_base::fmtflags(0).

fmtflags

std::cout << '\n'

<< "The number 0.07 in fixed: " << std::fixed << 0.01 << '\n'

<< "The number 0.07 in scientific: " << std::scientific << 0.01 << '\n'

<< "The number 0.07 in hexfloat: " << std::hexfloat << 0.01 << '\n'

<< "The number 0.07 in default: " << std::defaultfloat << 0.01 << '\n';

Default is std::ios_base::fmtflags(0).

There is a bug on some compilers which causes

// Output:

// flt: -**********9.87

// hex: *************41

// $: $3.67**********

// usd: USD *******3.67

// usd: USD 3.67

std::cout << std::right << std::showbase << std::setfill('*')

<< "flt: " << std::setw(15) << -9.87 << '\n'

<< "hex: " << std::setw(15) << 41 << '\n'

<< " $: " << std::setw(15) << std::put_money(367, false) << '\n'

<< "usd: " << std::setw(15) << std::put_money(367, true) << '\n'

<< "usd: " << std::setw(15)

<< std::setfill(' ') << std::put_money(367, true) << '\n';

// Output:

// flt: **********-9.87

// hex: *************41

// $: **********$3.67

// usd: ******USD *3.67

// usd: USD 3.67

http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/manip/fixed
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags

71

std::showpoint and std::noshowpoint - control whether decimal point is always included in floating-point

representation. Have no effect on input streams.

Default is std::showpoint.

std::showpos and std::noshowpos - control displaying of the + sign in non-negative output. Have no effect on input

streams.

Default if std::noshowpos.

std::unitbuf, std::nounitbuf - control flushing output stream after every operation. Have no effect on input stream.

std::unitbuf causes flushing.

std::setbase(base) - sets the numeric base of the stream.

std::setbase(8) equals to setting std::ios_base::basefield to std::ios_base::oct,

std::setbase(16) - to std::ios_base::hex,

std::setbase(10) - to std::ios_base::dec.

If base is other then 8, 10 or 16 then std::ios_base::basefield is setting to std::ios_base::fmtflags(0). It means

decimal output and prefix-dependent input.

As default std::ios_base::basefield is std::ios_base::dec then by default std::setbase(10).

std::setprecision(n) - changes floating-point precision.

double f;

std::istringstream("0x1P-1022") >> std::hexfloat >> f;

std::cout << "Parsing 0x1P-1022 as hex gives " << f << '\n';

// Output: Parsing 0x1P-1022 as hex gives 0

std::cout << "7.0 with showpoint: " << std::showpoint << 7.0 << '\n'

<< "7.0 with noshowpoint: " << std::noshowpoint << 7.0 << '\n';

// Output: 1.0 with showpoint: 7.00000

// 1.0 with noshowpoint: 7

std::cout << "With showpos: " << std::showpos

<< 0 << ' ' << -2.718 << ' ' << 17 << '\n'

<< "Without showpos: " << std::noshowpos

<< 0 << ' ' << -2.718 << ' ' << 17 << '\n';

// Output: With showpos: +0 -2.718 +17

// Without showpos: 0 -2.718 17

#include <cmath>

#include <limits>

...

typedef std::numeric_limits<long double> ld;

http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpoint
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/showpos
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/unitbuf
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setbase
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision
http://en.cppreference.com/w/cpp/io/manip/setprecision

72

const long double pi = std::acos(-1.L);

std::cout << '\n'

<< "default precision (6): pi: " << pi << '\n'

<< " 10pi: " << 10 * pi << '\n'

<< "std::setprecision(4): 10pi: " << std::setprecision(4) << 10 * pi << '\n'

<< " 10000pi: " << 10000 * pi << '\n'

<< "std::fixed: 10000pi: " << std::fixed << 10000 * pi << std::defaultfloat <<

'\n'

<< "std::setprecision(10): pi: " << std::setprecision(10) << pi << '\n'

<< "max-1 radix precicion: pi: " << std::setprecision(ld::digits - 1) << pi << '\n'

<< "max+1 radix precision: pi: " << std::setprecision(ld::digits + 1) << pi << '\n'

<< "significant digits prec: pi: " << std::setprecision(ld::digits10) << pi << '\n';

// Output:

// default precision (6): pi: 3.14159

// 10pi: 31.4159

// std::setprecision(4): 10pi: 31.42

// 10000pi: 3.142e+04

// std::fixed: 10000pi: 31415.9265

// std::setprecision(10): pi: 3.141592654

// max-1 radix precicion: pi: 3.14159265358979323851280895940618620443274267017841339111328125

// max+1 radix precision: pi: 3.14159265358979323851280895940618620443274267017841339111328125

// significant digits prec: pi: 3.14159265358979324

Default is std::setprecision(6).

std::setiosflags(mask) and std::resetiosflags(mask) - set and clear flags specified in mask of

std::ios_base::fmtflags type.

std::skipws and std::noskipws - control skipping of leading whitespace by the formatted input functions. Have no

effect on output streams.

#include <sstream>

...

std::istringstream in("10 010 10 010 10 010");

int num1, num2;

in >> std::oct >> num1 >> num2;

std::cout << "Parsing \"10 010\" with std::oct gives: " << num1 << ' ' << num2 << '\n';

// Output: Parsing "10 010" with std::oct gives: 8 8

in >> std::dec >> num1 >> num2;

std::cout << "Parsing \"10 010\" with std::dec gives: " << num1 << ' ' << num2 << '\n';

// Output: Parsing "10 010" with std::oct gives: 10 10

in >> std::resetiosflags(std::ios_base::basefield) >> num1 >> num2;

std::cout << "Parsing \"10 010\" with autodetect gives: " << num1 << ' ' << num2 << '\n';

// Parsing "10 010" with autodetect gives: 10 8

std::cout << std::setiosflags(std::ios_base::hex |

std::ios_base::uppercase |

std::ios_base::showbase) << 42 << '\n';

// Output: OX2A

#include <sstream>

http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/setiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/resetiosflags
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws
http://en.cppreference.com/w/cpp/io/manip/skipws

73

Default is std::ios_base::skipws.

std::quoted(s[, delim[, escape]]) [C++14] - inserts or extracts quoted strings with embedded spaces.

s - the string to insert or extract.

delim - the character to use as the delimiter, " by default.

escape - the character to use as the escape character, \ by default.

For more information see the link above.

Section 14.2: Output stream manipulators

std::ends - inserts a null character '\0' to output stream. More formally this manipulator's declaration looks like

and this manipulator places character by calling os.put(charT()) when used in an expression

os << std::ends;

std::endl and std::flush both flush output stream out by calling out.flush(). It causes immediately producing

output. But std::endl inserts end of line '\n' symbol before flushing.

...

char c1, c2, c3;

std::istringstream("a b c") >> c1 >> c2 >> c3;

std::cout << "Default behavior: c1 = " << c1 << " c2 = " << c2 << " c3 = " << c3 << '\n';

std::istringstream("a b c") >> std::noskipws >> c1 >> c2 >> c3;

std::cout << "noskipws behavior: c1 = " << c1 << " c2 = " << c2 << " c3 = " << c3 << '\n';

// Output: Default behavior: c1 = a c2 = b c3 = c

// noskipws behavior: c1 = a c2 = c3 = b

#include <sstream>

...

std::stringstream ss;

std::string in = "String with spaces, and embedded \"quotes\" too";

std::string out;

ss << std::quoted(in);

std::cout << "read in [" << in << "]\n"

<< "stored as [" << ss.str() << "]\n";

ss >> std::quoted(out);

std::cout << "written out [" << out << "]\n";

// Output:

// read in [String with spaces, and embedded "quotes" too]

// stored as ["String with spaces, and embedded \"quotes\" too"]

// written out [String with spaces, and embedded "quotes" too]

template <class charT, class traits>

std::basic_ostream<charT, traits>& ends(std::basic_ostream<charT, traits>& os);

std::cout << "First line." << std::endl << "Second line. " << std::flush

<< "Still second line.";

http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/ios_base/fmtflags
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/ends
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/endl
http://en.cppreference.com/w/cpp/io/manip/flush
http://en.cppreference.com/w/cpp/io/manip/flush
http://en.cppreference.com/w/cpp/io/manip/flush

74

std::setfill(c) - changes the fill character to c. Often used with std::setw.

std::put_money(mon[, intl]) [C++11]. In an expression out << std::put_money(mon, intl), converts the monetary

value mon (of long double or std::basic_string type) to its character representation as specified by the

std::money_put facet of the locale currently imbued in out. Use international currency strings if intl is true, use

currency symbols otherwise.

std::put_time(tmb, fmt) [C++11] - formats and outputs a date/time value to std::tm according to the specified

format fmt.

tmb - pointer to the calendar time structure const std::tm* as obtained from localtime() or gmtime(). fmt

- pointer to a null-terminated string const CharT* specifying the format of conversion.

For more information see the link above.

// Output: First line.

// Second line. Still second line.

std::cout << "\nDefault fill: " << std::setw(10) << 79 << '\n'

<< "setfill('#'): " << std::setfill('#')

<< std::setw(10) << 42 << '\n';

// Output:

// Default fill: 79

// setfill('#'): ########79

long double money = 123.45;

// or std::string money = "123.45";

std::cout.imbue(std::locale("en_US.utf8"));

std::cout << std::showbase << "en_US: " << std::put_money(money)

<< " or " << std::put_money(money, true) << '\n';

// Output: en_US: $1.23 or USD 1.23

std::cout.imbue(std::locale("ru_RU.utf8"));

std::cout << "ru_RU: " << std::put_money(money)

<< " or " << std::put_money(money, true) << '\n';

// Output: ru_RU: 1.23 руб or 1.23 RUB

std::cout.imbue(std::locale("ja_JP.utf8")); std::cout

<< "ja_JP: " << std::put_money(money)

<< " or " << std::put_money(money, true) << '\n';

// Output: ja_JP: ￥123 or JPY 123

#include <ctime>

...

std::time_t t = std::time(nullptr);

std::tm tm = *std::localtime(&t);

std::cout.imbue(std::locale("ru_RU.utf8"));

std::cout << "\nru_RU: " << std::put_time(&tm, "%c %Z") << '\n';

// Possible output:

// ru_RU: В т 04 ию л 2017 15:08:35 UTC

http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/setfill
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/io/manip/put_money
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/locale/money_put
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time
http://en.cppreference.com/w/cpp/io/manip/put_time

75

Section 14.3: Input stream manipulators

std::ws - consumes leading whitespaces in input stream. It different from std::skipws.

std::get_money(mon[, intl]) [C++11]. In an expression in >> std::get_money(mon, intl) parses the character

input as a monetary value, as specified by the std::money_get facet of the locale currently imbued in in, and stores

the value in mon (of long double or std::basic_string type). Manipulator expects required international currency

strings if intl is true, expects optional currency symbols otherwise.

std::get_time(tmb, fmt) [C++11] - parses a date/time value stored in tmb of specified format fmt.

tmb - valid pointer to the const std::tm* object where the result will be stored.

fmt - pointer to a null-terminated string const CharT* specifying the conversion format.

#include <sstream>

...

std::string str;

std::istringstream(" \v\n\r\t

std::cout << str;
Wow!There is no whitespaces!") >> std::ws >> str;

// Output: Wow!There is no whitespaces!

#include <sstream>

#include <locale>

...

std::istringstream in("$1,234.56 2.22 USD 3.33");

long double v1, v2;

std::string v3;

in.imbue(std::locale("en_US.UTF-8"));

in >> std::get_money(v1) >> std::get_money(v2) >> std::get_money(v3, true);

if (in) {

std::cout << std::quoted(in.str()) << " parsed as: "

<< v1 << ", " << v2 << ", " << v3 << '\n';

}

// Output:

// "$1,234.56 2.22 USD 3.33" parsed as: 123456, 222, 333

#include <sstream>

#include <locale>

...

std::tm t = {};

std::istringstream ss("2011-Februar-18 23:12:34");

ss.imbue(std::locale("de_DE.utf-8"));

ss >> std::get_time(&t, "%Y-%b-%d

%H:%M:%S"); if (ss.fail()) {

std::cout << "Parse failed\n";

}

else {

std::cout << std::put_time(&t, "%c") << '\n';

}

// Possible output:

// Sun Feb 18 23:12:34 2011

http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/ws
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/io/manip/get_money
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/locale/money_get
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time
http://en.cppreference.com/w/cpp/io/manip/get_time

76

For more information see the link above.

77

Chapter 15: Flow Control

Section 15.1: case

Introduces a case label of a switch statement. The operand must be a constant expression and match the switch

condition in type. When the switch statement is executed, it will jump to the case label with operand equal to the

condition, if any.

Section 15.2: switch

According to the C++ standard,

The switch statement causes control to be transferred to one of several statements depending on the

value of a condition.

The keyword switch is followed by a parenthesized condition and a block, which may contain case labels and an

optional default label. When the switch statement is executed, control will be transferred either to a case label

with a value matching that of the condition, if any, or to the default label, if any.

The condition must be an expression or a declaration, which has either integer or enumeration type, or a class type

with a conversion function to integer or enumeration type.

Section 15.3: catch

The catch keyword introduces an exception handler, that is, a block into which control will be transferred when an

exception of compatible type is thrown. The catch keyword is followed by a parenthesized exception declaration,

char c = getchar();

bool confirmed;

switch (c) {

case 'y':

confirmed = true;

break;

case 'n':

confirmed = false;

break;

default:

std::cout << "invalid response!\n";

abort();

}

char c = getchar();

bool confirmed;

switch (c) {

case 'y':

confirmed = true;

break;

case 'n':

confirmed = false;

break;

default:

std::cout << "invalid response!\n";

abort();

}

78

which is similar in form to a function parameter declaration: the parameter name may be omitted, and the ellipsis

... is allowed, which matches any type. The exception handler will only handle the exception if its declaration is

compatible with the type of the exception. For more details, see catching exceptions.

Section 15.4: throw

1. When throw occurs in an expression with an operand, its effect is to throw an exception, which is a copy of

the operand.

2. When throw occurs in an expression without an operand, its effect is to rethrow the current exception. If

there is no current exception, std::terminate is called.

3. When throw occurs in a function declarator, it introduces a dynamic exception specification, which lists the

types of exceptions that the function is allowed to propagate.

Dynamic exception specifications are deprecated as of C++11.

Note that the first two uses of throw listed above constitute expressions rather than statements. (The type of a

throw expression is void.) This makes it possible to nest them within expressions, like so:

try {

std::vector<int> v(N);

// do something

} catch (const std::bad_alloc&) {

std::cout << "failed to allocate memory for vector!" << std::endl;

} catch (const std::runtime_error& e) {

std::cout << "runtime error: " << e.what() << std::endl;

} catch (...) {

std::cout << "unexpected exception!" << std::endl;

throw;

}

void print_asterisks(int count) { if

(count < 0) {

throw std::invalid_argument("count cannot be negative!");

}

while (count--) { putchar('*'); }

}

try {

// something risky

} catch (const std::bad_alloc&) {

std::cerr << "out of memory" << std::endl;

} catch (...) {

std::cerr << "unexpected exception" << std::endl;

// hope the caller knows how to handle this exception throw;

}

// this function might propagate a std::runtime_error,

// but not, say, a std::logic_error

void risky() throw(std::runtime_error);

// this function can't propagate any exceptions

void safe() throw();

79

Section 15.5: default

In a switch statement, introduces a label that will be jumped to if the condition's value is not equal to any of the

case labels' values.

Version ≥ C++11

Defines a default constructor, copy constructor, move constructor, destructor, copy assignment operator, or move

assignment operator to have its default behaviour.

Section 15.6: try

The keyword try is followed by a block, or by a constructor initializer list and then a block (see here). The try block is

followed by one or more catch blocks. If an exception propagates out of the try block, each of the corresponding

catch blocks after the try block has the opportunity to handle the exception, if the types match.

Section 15.7: if

Introduces an if statement. The keyword if must be followed by a parenthesized condition, which can be either an

expression or a declaration. If the condition is truthy, the substatement after the condition will be executed.

unsigned int predecessor(unsigned int x) {

return (x > 0) ? (x - 1) : (throw std::invalid_argument("0 has no predecessor"));

}

char c = getchar();

bool confirmed;

switch (c) {

case 'y':

confirmed = true;

break;

case 'n':

confirmed = false;

break;

default:

std::cout << "invalid response!\n";

abort();

}

class Base {

// ...

// we want to be able to delete derived classes through Base*,

// but have the usual behaviour for Base's destructor. virtual

~Base() = default;

};

std::vector<int> v(N); // if an exception is thrown here,

// it will not be caught by the following catch block

try {

std::vector<int> v(N); // if an exception is thrown here,

// it will be caught by the following catch block

// do something with v

} catch (const std::bad_alloc&) {

// handle bad_alloc exceptions from the try block

}

int x;

80

Section 15.8: else

The first substatement of an if statement may be followed by the keyword else. The substatement after the else

keyword will be executed when the condition is falsey (that is, when the first substatement is not executed).

Section 15.9: Conditional Structures: if, if..else

if and else:

it used to check whether the given expression returns true or false and acts as such:

the condition can be any valid C++ expression that returns something that be checked against truth/falsehood for

example:

the condition can be anything, a function, a variable, or a comparison for example

if we want to check for a multiple expressions we can do it in two ways :

using binary operators :

using if/ifelse/else:

for a simple switch either if or else

std::cout << "Please enter a positive number." << std::endl;

std::cin >> x;

if (x <= 0) {

std::cout << "You didn't enter a positive number!" << std::endl;

abort();

}

int x;

std::cin >> x;

if (x%2 == 0) {

std::cout << "The number is even\n";

} else {

std::cout << "The number is odd\n";

}

if (condition) statement

if (true) { /* code here */ } // evaluate that true is true and execute the code in the brackets if

(false) { /* code here */ } // always skip the code since false is always false

if(istrue()) { } // evaluate the function, if it returns true, the if will execute the code

if(isTrue(var)) { } //evaluate the return of the function after passing the argument var

if(a == b) { } // this will evaluate the return of the experssion (a==b) which will be true if

equal and false if unequal

if(a) { } //if a is a boolean type, it will evaluate for its value, if it's an integer, any non

zero value will be true,

if (a && b) { } // will be true only if both a and b are true (binary operators are outside the

scope here

if (a || b) { } //true if a or b is true

if (a== "test") {

81

for multiple choices :

however it must be noted that you should use 'switch' instead if your code checks for the same variable's value

Section 15.10: goto

Jumps to a labelled statement, which must be located in the current function.

Section 15.11: Jump statements : break, continue, goto, exit

The break instruction:

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite

loop, or to force it to end before its natural end

The syntax is

Example: we often use break in switch cases,ie once a case i switch is satisfied then the code block of that

condition is executed .

//will execute if a is a string "test"

} else {

// only if the first failed, will execute

}

if (a=='a') {

// if a is a char valued 'a'

} else if (a=='b') {

// if a is a char valued 'b'

} else if (a=='c') {

// if a is a char valued 'c'

} else {

//if a is none of the above

}

bool f(int arg) {

bool result = false;

hWidget widget = get_widget(arg);

if (!g()) {

// we can't continue, but must do cleanup still

goto end;

}

// ...

result = true;

end:

release_widget(widget);

return result;

}

break;

switch(conditon){

case 1: block1;

case 2: block2;

case 3: block3;

default: blockdefault;

}

82

in this case if case 1 is satisfied then block 1 is executed , what we really want is only the block1 to be processed but

instead once the block1 is processed remaining blocks,block2,block3 and blockdefault are also processed even

though only case 1 was satified.To avoid this we use break at the end of each block like :

so only one block is processed and the control moves out of the switch loop.

break can also be used in other conditional and non conditional loops like if,while,for etc;

example:

The continue instruction:

The continue instruction causes the program to skip the rest of the loop in the present iteration as if the end of the

statement block would have been reached, causing it to jump to the following iteration.

The syntax is

Example consider the following :

which produces the output:

i this code whenever the condition i%2==0 is satisfied continue is processed,this causes the compiler to skip all the

remaining code(printing @ and i) and increment/decrement statement of the loop gets executed.

switch(condition){

case 1: block1;

break;

case 2: block2;

break;

case 3: block3;

break;

default: blockdefault;

break;

}

if(condition1){

....

if(condition2){

.......

break;

}

...

}

continue;

for(int i=0;i<10;i++){

if(i%2==0)

continue;

cout<<"\n @"<<i;

}

@

1

@

3

@

5

@

7

@

9

83

The goto instruction:

It allows making an absolute jump to another point in the program. You should use this feature carefully since its

execution ignores any type of nesting limitation. The destination point is identified by a label, which is then used as

an argument for the goto instruction. A label is made of a valid identifier followed by a colon (:)

The syntax is

Note: Use of goto statement is highly discouraged because it makes difficult to trace the control flow of a program,

making the program hard to understand and hard to modify.

Example :

goto label;

..

.

label: statement;

int num = 1;

STEP:

do{

if(num%2==0)

{

num = num + 1;

84

output :

whenever the condition num%2==0 is satisfied the goto sends the execution control to the beginning of the do-while

loop.

The exit function:

exit is a function defined in cstdlib. The purpose of exit is to terminate the running program with an specific exit

code. Its prototype is:

cstdlib defines the standard exit codes EXIT_SUCCESS and EXIT_FAILURE.

Section 15.12: return

Returns control from a function to its caller.

If return has an operand, the operand is converted to the function's return type, and the converted value is

returned to the caller.

If return does not have an operand, the function must have void return type. As a special case, a void-returning

function can also return an expression if the expression has type void.

When main returns, std::exit is implicitly called with the return value, and the value is thus returned to the

goto STEP;

}

cout << "value of num : " << num <<

endl; num = num + 1;

}while(num < 10);

value of num : 1

value of num : 3

value of num : 5

value of num : 7

value of num : 9

void exit (int exit code);

int f() {

return 42;

}

int x = f(); // x is 42

int g() {

return 3.14;

}

int y = g(); // y is 3

void f(int x) {

if (x < 0) return;

std::cout << sqrt(x);

}

int g() { return 42; }

void h() {

return f(); // calls f, then returns

return g(); // ill-formed

}

85

execution environment. (However, returning from main destroys automatic local variables, while calling std::exit

directly does not.)

int main(int argc, char** argv) {

if (argc < 2) {

std::cout << "Missing argument\n";

return EXIT_FAILURE; // equivalent to: exit(EXIT_FAILURE);

}

}

86

Chapter 16: Metaprogramming
In C++ Metaprogramming refers to the use of macros or templates to generate code at compile-time.

In general, macros are frowned upon in this role and templates are preferred, although they are not as generic.

Template metaprogramming often makes use of compile-time computations, whether via templates or constexpr

functions, to achieve its goals of generating code, however compile-time computations are not metaprogramming

per se.

Section 16.1: Calculating Factorials

Factorials can be computed at compile-time using template metaprogramming techniques.

factorial is a struct, but in template metaprogramming it is treated as a template metafunction. By convention,

template metafunctions are evaluated by checking a particular member, either ::type for metafunctions that result

in types, or ::value for metafunctions that generate values.

In the above code, we evaluate the factorial metafunction by instantiating the template with the parameters we

want to pass, and using ::value to get the result of the evaluation.

The metafunction itself relies on recursively instantiating the same metafunction with smaller values. The

factorial<0> specialization represents the terminating condition. Template metaprogramming has most of the

restrictions of a functional programming language, so recursion is the primary "looping" construct.

Since template metafunctions execute at compile time, their results can be used in contexts that require compile-

time values. For example:

Automatic arrays must have a compile-time defined size. And the result of a metafunction is a compile-time

constant, so it can be used here.

Limitation: Most of the compilers won't allow recursion depth beyond a limit. For example, g++ compiler by default

#include <iostream>

template<unsigned int n>

struct factorial

{

enum

{

value = n * factorial<n - 1>::value

};

};

template<>

struct factorial<0>

{

enum { value = 1 };

};

int main()

{

std::cout << factorial<7>::value << std::endl;

} // prints "5040"

int my_array[factorial<5>::value];

https://en.wikipedia.org/wiki/Functional_programming

87

limits recursion depeth to 256 levels. In case of g++, programmer can set recursion depth using -ftemplate-depth- X

option.

Version ≥ C++11

Since C++11, the std::integral_constant template can be used for this kind of template computation:

Additionally, constexpr functions become a cleaner alternative.

The body of factorial() is written as a single statement because in C++11 constexpr functions can only use a quite

limited subset of the language.

Version ≥ C++14

Since C++14, many restrictions for constexpr functions have been dropped and they can now be written much

more conveniently:

Or even:

#include <iostream>

#include <type_traits>

template<long long n>

struct factorial :

std::integral_constant<long long, n * factorial<n - 1>::value> {};

template<>

struct factorial<0> : std::integral_constant<long

long, 1> {};

int main()

{

std::cout << factorial<7>::value << std::endl;

}

// prints "5040"

#include <iostream>

constexpr long long factorial(long long n)

{

return (n == 0) ? 1 : n * factorial(n - 1);

}

int main()

{

char test[factorial(3)];

std::cout << factorial(7) << '\n';

}

constexpr long long factorial(long long n)

{

if (n == 0)

return 1;

else

return n * factorial(n - 1);

}

constexpr long long factorial(int n)

{

long long result = 1;

88

Version ≥ C++17

Since c++17 one can use fold expression to calculate factorial:

Section 16.2: Iterating over a parameter pack

Often, we need to perform an operation over every element in a variadic template parameter pack. There are many

ways to do this, and the solutions get easier to read and write with C++17. Suppose we simply want to print every

element in a pack. The simplest solution is to recurse:

Version ≥ C++11

We could instead use the expander trick, to perform all the streaming in a single function. This has the advantage of

not needing a second overload, but has the disadvantage of less than stellar readability:

Version ≥ C++11

For an explanation of how this works, see T.C's excellent answer.

Version ≥ C++17

With C++17, we get two powerful new tools in our arsenal for solving this problem. The first is a fold-expression:

template <class... Ts>

void print_all(std::ostream& os, Ts const&... args) {

using expander = int[];

(void)expander{0,

(void(os << args), 0)...

};

}

void print_all(std::ostream& os) {

// base case

}

template <class T, class... Ts>

void print_all(std::ostream& os, T const& first, Ts const&... rest) {

os << first;

print_all(os, rest...);

}

for (int i = 1; i <= n; ++i) {

result *= i;

}

return result;

}

#include <iostream>

#include <utility>

template <class T, T N, class I = std::make_integer_sequence<T, N>>

struct factorial;

template <class T, T N, T... Is>

struct factorial<T,N,std::index_sequence<T, Is...>> {

static constexpr T value = (static_cast<T>(1) * ... * (Is + 1));

};

int main() {

std::cout << factorial<int, 5>::value << std::endl;

}

http://stackoverflow.com/a/25683817/2069064

89

And the second is if constexpr, which allows us to write our original recursive solution in a single function:

Section 16.3: Iterating with std::integer_sequence

Since C++14, the standard provides the class template

and a generating metafunction for it:

While this comes standard in C++14, this can be implemented using C++11 tools.

We can use this tool to call a function with a std::tuple of arguments (standardized in C++17 as std::apply):

template <class... Ts>

void print_all(std::ostream& os, Ts const&... args) {

((os << args), ...);

}

template <class T, class... Ts>

void print_all(std::ostream& os, T const& first, Ts const&... rest) {

os << first;

if constexpr (sizeof...(rest) > 0) {

// this line will only be instantiated if there are further

// arguments. if rest... is empty, there will be no call to

// print_all(os).

print_all(os, rest...);

}

}

template <class T, T... Ints>

class integer_sequence;

template <std::size_t... Ints>

using index_sequence = std::integer_sequence<std::size_t, Ints...>;

template <class T, T N>

using make_integer_sequence = std::integer_sequence<T, /* a sequence 0, 1, 2, ..., N-1 */ >;

template<std::size_t N>

using make_index_sequence = make_integer_sequence<std::size_t, N>;

namespace detail {

template <class F, class Tuple, std::size_t... Is>

decltype(auto) apply_impl(F&& f, Tuple&& tpl, std::index_sequence<Is...>) {

return std::forward<F>(f)(std::get<Is>(std::forward<Tuple>(tpl))...);

}

}

template <class F, class Tuple>

decltype(auto) apply(F&& f, Tuple&& tpl) {

return detail::apply_impl(std::forward<F>(f),

std::forward<Tuple>(tpl),

std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{});

}

// this will print 3

int f(int, char, double);

90

Section 16.4: Tag Dispatching

A simple way of selecting between functions at compile time is to dispatch a function to an overloaded pair of

functions that take a tag as one (usually the last) argument. For example, to implement std::advance(), we can

dispatch on the iterator category:

The std::XY_iterator_tag arguments of the overloaded details::advance functions are unused function

parameters. The actual implementation does not matter (actually it is completely empty). Their only purpose is to

allow the compiler to select an overload based on which tag class details::advance is called with.

In this example, advance uses the iterator_traits<T>::iterator_category metafunction which returns one of the

iterator_tag classes, depending on the actual type of Iter. A default-constructed object of the

iterator_category<Iter>::type then lets the compiler select one of the different overloads of details::advance.

(This function parameter is likely to be completely optimized away, as it is a default-constructed object of an empty

struct and never used.)

Tag dispatching can give you code that's much easier to read than the equivalents using SFINAE and enable_if.

Note: while C++17's if constexpr may simplify the implementation of advance in particular, it is not suitable for open

implementations unlike tag dispatching.

Section 16.5: Detect Whether Expression is Valid

It is possible to detect whether an operator or function can be called on a type. To test if a class has an overload of

auto some_args = std::make_tuple(42, 'x', 3.14);

int r = apply(f, some_args); // calls f(42, 'x', 3.14)

namespace details {

template <class RAIter, class Distance>

void advance(RAIter& it, Distance n, std::random_access_iterator_tag) {

it += n;

}

template <class BidirIter, class Distance>

void advance(BidirIter& it, Distance n, std::bidirectional_iterator_tag) { if

(n > 0) {

while (n--) ++it;

}

else {

while (n++) --it;

}

}

template <class InputIter, class Distance>

void advance(InputIter& it, Distance n, std::input_iterator_tag) {

while (n--) {

++it;

}

}

}

template <class Iter, class Distance>

void advance(Iter& it, Distance n) {

details::advance(it, n,

typename std::iterator_traits<Iter>::iterator_category{});

}

91

std::hash, one can do this:

Version ≥ C++17

Since C++17, std::void_t can be used to simplify this type of construct

where std::void_t is defined as:

For detecting if an operator, such as operator< is defined, the syntax is almost the same:

These can be used to use a std::unordered_map<T> if T has an overload for std::hash, but otherwise attempt to

use a std::map<T>:

#include <functional> // for std::hash

#include <type_traits> // for std::false_type and std::true_type

#include <utility> // for std::declval

template<class, class = void>

struct has_hash

: std::false_type

{};

template<class T>

struct has_hash<T, decltype(std::hash<T>()(std::declval<T>()), void())>

: std::true_type

{};

#include <functional> // for std::hash

#include <type_traits> // for std::false_type, std::true_type, std::void_t

#include <utility> // for std::declval

template<class, class = std::void_t<> >

struct has_hash

: std::false_type

{};

template<class T>

struct has_hash<T, std::void_t< decltype(std::hash<T>()(std::declval<T>())) > >

: std::true_type

{};

template< class... > using void_t = void;

template<class, class = void>

struct has_less_than

: std::false_type

{};

template<class T>

struct has_less_than<T, decltype(std::declval<T>() < std::declval<T>(), void())>

: std::true_type

{};

template <class K, class V>

using hash_invariant_map = std::conditional_t<

has_hash<K>::value,

std::unordered_map<K, V>,

std::map<K,V>>;

92

Section 16.6: If-then-else

Version ≥ C++11

The type std::conditional in the standard library header <type_traits> can select one type or the other, based

on a compile-time boolean value:

This struct contains a pointer to T if T is larger than the size of a pointer, or T itself if it is smaller or equal to a

pointer's size. Therefore sizeof(ValueOrPointer) will always be <= sizeof(void*).

Section 16.7: Manual distinction of types when given any type
T

When implementing SFINAE using std::enable_if, it is often useful to have access to helper templates that

determines if a given type T matches a set of criteria.

To help us with that, the standard already provides two types analog to true and false which are std::true_type

and std::false_type.

The following example show how to detect if a type T is a pointer or not, the is_pointer template mimic the

behavior of the standard std::is_pointer helper:

There are three steps in the above code (sometimes you only need two):

1. The first declaration of is_pointer_ is the default case, and inherits from std::false_type. The default case

should always inherit from std::false_type since it is analogous to a "false condition".

2. The second declaration specialize the is_pointer_ template for pointer T* without caring about what T is

really. This version inherits from std::true_type.

3. The third declaration (the real one) simply remove any unnecessary information from T (in this case we

remove const and volatile qualifiers) and then fall backs to one of the two previous declarations.

Since is_pointer<T> is a class, to access its value you need to either:

Use ::value, e.g. is_pointer<int>::value – value is a static class member of type bool inherited from

std::true_type or std::false_type;

Construct an object of this type, e.g. is_pointer<int>{} – This works because std::is_pointer inherits its

default constructor from std::true_type or std::false_type (which have constexpr constructors) and both

std::true_type and std::false_type have constexpr conversion operators to bool.

template<typename T>

struct ValueOrPointer

{

typename std::conditional<(sizeof(T) > sizeof(void*)), T*, T>::type vop;

};

template <typename T>

struct is_pointer_: std::false_type {};

template <typename T>

struct is_pointer_<T*>: std::true_type {};

template <typename T>

struct is_pointer: is_pointer_<typename std::remove_cv<T>::type> { }

93

It is a good habit to provides "helper helper templates" that let you directly access the value:

Version ≥ C++17

In C++17 and above, most helper templates already provide a _v version, e.g.:

Section 16.8: Calculating power with C++11 (and higher)

With C++11 and higher calculations at compile time can be much easier. For example calculating the power of a

given number at compile time will be following:

Keyword constexpr is responsible for calculating function in compilation time, then and only then, when all the

requirements for this will be met (see more at constexpr keyword reference) for example all the arguments must

be known at compile time.

Note: In C++11 constexpr function must compose only from one return statement.

Advantages: Comparing this to the standard way of compile time calculation, this method is also useful for runtime

calculations. It means, that if the arguments of the function are not known at the compilation time (e.g. value and

power are given as input via user), then function is run in a compilation time, so there's no need to duplicate a code

(as we would be forced in older standards of C++).

E.g.

Version ≥ C++17

Another way to calculate power at compile time can make use of fold expression as follows:

template <typename T>

constexpr bool is_pointer_v = is_pointer<T>::value;

template< class T > constexpr bool is_pointer_v = is_pointer<T>::value;

template< class T > constexpr bool is_reference_v = is_reference<T>::value;

template <typename T>

constexpr T calculatePower(T value, unsigned power) {

return power == 0 ? 1 : value * calculatePower(value, power-1);

}

void useExample() {

constexpr int compileTimeCalculated = calculatePower(3, 3); // computes at compile time,

// as both arguments are known at compilation time

// and used for a constant expression.

int value;

std::cin >> value;

int runtimeCalculated = calculatePower(value, 3); // runtime calculated,

// because value is known only at runtime.

}

#include <iostream>

#include <utility>

template <class T, T V, T N, class I = std::make_integer_sequence<T, N>>

struct power;

template <class T, T V, T N, T... Is>

struct power<T, V, N, std::integer_sequence<T, Is...>> {

static constexpr T value = (static_cast<T>(1) * ... * (V * static_cast<bool>(Is + 1)));

};

94

Section 16.9: Generic Min/Max with variable argument count

Version > C++11

It's possible to write a generic function (for example min) which accepts various numerical types and arbitrary

argument count by template meta-programming. This function declares a min for two arguments and recursively

for more.

int main() {

std::cout << power<int, 4, 2>::value << std::endl;

}

template <typename T1, typename T2>

auto min(const T1 &a, const T2 &b)

-> typename std::common_type<const T1&, const T2&>::type

{

return a < b ? a : b;

}

template <typename T1, typename T2, typename ... Args>

auto min(const T1 &a, const T2 &b, const Args& ... args)

-> typename std::common_type<const T1&, const T2&, const Args& ...>::type

{

return min(min(a, b), args...);

}

auto minimum = min(4, 5.8f, 3, 1.8, 3, 1.1, 9);

95

Chapter 17: const keyword

Section 17.1: Avoiding duplication of code in const and non-
const getter methods

In C++ methods that differs only by const qualifier can be overloaded. Sometimes there may be a need of two

versions of getter that return a reference to some member.

Let Foo be a class, that has two methods that perform identical operations and returns a reference to an object of

type Bar:

The only difference between them is that one method is non-const and return a non-const reference (that can be

use to modify object) and the second is const and returns const reference.

To avoid the code duplication, there is a temptation to call one method from another. However, we can not call

non-const method from the const one. But we can call const method from non-const one. That will require as to

use 'const_cast' to remove the const qualifier.

The solution is:

In code above, we call const version of GetBar from the non-const GetBar by casting this to const type:

const_cast<const Foo*>(this). Since we call const method from non-const, the object itself is non-const, and

casting away the const is allowed.

class Foo

{

public:

Bar& GetBar(/* some arguments */)

{

/* some calculations */

return bar;

}

const Bar& GetBar(/* some arguments */) const

{

/* some calculations */

return bar;

}

// ...

};

struct Foo

{

Bar& GetBar(/*arguments*/)

{

return const_cast<Bar&>(const_cast<const Foo*>(this)->GetBar(/*arguments*/));

}

const Bar& GetBar(/*arguments*/) const

{

/* some calculations */

return foo;

}

};

96

Examine the following more complete example:

#include <iostream>

class Student

{

public:

char& GetScore(bool midterm)

{

return const_cast<char&>(const_cast<const Student*>(this)->GetScore(midterm));

}

const char& GetScore(bool midterm) const

{

if (midterm)

{

return midtermScore;

}

else

{

return finalScore;

}

}

private:

char midtermScore;

char finalScore;

};

int main()

{

// non-const object

Student a;

// We can assign to the reference. Non-const version of GetScore is called

a.GetScore(true) = 'B';

a.GetScore(false) = 'A';

// const object const

Student b(a);

// We still can call GetScore method of const object,

// because we have overloaded const version of GetScore

std::cout << b.GetScore(true) << b.GetScore(false) << '\n';

}

Section 17.2: Const member functions

Member functions of a class can be declared const, which tells the compiler and future readers that this function

will not modify the object:

In a const member function, the this pointer is effectively a const MyClass * instead of a MyClass *. This means

that you cannot change any member variables within the function; the compiler will emit a warning. So setMyInt

class MyClass

{

private:

int myInt_;

public:

int myInt() const { return myInt_; }

void setMyInt(int myInt) { myInt_ = myInt; }

};

97

could not be declared const.

You should almost always mark member functions as const when possible. Only const member functions can be

called on a const MyClass.

static methods cannot be declared as const. This is because a static method belongs to a class and is not called

on object; therefore it can never modify object's internal variables. So declaring static methods as const would be

redundant.

Section 17.3: Const local variables

Declaration and usage.

Binding of references and pointers

Section 17.4: Const pointers

// a is const int, so it can't be changed

const int a = 15;

a = 12; // Error: can't assign new value to const variable

a += 1; // Error: can't assign new value to const variable

int &b = a; // Error: can't bind non-const reference to const variable

const int &c = a; // OK; c is a const reference

int *d = &a; // Error: can't bind pointer-to-non-const to const variable

const int *e = &a // OK; e is a pointer-to-const

int f = 0;

e = &f; // OK; e is a non-const pointer-to-const,

// which means that it can be rebound to new int* or const int*

*e =
1

// Error: e is a pointer-to-const which means that

// the value it points to can't be changed through dereferencing e

int *g = &f;

*g = 1; // OK; this value still can be changed through dereferencing

// a pointer-not-to-const

int a = 0, b = 2;

const int* pA = &a; // pointer-to-const. `a` can't be changed through this

int* const pB = &a; // const pointer. `a` can be changed, but this pointer can't.

const int* const pC = &a; // const pointer-to-const.

//Error: Cannot assign to a const reference

*pA = b;

pA = &b;

*pB = b;

//Error: Cannot assign to const pointer

pB = &b;

//Error: Cannot assign to a const reference

*pC = b;

98

//Error: Cannot assign to const pointer

pC = &b;

99

Chapter 18: mutable keyword

Section 18.1: mutable lambdas

By default, the implicit operator() of a lambda is const. This disallows performing non-const operations on the

lambda. In order to allow modifying members, a lambda may be marked mutable, which makes the implicit

operator() non-const:

Section 18.2: non-static class member modifier

mutable modifier in this context is used to indicate that a data field of a const object may be modified without

affecting the externally-visible state of the object.

If you are thinking about caching a result of expensive computation, you should probably use this keyword.

If you have a lock (for example, std::unique_lock) data field which is locked and unlocked inside a const method,

this keyword is also what you could use.

You should not use this keyword to break logical const-ness of an object.

Example with caching:

int a = 0;

auto bad_counter = [a] {

return a++; // error: operator() is const

// cannot modify members

};

auto good_counter = [a]() mutable {

return a++; // OK

}

good_counter(); // 0

good_counter(); // 1

good_counter(); // 2

class pi_calculator {

public:

double get_pi() const {

if (pi_calculated) {

return pi;

} else {

double new_pi = 0;

for (int i = 0; i < 1000000000; ++i) {

// some calculation to refine new_pi

}

// note: if pi and pi_calculated were not mutable, we would get an error from a

compiler

// because in a const method we can not change a non-mutable field pi

= new_pi;

pi_calculated = true;

return pi;

}

}

private:

mutable bool pi_calculated = false;

100

mutable double pi = 0;

};

101

Chapter 19: Friend keyword
Well-designed classes encapsulate their functionality, hiding their implementation while providing a clean,

documented interface. This allows redesign or change so long as the interface is unchanged.

In a more complex scenario, multiple classes that rely on each others' implementation details may be required.

Friend classes and functions allow these peers access to each others' details, without compromising the

encapsulation and information hiding of the documented interface.

Section 19.1: Friend function

A class or a structure may declare any function it's friend. If a function is a friend of a class, it may access all it's

protected and private members:

Access modifiers do not alter friend semantics. Public, protected and private declarations of a friend are equivalent.

Friend declarations are not inherited. For example, if we subclass PrivateHolder:

and try to access it's members, we'll get the following:

// Forward declaration of functions.

void friend_function();

void non_friend_function();

class PrivateHolder {

public:

PrivateHolder(int val) : private_value(val) {} private:

int private_value;

// Declare one of the function as a friend.

friend void friend_function();

};

void non_friend_function() {

PrivateHolder ph(10);

// Compilation error: private_value is private.

std::cout << ph.private_value << std::endl;

}

void friend_function() {

// OK: friends may access private values.

PrivateHolder ph(10);

std::cout << ph.private_value << std::endl;

}

class PrivateHolderDerived : public PrivateHolder {

public:

PrivateHolderDerived(int val) : PrivateHolder(val) {}

private:

int derived_private_value = 0;

};

void friend_function() {

PrivateHolderDerived pd(20);

// OK.

std::cout << pd.private_value << std::endl;

// Compilation error: derived_private_value is private.

102

Note that PrivateHolderDerived member function cannot access PrivateHolder::private_value, while friend

function can do it.

Section 19.2: Friend method

Methods may declared as friends as well as functions:

Section 19.3: Friend class

A whole class may be declared as friend. Friend class declaration means that any member of the friend may access

private and protected members of the declaring class:

std::cout << pd.derived_private_value <<
std::endl; }

class Accesser {

public:

void private_accesser();

};

class PrivateHolder {

public:

PrivateHolder(int val) : private_value(val) {}

friend void Accesser::private_accesser();

private:

int private_value;

};

void Accesser::private_accesser() {

PrivateHolder ph(10);

// OK: this method is declares as friend.

std::cout << ph.private_value << std::endl;

}

class Accesser {

public:

void private_accesser1();

void private_accesser2();

};

class PrivateHolder {

public:

PrivateHolder(int val) : private_value(val) {}

friend class Accesser;

private:

int private_value;

};

void Accesser::private_accesser1() {

PrivateHolder ph(10);

// OK.

std::cout << ph.private_value << std::endl;

}

void Accesser::private_accesser2() {

PrivateHolder ph(10);

// OK.

std::cout << ph.private_value + 1 << std::endl;

103

Friend class declaration is not reflexive. If classes need private access in both directions, both of them need friend

declarations.

}

class Accesser {

public:

void private_accesser1();

void private_accesser2();

private:

int private_value = 0;

};

class PrivateHolder {

public:

PrivateHolder(int val) : private_value(val) {}

// Accesser is a friend of PrivateHolder

friend class Accesser;

void reverse_accesse() {

// but PrivateHolder cannot access Accesser's members.

Accesser a;

std::cout << a.private_value;

}

private:

int private_value;

};

104

Chapter 20: Type Keywords

Section 20.1: class

1. Introduces the definition of a class type.

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a class type. If

the class name has been declared already, it can be found even if hidden by another name. If the class name

has not been declared already, it is forward-declared.

3. Introduces a type parameter in the declaration of a template.

4. In the declaration of a template template parameter, the keyword class precedes the name of the

parameter. Since the argument for a template template parameter can only be a class template, the use of

class here is redundant. However, the grammar of C++ requires it.

5. Note that sense 2 and sense 3 may be combined in the same declaration. For example:

class foo {

int x;

public:

int get_x();

void set_x(int new_x);

};

class foo; // elaborated type specifier -> forward declaration

class bar {

public:

bar(foo& f);

};

void baz();

class baz; // another elaborated type specifer; another forward declaration

// note: the class has the same name as the function void baz()

class foo {

bar b;

friend class baz; // elaborated type specifier refers to the class,

// not the function of the same name

public:

foo();

};

template <class T>

const T& min(const T& x, const T& y) {

return b < a ? b : a;

}

template <template <class T> class U>

// ^^^^^ "class" used in this sense here;

// U is a template template parameter

void f() {

U<int>::do_it();

U<double>::do_it();

}

template <class T>

class foo {

105

Version ≥ C++11

6. In the declaration or definition of an enum, declares the enum to be a scoped enum.

Section 20.2: enum

1. Introduces the definition of an enumeration type.

Version ≥ C++11

In C++11, enum may optionally be followed by class or struct to define a scoped enum. Furthermore, both scoped

and unscoped enums can have their underlying type explicitly specified by : T following the enum name, where T

refers to an integer type.

Enumerators in normal enums may also be preceded by the scope operator, although they are still considered to be

in the scope the enum was defined in.

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a previously

declared enum type. (An elaborated type specifier cannot be used to forward-declare an enum type.) An

};

foo<class bar> x; // <- bar does not have to have previously appeared.

enum class Format {

TEXT,

PDF,

OTHER

,

};

Format f = F::TEXT;

enum Direction {

UP,

LEFT,

DOWN

,

RIGH

T

};

Direction d = UP;

enum class Format : char {

TEXT,

PDF,

OTHE

R

};

Format f = Format::TEXT;

enum Language : int {

ENGLISH,

FRENCH,

OTHER

};

Language l1, l2;

l1 = ENGLISH;

l2 = Language::OTHER;

106

enum can be named in this way even if hidden by another name.

Version ≥ C++11

3. Introduces an opaque enum declaration, which declares an enum without defining it. It can either redeclare a

previously declared enum, or forward-declare an enum that has not been previously declared.

An enum first declared as scoped cannot later be declared as unscoped, or vice versa. All declarations of an

enum must agree in underlying type.

When forward-declaring an unscoped enum, the underlying type must be explicitly specified, since it cannot

be inferred until the values of the enumerators are known.

Section 20.3: struct

Interchangeable with class, except for the following differences:

If a class type is defined using the keyword struct, then the default accessibility of bases and members is

public rather than private.

struct cannot be used to declare a template type parameter or template template parameter; only class

can.

Section 20.4: union

1. Introduces the definition of a union type.

2. Introduces an elaborated type specifier, which specifies that the following name is the name of a union type. If

the union name has been declared already, it can be found even if hidden by another name. If the union

name has not been declared already, it is forward-declared.

enum Foo { FOO

}; void Foo() {}

Foo foo = FOO; // ill-formed; Foo refers to the function

enum Foo foo = FOO; // ok; Foo refers to the enum type

enum class Format; // underlying type is implicitly int

void f(Format f);

enum class Format {

TEXT,

PDF,

OTHER

,

};

enum Direction; // ill-formed; must specify underlying type

// Example is from POSIX

union sigval {

int sival_int;

void *sival_ptr;

};

union foo; // elaborated type specifier -> forward declaration

class bar {

107

public:

bar(foo& f);

};

void baz();

union baz; // another elaborated type specifer; another forward declaration

// note: the class has the same name as the function void baz()

union foo {

long l;

union baz* b; // elaborated type specifier refers to the class,

// not the function of the same name

};

108

Chapter 21: Basic Type Keywords

Section 21.1: char

An integer type which is "large enough to store any member of the implementation’s basic character set". It is

implementation-defined whether char is signed (and has a range of at least -127 to +127, inclusive) or unsigned

(and has a range of at least 0 to 255, inclusive).

Section 21.2: char16_t

Version ≥ C++11

An unsigned integer type with the same size and alignment as uint_least16_t, which is therefore large enough to

hold a UTF-16 code unit.

Section 21.3: char32_t

Version ≥ C++11

An unsigned integer type with the same size and alignment as uint_least32_t, which is therefore large enough to

hold a UTF-32 code unit.

Section 21.4: int

Denotes a signed integer type with "the natural size suggested by the architecture of the execution environment",

whose range includes at least -32767 to +32767, inclusive.

Can be combined with unsigned, short, long, and long long (q.v.) in order to yield other integer types.

Section 21.5: void

An incomplete type; it is not possible for an object to have type void, nor are there arrays of void or references to

void. It is used as the return type of functions that do not return anything.

Moreover, a function may redundantly be declared with a single parameter of type void; this is equivalent to

declaring a function with no parameters (e.g. int main() and int main(void) declare the same function). This

syntax is allowed for compatibility with C (where function declarations have a different meaning than in C++).

const char zero = '0';

const char one = zero +

1; const char newline =

'\n';

std::cout << one << newline; // prints 1 followed by a newline

const char16_t message[] = u"你好，世界\\n"; // Chinese for "hello, world\\n"

std::cout << sizeof(message)/sizeof(char16_t) << "\\n"; // prints 7

const char32_t full_house[] = U"□□□□□"; // non-BMP characters

std::cout << sizeof(full_house)/sizeof(char32_t) << "\\n"; // prints 6

int x = 2;

int y = 3;

int z = x + y;

109

The type void* ("pointer to void") has the property that any object pointer can be converted to it and back and

result in the same pointer. This feature makes the type void* suitable for certain kinds of (type-unsafe) type-erasing

interfaces, for example for generic contexts in C-style APIs (e.g. qsort, pthread_create).

Any expression may be converted to an expression of type void; this is called a discarded-value expression:

This may be useful to signal explicitly that the value of an expression is not of interest and that the expression is to

be evaluated for its side effects only.

Section 21.6: wchar_t

An integer type large enough to represent all characters of the largest supported extended character set, also

known as the wide-character set. (It is not portable to make the assumption that wchar_t uses any particular

encoding, such as UTF-16.)

It is normally used when you need to store characters over ASCII 255 , as it has a greater size than the character

type char.

Section 21.7: float

A floating point type. Has the narrowest range out of the three floating point types in C++.

Section 21.8: double

A floating point type. Its range includes that of float. When combined with long, denotes the long double floating

point type, whose range includes that of double.

Section 21.9: long

Denotes a signed integer type that is at least as long as int, and whose range includes at least -2147483647 to

+2147483647, inclusive (that is, -(2^31 - 1) to +(2^31 - 1)). This type can also be written as long int.

The combination long double denotes a floating point type, which has the widest range out of the three floating

static_cast<void>(std::printf("Hello, %s!\n", name)); // discard return value

const wchar_t message_ahmaric[] = L"□□□□□□\\n"; //Ahmaric for "hello, world\\n" const

wchar_t message_chinese[] = L"你好，世界\\n";// Chinese for "hello, world\\n" const

wchar_t message_hebrew[] = L" םלוע םולש \\n"; //Hebrew for "hello, world\\n" const

wchar_t message_russian[] = L"П рив е т мир\\n"; //Russian for "hello, world\\n"

்\\n"; //Tamil for "hello, world\\n"

float area(float radius) {

const float pi = 3.14159f;

return pi*radius*radius;

}

double area(double radius) {

const double pi = 3.141592653589793;

return pi*radius*radius;

}

const long approx_seconds_per_year = 60L*60L*24L*365L;

110

point types.

Version ≥ C++11

When the long specifier occurs twice, as in long long, it denotes a signed integer type that is at least as long as

long, and whose range includes at least -9223372036854775807 to +9223372036854775807, inclusive (that is, -

(2^63 - 1) to +(2^63 - 1)).

Section 21.10: short

Denotes a signed integer type that is at least as long as char, and whose range includes at least -32767 to +32767,

inclusive. This type can also be written as short int.

Section 21.11: bool

An integer type whose value can be either true or false.

long double area(long double radius) {

const long double pi = 3.1415926535897932385L;

return pi*radius*radius;

}

// support files up to 2 TiB

const long long max_file_size = 2LL << 40;

// (during the last year)

short hours_worked(short days_worked) {

return 8*days_worked;

}

bool is_even(int x) {

return x%2 == 0;

}

const bool b = is_even(47); // false

111

Chapter 22: Variable Declaration
Keywords

Section 22.1: decltype

Version ≥ C++11

Yields the type of its operand, which is not evaluated.

If the operand e is a name without any additional parentheses, then decltype(e) is the declared type of e.

If the operand e is a class member access without any additional parentheses, then decltype(e) is the

declared type of the member accessed.

In all other cases, decltype(e) yields both the type and the value category of the expression e, as follows:

If e is an lvalue of type T, then decltype(e) is T&.

If e is an xvalue of type T, then decltype(e) is T&&.

If e is a prvalue of type T, then decltype(e) is T.

This includes the case with extraneous parentheses.

Version ≥ C++14

The special form decltype(auto) deduces the type of a variable from its initializer or the return type of a function

from the return statements in its definition, using the type deduction rules of decltype rather than those of auto.

Section 22.2: const

A type specifier; when applied to a type, produces the const-qualified version of the type. See const keyword for

details on the meaning of const.

int x = 42;

std::vector<decltype(x)> v(100, x); // v is a vector<int>

struct S {

int x = 42;

};

const S s;

decltype(s.x) y; // y has type int, even though s.x is const

int f() { return 42; }

int& g() { static int x = 42; return x; }

int x = 42;

decltype(f()) a = f(); // a has type int

decltype(g()) b = g(); // b has type int&

decltype((x)) c = x; // c has type int&, since x is an lvalue

const int x = 123;

auto y = x; // y has type int

decltype(auto) z = x; // z has type const int, the declared type of x

const int x = 123;

x = 456; // error

112

Section 22.3: volatile

A type qualifier; when applied to a type, produces the volatile-qualified version of the type. Volatile qualification

plays the same role as const qualification in the type system, but volatile does not prevent objects from being

modified; instead, it forces the compiler to treat all accesses to such objects as side effects.

In the example below, if memory_mapped_port were not volatile, the compiler could optimize the function so that it

performs only the final write, which would be incorrect if sizeof(int) is greater than 1. The volatile qualification

forces it to treat all sizeof(int) writes as different side effects and hence perform all of them (in order).

Section 22.4: signed

A keyword that is part of certain integer type names.

When used alone, int is implied, so that signed, signed int, and int are the same type.

When combined with char, yields the type signed char, which is a different type from char, even if char is

also signed. signed char has a range that includes at least -127 to +127, inclusive.

When combined with short, long, or long long, it is redundant, since those types are already signed.

signed cannot be combined with bool, wchar_t, char16_t, or char32_t.

Example:

Section 22.5: unsigned

A type specifier that requests the unsigned version of an integer type.

When used alone, int is implied, so unsigned is the same type as unsigned int.

The type unsigned char is different from the type char, even if char is unsigned. It can hold integers up to at

least 255.

unsigned can also be combined with short, long, or long long. It cannot be combined with bool, wchar_t,

char16_t, or char32_t.

int& r = x; // error

struct S {

void f();

void g() const;

};

const S s;

s.f(); // error

s.g(); // OK

extern volatile char memory_mapped_port;

void write_to_device(int x) {

const char* p = reinterpret_cast<const char*>(&x);

for (int i = 0; i < sizeof(int); i++) {

memory_mapped_port = p[i];

}

}

signed char celsius_temperature;

std::cin >> celsius_temperature;

if (celsius_temperature < -35) {

std::cout << "cold day, eh?\n";

}

113

Example:

char invert_case_table[256] = { ..., 'a', 'b', 'c', ..., 'A', 'B', 'C', ...

}; char invert_case(char c) {

unsigned char index = c;

return invert_case_table[index];

// note: returning invert_case_table[c] directly does the

// wrong thing on implementations where char is a signed type

}

114

Chapter 23: Keywords
Keywords have fixed meaning defined by the C++ standard and cannot be used as identifiers. It is illegal to redefine

keywords using the preprocessor in any translation unit that includes a standard library header. However,

keywords lose their special meaning inside attributes.

Section 23.1: asm

The asm keyword takes a single operand, which must be a string literal. It has an implementation-defined meaning,

but is typically passed to the implementation's assembler, with the assembler's output being incorporated into the

translation unit.

The asm statement is a definition, not an expression, so it may appear either at block scope or namespace scope

(including global scope). However, since inline assembly cannot be constrained by the rules of the C++ language,

asm may not appear inside a constexpr function.

Example:

Section 23.2: Di erent keywords

void C++

1. When used as a function return type, the void keyword specifies that the function does not return a value.

When used for a function's parameter list, void specifies that the function takes no parameters. When used

in the declaration of a pointer, void specifies that the pointer is "universal."

2. If a pointer's type is void *, the pointer can point to any variable that is not declared with the const or volatile

keyword. A void pointer cannot be dereferenced unless it is cast to another type. A void pointer can be

converted into any other type of data pointer.

3. A void pointer can point to a function, but not to a class member in C++.

Volatile C++

1. A type qualifier that you can use to declare that an object can be modified in the program by the hardware.

[[noreturn]] void halt_system() {

asm("hlt");

}

void vobject; // C2182

void *pv; // okay

int *pint; int i;

int main() {

pv = &i;

// Cast optional in C required in C++

pint = (int *)pv;

volatile declarator ;

115

void Date::setMonth(int mn)

{

month = mn; // These three statements

this->month = mn; // are equivalent

(*this).month = mn;

}

if (&Object != this) {

// do not execute in cases of self-reference

virtual C++

1. The virtual keyword declares a virtual function or a virtual base class.

Parameters

1. type-specifiers Specifies the return type of the virtual member function.

2. member-function-declarator Declares a member function.

3. access-specifier Defines the level of access to the base class, public, protected or private. Can appear before

or after the virtual keyword.

4. base-class-name Identifies a previously declared class type

this pointer

1. The this pointer is a pointer accessible only within the nonstatic member functions of a class, struct, or union

type. It points to the object for which the member function is called. Static member functions do not have a

this pointer.

An object's this pointer is not part of the object itself; it is not reflected in the result of a sizeof statement on the

object. Instead, when a nonstatic member function is called for an object, the address of the object is passed by the

compiler as a hidden argument to the function. For example, the following function call:

can be interpreted this way:

The object's address is available from within the member function as the this pointer. Most uses of this are implicit.

It is legal, though unnecessary, to explicitly use this when referring to members of the class. For example:

The expression *this is commonly used to return the current object from a member function: return *this; The this

pointer is also used to guard against self-reference:

try, throw, and catch Statements (C++)

setMonth(&myDate, 3);

virtual [type-specifiers] member-function-declarator

virtual [access-specifier] base-class-name

this->member-identifier

myDate.setMonth(3);

116

1. To implement exception handling in C++, you use try, throw, and catch expressions.

2. First, use a try block to enclose one or more statements that might throw an exception.

3. A throw expression signals that an exceptional condition— often, an error— has occurred in a try block. You

can use an object of any type as the operand of a throw expression. Typically, this object is used to

communicate information about the error. In most cases, we recommend that you use the std::exception

class or one of the derived classes that are defined in the standard library. If one of those is not appropriate,

we recommend that you derive your own exception class from std::exception.

4. To handle exceptions that may be thrown, implement one or more catch blocks immediately following a try

block. Each catch block specifies the type of exception it can handle.

The code after the try clause is the guarded section of code. The throw expression throws— that is,

raises— an exception. The code block after the catch clause is the exception handler. This is the handler

that catches the exception that's thrown if the types in the throw and catch expressions are compatible.

friend (C++)

MyData md;

try {

// Code that could throw an exception

md = GetNetworkResource();

}

catch (const networkIOException& e) {

// Code that executes when an exception of type

// networkIOException is thrown in the try block

// ...

// Log error message in the exception object

cerr << e.what();

}

catch (const myDataFormatException& e) {

// Code that handles another exception type

// ...

cerr << e.what();

}

// The following syntax shows a throw expression

MyData GetNetworkResource()

{

// ...

if (IOSuccess == false)

throw networkIOException("Unable to connect");

// ...

if (readError)

throw myDataFormatException("Format error");

// ...

}

try {

throw CSomeOtherException();

}

catch(...) {

// Catch all exceptions – dangerous!!!

// Respond (perhaps only partially) to the exception, then

// re-throw to pass the exception to some other handler

// ...

throw;

}

117

1. In some circumstances, it is more convenient to grant member-level access to functions that are not

members of a class or to all members in a separate class. Only the class implementer can declare who its

friends are. A function or class cannot declare itself as a friend of any class. In a class definition, use the

friend keyword and the name of a non-member function or other class to grant it access to the private and

protected members of your class. In a template definition, a type parameter can be declared as a friend.

2. If you declare a friend function that was not previously declared, that function is exported to the enclosing

nonclass scope.

friend functions

1. A friend function is a function that is not a member of a class but has access to the class's private and

protected members.Friend functions are not considered class members; they are normal external functions

that are given special access privileges.

2. Friends are not in the class's scope, and they are not called using the member-selection operators (. and –>)

unless they are members of another class.

3. A friend function is declared by the class that is granting access. The friend declaration can be placed

anywhere in the class declaration. It is not affected by the access control keywords.

class friend F

friend F;

class ForwardDeclared;// Class name is known. class

HasFriends

{

friend int ForwardDeclared::IsAFriend();// C2039 error expected

};

#include <iostream>

using namespace std;

class Point

{

friend void ChangePrivate(Point &);

public:

Point(void) : m_i(0) {}

void PrintPrivate(void){cout << m_i << endl; }

private:

int m_i;

};

void ChangePrivate (Point &i) { i.m_i++; }

int main()

{

Point sPoint;

sPoint.PrintPrivate();

ChangePrivate(sPoint);

sPoint.PrintPrivate();

// Output: 0

1

}

118

Class members as friends

Section 23.3: typename

1. When followed by a qualified name, typename specifies that it is the name of a type. This is often required in

templates, in particular, when the nested name specifier is a dependent type other than the current

instantiation. In this example, std::decay<T> depends on the template parameter T, so in order to name the

nested type type, we need to prefix the entire qualified name with typename. For more deatils, see Where

and why do I have to put the "template" and "typename" keywords?

2. Introduces a type parameter in the declaration of a template. In this context, it is interchangeable with class.

Version ≥ C++17

3. typename can also be used when declaring a template template parameter, preceding the name of the

parameter, just like class.

class B;

class A {

public:

int Func1(B& b);

private:

int Func2(B& b);

};

class B {

private:

int _b;

// A::Func1 is a friend function to class B

// so A::Func1 has access to all members of B

friend int A::Func1(B&);

};

int A::Func1(B& b) { return b._b; } // OK int

A::Func2(B& b) { return b._b; } // C2248

template <class T>

auto decay_copy(T&& r) -> typename std::decay<T>::type;

template <typename T>

const T& min(const T& x, const T& y) {

return b < a ? b : a;

}

template <template <class T> typename U>

void f() {

U<int>::do_it();

U<double>::do_it();

}

http://stackoverflow.com/questions/610245/where-and-why-do-i-have-to-put-the-template-and-typename-keywords
http://stackoverflow.com/questions/610245/where-and-why-do-i-have-to-put-the-template-and-typename-keywords

119

Section 23.4: explicit

1. When applied to a single-argument constructor, prevents that constructor from being used to perform

implicit conversions.

Since C++11 introduced initializer lists, in C++11 and later, explicit can be applied to a constructor with any

number of arguments, with the same meaning as in the single-argument case.

Version ≥ C++11

2. When applied to a conversion function, prevents that conversion function from being used to perform

implicit conversions.

Section 23.5: sizeof

A unary operator that yields the size in bytes of its operand, which may be either an expression or a type. If the

operand is an expression, it is not evaluated. The size is a constant expression of type std::size_t.

If the operand is a type, it must be parenthesized.

It is illegal to apply sizeof to a function type.

It is illegal to apply sizeof to an incomplete type, including void.

If sizeof is applied to a reference type T& or T&&, it is equivalent to sizeof(T).

When sizeof is applied to a class type, it yields the number of bytes in a complete object of that type,

including any padding bytes in the middle or at the end. Therefore, a sizeof expression can never have a

value of 0. See layout of object types for more details.

class MyVector {

public:

explicit MyVector(uint64_t size);

};

MyVector v1(100); // ok

uint64_t len1 = 100;

MyVector v2{len1}; // ok, len1 is uint64_t int

len2 = 100;

MyVector v3{len2}; // ill-formed, implicit conversion from int to uint64_t

struct S {

explicit S(int x, int y);

};

S f() {

return {12, 34}; // ill-formed

return S{12, 34}; // ok

}

class C {

const int x;

public:

C(int x) : x(x) {}

explicit operator int() { return x; }

};

C c(42);

int x = c; // ill-formed

int y = static_cast<int>(c); // ok; explicit conversion

120

The char, signed char, and unsigned char types have a size of 1. Conversely, a byte is defined to be the

amount of memory required to store a char object. It does not necessarily mean 8 bits, as some systems

have char objects longer than 8 bits.

If expr is an expression, sizeof(expr) is equivalent to sizeof(T) where T is the type of expr.

Version ≥ C++11

The sizeof... operator yields the number of elements in a parameter pack.

Section 23.6: noexcept

Version ≥ C++11

1. A unary operator that determines whether the evaluation of its operand can propagate an exception. Note

that the bodies of called functions are not examined, so noexcept can yield false negatives. The operand is

not evaluated.

In this example, even though bar() can never throw an exception, noexcept(bar()) is still false because the

fact that bar() cannot propagate an exception has not been explicitly specified.

2. When declaring a function, specifies whether or not the function can propagate an exception. Alone, it

declares that the function cannot propagate an exception. With a parenthesized argument, it declares that

the function can or cannot propagate an exception depending on the truth value of the argument.

int a[100];

std::cout << "The number of bytes in `a` is: " << sizeof a;

memset(a, 0, sizeof a); // zeroes out the array

template <class... T>

void f(T&&...) {

std::cout << "f was called with " << sizeof...(T) << " arguments\n";

}

#include <iostream>

#include <stdexcept>

void foo() { throw std::runtime_error("oops"); } void

bar() {}

struct S {};

int main() {

std::cout << noexcept(foo()) << '\n'; // prints 0

std::cout << noexcept(bar()) << '\n'; // prints 0

std::cout << noexcept(1 + 1) << '\n'; // prints 1

std::cout << noexcept(S()) << '\n'; // prints 1

}

void f1() { throw std::runtime_error("oops"); }

void f2() noexcept(false) { throw std::runtime_error("oops"); } void

f3() {}

void f4() noexcept {}

void f5() noexcept(true) {}

void f6() noexcept {

try {

f1();

} catch (const std::runtime_error&) {}

}

121

In this example, we have declared that f4, f5, and f6 cannot propagate exceptions. (Although an exception

can be thrown during execution of f6, it is caught and not allowed to propagate out of the function.) We have

declared that f2 may propagate an exception. When the noexcept specifier is omitted, it is equivalent to

noexcept(false), so we have implicitly declared that f1 and f3 may propagate exceptions, even though

exceptions cannot actually be thrown during the execution of f3.

Version ≥ C++17

Whether or not a function is noexcept is part of the function's type: that is, in the example above, f1, f2, and f3

have different types from f4, f5, and f6. Therefore, noexcept is also significant in function pointers, template

arguments, and so on.

void g1() {}

void g2() noexcept {}

void (*p1)() noexcept = &g1; // ill-formed, since g1 is not noexcept

void (*p2)() noexcept = &g2; // ok; types match

void (*p3)() = &g1; // ok; types match

void (*p4)() = &g2; // ok; implicit conversion

122

Chapter 24: Returning several values from
a function
There are many situations where it is useful to return several values from a function: for example, if you want to

input an item and return the price and number in stock, this functionality could be useful. There are many ways to

do this in C++, and most involve the STL. However, if you wish to avoid the STL for some reason, there are still

several ways to do this, including structs/classes and arrays.

Section 24.1: Using std::tuple

Version ≥ C++11

The type std::tuple can bundle any number of values, potentially including values of different types, into a single

return object:

In C++17, a braced initializer list can be used:

Version ≥ C++17

Retrieving values from the returned tuple can be cumbersome, requiring the use of the std::get template

function:

If the types can be declared before the function returns, then std::tie can be employed to unpack a tuple into

existing variables:

If one of the returned values is not needed, std::ignore can be used:

Version ≥ C++17

Structured bindings can be used to avoid std::tie:

If you want to return a tuple of lvalue references instead of a tuple of values, use std::tie in place of

std::make_tuple.

std::tuple<int, int, int, int> foo(int a, int b)

return {a + b, a - b, a * b, a / b};

}

{

std::tuple<int, int, int, int> foo(int a, int b) { // or auto (C++14) return

std::make_tuple(a + b, a - b, a * b, a / b);

}

auto mrvs = foo(5, 12);

auto add = std::get<0>(mrvs);

auto sub = std::get<1>(mrvs);

auto mul = std::get<2>(mrvs);

auto div = std::get<3>(mrvs);

int add, sub, mul, div;

std::tie(add, sub, mul, div) = foo(5, 12);

std::tie(add, sub, std::ignore, div) = foo(5, 12);

auto [add, sub, mul, div] = foo(5,12);

std::tuple<int&, int&> minmax(int& a, int& b) {

http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/get
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/ignore
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple
http://en.cppreference.com/w/cpp/utility/tuple/make_tuple

123

which permits

In some rare cases you'll use std::forward_as_tuple instead of std::tie; be careful if you do so, as temporaries

may not last long enough to be consumed.

Section 24.2: Structured Bindings

Version ≥ C++17

C++17 introduces structured bindings, which makes it even easier to deal with multiple return types, as you do not

need to rely upon std::tie() or do any manual tuple unpacking:

Structured bindings can be used by default with std::pair, std::tuple, and any type whose non-static data members

are all either public direct members or members of an unambiguous base class:

If you make your type "tuple-like" it will also automatically work with your type. A tuple-like is a type with

appropriate tuple_size, tuple_element and get written:

if (b<a)

return std::tie(b,a);

else

return std::tie(a,b);

}

void increase_least(int& a, int& b) {

std::get<0>(minmax(a,b))++;

}

std::map<std::string, int> m;

// insert an element into the map and check if insertion succeeded

auto [iterator, success] = m.insert({"Hello", 42});

if (success) {

// your code goes here

}

// iterate over all elements without having to use the cryptic 'first' and 'second' names for

(auto const& [key, value] : m) {

std::cout << "The value for " << key << " is " << value << '\n';

}

struct A { int x; };

struct B : A { int y; };

B foo();

// with structured bindings const

auto [x, y] = foo();

// equivalent code without structured bindings const

auto result = foo();

auto& x = result.x;

auto& y = result.y;

namespace my_ns {

struct my_type {

int x;

http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie
http://en.cppreference.com/w/cpp/utility/tuple/tie

124

now this works:

Section 24.3: Using struct

A struct can be used to bundle multiple return values:

Version ≥ C++11

struct foo_return_type {

int add;

int sub;

int mul;

int div;

};

foo_return_type foo(int a, int b) {

return {a + b, a - b, a * b, a /

b};

}

double d;

std::string s;

};

struct my_type_view {

my_type* ptr;

};

}

namespace std {

template<>

struct tuple_size<my_ns::my_type_view> : std::integral_constant<std::size_t, 3>

{};

template<> struct tuple_element<my_ns::my_type_view, 0>{ using type = int; };

template<> struct tuple_element<my_ns::my_type_view, 1>{ using type = double; };

template<> struct tuple_element<my_ns::my_type_view, 2>{ using type = std::string; };

}

namespace my_ns {

template<std::size_t I>

decltype(auto) get(my_type_view const& v) {

if constexpr (I == 0)

return v.ptr->x;

else if constexpr (I == 1)

return v.ptr->d;

else if constexpr (I == 2)

return v.ptr->s;

static_assert(I < 3, "Only 3 elements");

}

}

my_ns::my_type t{1, 3.14, "hello world"};

my_ns::my_type_view foo() {

return {&t};

}

int main() {

auto[x, d, s] = foo();

std::cout << x << ',' << d << ',' << s << '\n';

}

http://en.cppreference.com/w/cpp/language/class

125

Version < C++11

Instead of assignment to individual fields, a constructor can be used to simplify the constructing of returned values:

The individual results returned by the function foo() can be retrieved by accessing the member variables of the

struct calc:

Output:

17 -7 60 0

Note: When using a struct, the returned values are grouped together in a single object and accessible using

meaningful names. This also helps to reduce the number of extraneous variables created in the scope of the

returned values.

Version ≥ C++17

In order to unpack a struct returned from a function, structured bindings can be used. This places the out-

parameters on an even footing with the in-parameters:

The output of this code is identical to that above. The struct is still used to return the values from the function.

This permits you do deal with the fields individually.

Section 24.4: Using Output Parameters

Parameters can be used for returning one or more values; those parameters are required to be non-const pointers

or references.

References:

auto calc = foo(5, 12);

struct foo_return_type {

int add;

int sub;

int mul;

int div;

foo_return_type(int add, int sub, int mul, int div)

: add(add), sub(sub), mul(mul), div(div) {}

};

foo_return_type foo(int a, int b) {

return foo_return_type(a + b, a - b, a * b, a / b);

}

foo_return_type calc = foo(5, 12);

std::cout << calc.add << ' ' << calc.sub << ' ' << calc.mul << ' ' << calc.div << '\n';

int a=5, b=12;

auto[add, sub, mul, div] = foo(a, b);

std::cout << add << ' ' << sub << ' ' << mul << ' ' << div << '\n';

void calculate(int a, int b, int& c, int& d, int& e, int& f) {

c = a + b;

d = a - b;

126

Pointers:

Some libraries or frameworks use an empty 'OUT' #define to make it abundantly obvious which parameters are

output parameters in the function signature. This has no functional impact, and will be compiled out, but makes the

function signature a bit clearer;

Section 24.5: Using a Function Object Consumer

We can provide a consumer that will be called with the multiple relevant values:

Version ≥ C++11

This is known as "continuation passing style".

You can adapt a function returning a tuple into a continuation passing style function via:

Version ≥ C++17

with more complex versions being writable in C++14 or C++11.

template<class Tuple>

struct continuation {

Tuple t;

template<class F>

decltype(auto) operator->*(F&& f)&&{

return std::apply(std::forward<F>(f), std::move(t));

}

};

std::tuple<int,int,int,int> foo(int a, int b);

continuation(foo(5,12))->*[](int sum, auto&&...) {

std::cout << "sum is " << sum << '\n';

};

template <class F>

void foo(int a, int b, F consumer) {

consumer(a + b, a - b, a * b, a / b);

}

// use is simple... ignoring some results is possible as well

foo(5, 12, [](int sum, int , int , int){

std::cout << "sum is " << sum << '\n';

});

e = a *

b;

f = a / b; }

void calculate(int a, int b, int* c, int* d, int* e, int* f) {

*c = a + b;

*d = a - b;

*e = a * b;

*f = a / b;

}

#define OUT

void calculate(int a, int b, OUT int& c) {

c = a + b;

}

https://en.wikipedia.org/wiki/Continuation-passing_style

127

Section 24.6: Using std::pair

The struct template std::pair can bundle together exactly two return values, of any two types:

With C++11 or later, an initializer list can be used instead of std::make_pair:

Version ≥ C++11

The individual values of the returned std::pair can be retrieved by using the pair's first and second member

objects:

Output:

10

Section 24.7: Using std::array

Version ≥ C++11

The container std::array can bundle together a fixed number of return values. This number has to be known at

compile-time and all return values have to be of the same type:

This replaces c style arrays of the form int bar[4]. The advantage being that various c++ std functions can now be

used on it. It also provides useful member functions like at which is a safe member access function with bound

checking, and size which allows you to return the size of the array without calculation.

Section 24.8: Using Output Iterator

Several values of the same type can be returned by passing an output iterator to the function. This is particularly

common for generic functions (like the algorithms of the standard library).

Example:

#include <utility>

std::pair<int, int> foo(int a, int b) {

return {a+b, a-b};

}

#include <utility>

std::pair<int, int> foo(int a, int b) {

return std::make_pair(a+b, a-b);

}

std::pair<int, int> mrvs = foo(5, 12);

std::cout << mrvs.first + mrvs.second << std::endl;

std::array<int, 4> bar(int a, int b) {

return { a + b, a - b, a * b, a / b

};

}

template<typename Incrementable, typename OutputIterator>

void generate_sequence(Incrementable from, Incrementable to, OutputIterator output) {

for (Incrementable k = from; k != to; ++k)

*output++ = k;

http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/pair
http://en.cppreference.com/w/cpp/utility/pair

128

Example usage:

Section 24.9: Using std::vector

A std::vector can be useful for returning a dynamic number of variables of the same type. The following example

uses int as data type, but a std::vector can hold any type that is trivially copyable:

}

std::vector<int> digits;

generate_sequence(0, 10, std::back_inserter(digits));

// digits now contains {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

#include <vector>

#include <iostream>

// the following function returns all integers between and including 'a' and 'b' in a vector

// (the function can return up to std::vector::max_size elements with the vector, given that

// the system's main memory can hold that many items)

std::vector<int> fillVectorFrom(int a, int b) {

std::vector<int> temp;

for (int i = a; i <= b; i++)

{ temp.push_back(i);

}

return temp;

}

int main() {

// assigns the filled vector created inside the function to the new vector 'v'

std::vector<int> v = fillVectorFrom(1, 10);

// prints "1 2 3 4 5 6 7 8 9 10 "

for (int i = 0; i < v.size(); i++) {

std::cout << v[i] << " ";

}

std::cout << std::endl;

return 0;

}

129

Chapter 25: Polymorphism

Section 25.1: Define polymorphic classes

The typical example is an abstract shape class, that can then be derived into squares, circles, and other concrete

shapes.

The parent class:

Let's start with the polymorphic class:

How to read this definition ?

You can define polymorphic behavior by introduced member functions with the keyword virtual. Here

get_surface() and describe_object() will obviously be implemented differently for a square than for a

circle. When the function is invoked on an object, function corresponding to the real class of the object will be

determined at runtime.

It makes no sense to define get_surface() for an abstract shape. This is why the function is followed by = 0.

This means that the function is pure virtual function.

A polymorphic class should always define a virtual destructor.

You may define non virtual member functions. When these function will be invoked for an object, the

function will be chosen depending on the class used at compile-time. Here get_double_surface() is defined

in this way.

A class that contains at least one pure virtual function is an abstract class. Abstract classes cannot be

instantiated. You may only have pointers or references of an abstract class type.

Derived classes

Once a polymorphic base class is defined you can derive it. For example:

class Shape {

public:

virtual ~Shape() = default;

virtual double get_surface() const = 0;

virtual void describe_object() const { std::cout << "this is a shape" << std::endl; }

double get_doubled_surface() const { return 2 * get_surface(); }

};

class Square : public Shape {

Point top_left;

double side_length;

public:

Square (const Point& top_left, double side)

: top_left(top_left), side_length(side_length) {}

double get_surface() override { return side_length * side_length; }

void describe_object() override {

std::cout << "this is a square starting at " << top_left.x << ", " << top_left.y

<< " with a length of " << side_length << std::endl;

}

};

130

Some explanations:

You can define or override any of the virtual functions of the parent class. The fact that a function was virtual

in the parent class makes it virtual in the derived class. No need to tell the compiler the keyword virtual

again. But it's recommended to add the keyword override at the end of the function declaration, in order to

prevent subtle bugs caused by unnoticed variations in the function signature.

If all the pure virtual functions of the parent class are defined you can instantiate objects for this class, else it

will also become an abstract class.

You are not obliged to override all the virtual functions. You can keep the version of the parent if it suits your

need.

Example of instantiation

Section 25.2: Safe downcasting

Suppose that you have a pointer to an object of a polymorphic class:

a downcast would be to cast from a general polymorphic Shape down to one of its derived and more specific shape

like Square or Circle.

Why to downcast ?

Most of the time, you would not need to know which is the real type of the object, as the virtual functions allow you

to manipulate your object independently of its type:

If you don't need any downcast, your design would be perfect.

However, you may need sometimes to downcast. A typical example is when you want to invoke a non virtual

function that exist only for the child class.

Consider for example circles. Only circles have a diameter. So the class would be defined as :

int main() {

Square square(Point(10.0, 0.0), 6); // we know it's a square, the compiler also

square.describe_object();

std::cout << "Surface: " << square.get_surface() << std::endl;

Circle circle(Point(0.0, 0.0), 5);

Shape *ps = nullptr; // we don't know yet the real type of the object ps

= &circle; // it's a circle, but it could as well be a square

ps->describe_object();

std::cout << "Surface: " << ps->get_surface() << std::endl;

}

Shape *ps; // see example on defining a polymorphic class

ps = get_a_new_random_shape(); // if you don't have such a function yet, you

// could just write ps = new Square(0.0,0.0, 5);

std::cout << "Surface: " << ps->get_surface() << std::endl;

class Circle: public Shape { // for Shape, see example on defining a polymorphic class Point

center;

double radius;

public:

131

The get_diameter() member function only exist for circles. It was not defined for a Shape object:

How to downcast ?

If you'd know for sure that ps points to a circle you could opt for a static_cast:

This will do the trick. But it's very risky: if ps appears to by anything else than a Circle the behavior of your code

will be undefined.

So rather than playing Russian roulette, you should safely use a dynamic_cast. This is specifically for polymorphic

classes :

Note that dynamic_cast is not possible on a class that is not polymorphic. You'd need at least one virtual function in

the class or its parents to be able to use it.

Section 25.3: Polymorphism & Destructors

If a class is intended to be used polymorphically, with derived instances being stored as base pointers/references,

its base class' destructor should be either virtual or protected. In the former case, this will cause object

destruction to check the vtable, automatically calling the correct destructor based on the dynamic type. In the

latter case, destroying the object through a base class pointer/reference is disabled, and the object can only be

deleted when explicitly treated as its actual type.

Circle (const Point& center, double radius)

: center(center), radius(radius) {}

double get_surface() const override { return r * r * M_PI; }

// this is only for circles. Makes no sense for other shapes

double get_diameter() const { return 2 * r; }

};

Shape* ps = get_any_shape();

ps->get_diameter(); // OUCH !!! Compilation error

std::cout << "Diameter: " << static_cast<Circle*>(ps)->get_diameter() << std::endl;

int main() {

Circle circle(Point(0.0, 0.0), 10);

Shape &shape = circle;

std::cout << "The shape has a surface of " << shape.get_surface() << std::endl;

//shape.get_diameter(); // OUCH !!! Compilation error

Circle *pc = dynamic_cast<Circle*>(&shape); // will be nullptr if ps wasn't a circle if

(pc)

std::cout << "The shape is a circle of diameter " << pc->get_diameter() << std::endl;

else

std::cout << "The shape isn't a circle !" << std::endl;

}

struct VirtualDestructor {

virtual ~VirtualDestructor() = default;

};

struct VirtualDerived : VirtualDestructor {};

132

Both of these practices guarantee that the derived class' destructor will always be called on derived class instances,

preventing memory leaks.

struct ProtectedDestructor {

protected:

~ProtectedDestructor() = default;

};

struct ProtectedDerived : ProtectedDestructor {

~ProtectedDerived() = default;

};

// ...

VirtualDestructor* vd = new VirtualDerived;

delete vd; // Looks up VirtualDestructor::~VirtualDestructor() in vtable, sees it's

// VirtualDerived::~VirtualDerived(), calls that.

ProtectedDestructor* pd = new ProtectedDerived;

delete pd; // Error: ProtectedDestructor::~ProtectedDestructor() is protected. delete

static_cast<ProtectedDerived*>(pd); // Good.

133

Chapter 26: References

Section 26.1: Defining a reference

References behaves similarly, but not entirely like const pointers. A reference is defined by suffixing an ampersand

& to a type name.

Here, refi is a reference bound to i.

References abstracts the semantics of pointers, acting like an alias to the underlying object:

You can also define multiple references in a single definition:

References must be initialized correctly at the time of definition, and cannot be modified afterwards. The following

piece of codes causes a compile error:

You also cannot bind directly a reference to nullptr, unlike pointers:

int i = 10;

int &refi = i;

refi = 20; // i = 20;

int i = 10, j = 20;

int &refi = i, &refj = j;

// Common pitfall :

// int& refi = i, k = j;

// refi will be of type int&.

// though, k will be of type int, not int&!

int &i; // error: declaration of reference variable 'i' requires an initializer

int *const ptri = nullptr;

int &refi = nullptr; // error: non-const lvalue reference to type 'int' cannot bind to a temporary of

type 'nullptr_t'

134

Chapter 27: Value and Reference
Semantics

Section 27.1: Definitions

A type has value semantics if the object's observable state is functionally distinct from all other objects of that type.

This means that if you copy an object, you have a new object, and modifications of the new object will not be in any

way visible from the old object.

Most basic C++ types have value semantics:

Most standard-library defined types have value semantics too:

A type is said to have reference semantics if an instance of that type can share its observable state with another

object (external to it), such that manipulating one object will cause the state to change within another object.

C++ pointers have value semantics with regard to which object they point to, but they have reference semantics

with regard to the state of the object they point to:

C++ references have reference semantics as well.

Section 27.2: Deep copying and move support

If a type wishes to have value semantics, and it needs to store objects that are dynamically allocated, then on copy

operations, the type will need to allocate new copies of those objects. It must also do this for copy assignment.

This kind of copying is called a "deep copy". It effectively takes what would have otherwise been reference

semantics and turns it into value semantics:

int i = 5;

int j = i; //Copied

j += 20;

std::cout << i; //Prints 5; i is unaffected by changes to j.

std::vector<int> v1(5, 12); //array of 5 values, 12 in each.

std::vector<int> v2 = v1; //Copies the vector.

v2[3] = 6; v2[4] = 9;

std::cout << v1[3] << " " << v1[4]; //Writes "12 12", since v1 is unchanged.

int *pi = new int(4);

int *pi2 = pi;

pi = new int(16);

assert(pi2 != pi); //Will always pass.

int *pj = pi;

*pj += 5;

std::cout << *pi; //Writes 9, since `pi` and `pj` reference the same object.

struct Inner {int i;};

const int NUM_INNER = 5;

class Value

{

private:

Inner *array_; //Normally has reference semantics.

135

Version ≥ C++11

Move semantics allow a type like Value to avoid truly copying its referenced data. If the user uses the value in a way

that provokes a move, the "copied" from object can be left empty of the data it referenced:

struct Inner {int i;};

constexpr auto NUM_INNER = 5;

class Value

{

private:

Inner *array_; //Normally has reference semantics.

public:

Value() : array_(new Inner[NUM_INNER]){}

//OK to delete even if nullptr

~Value() {delete[] array_;}

Value(const Value &val) : array_(new Inner[NUM_INNER])

{

for(int i = 0; i < NUM_INNER; ++i)

array_[i] = val.array_[i];

}

Value &operator=(const Value &val)

{

for(int i = 0; i < NUM_INNER; ++i)

array_[i] = val.array_[i];

return *this;

}

//Movement means no memory allocation.

//Cannot throw exceptions.

Value(Value &&val) noexcept : array_(val.array_)

{

//We've stolen the old value.

val.array_ = nullptr;

}

//Cannot throw exceptions.

Value &operator=(Value &&val) noexcept

{

public:

Value() : array_(new Inner[NUM_INNER]){}

~Value() {delete[] array_;}

Value(const Value &val) : array_(new Inner[NUM_INNER])

{

for(int i = 0; i < NUM_INNER;

++i) array_[i] = val.array_[i];

}

Value &operator=(const Value &val)

{

for(int i = 0; i < NUM_INNER;

++i) array_[i] = val.array_[i];

return *this;

}

};

136

Indeed, we can even make such a type non-copyable, if we want to forbid deep copies while still allowing the object

to be moved around.

We can even apply the Rule of Zero, through the use of unique_ptr:

//Clever trick. Since `val` is going to be destroyed soon anyway,

//we swap his data with ours. His destructor will destroy our data.

std::swap(array_, val.array_);

}

};

struct Inner {int i;};

constexpr auto NUM_INNER = 5;

class Value

{

private:

Inner *array_; //Normally has reference semantics.

public:

Value() : array_(new Inner[NUM_INNER]){}

//OK to delete even if nullptr

~Value() {delete[] array_;}

Value(const Value &val) = delete;

Value &operator=(const Value &val) = delete;

//Movement means no memory allocation.

//Cannot throw exceptions.

Value(Value &&val) noexcept : array_(val.array_)

{

//We've stolen the old value.

val.array_ = nullptr;

}

//Cannot throw exceptions.

Value &operator=(Value &&val) noexcept

{

//Clever trick. Since `val` is going to be destroyed soon anyway,

//we swap his data with ours. His destructor will destroy our data.

std::swap(array_, val.array_);

}

};

struct Inner {int i;};

constexpr auto NUM_INNER = 5;

class Value

{

private:

unique_ptr<Inner []>array_; //Move-only type.

public:

Value() : array_(new Inner[NUM_INNER]){}

//No need to explicitly delete. Or even declare.

~Value() = default; {delete[] array_;}

//No need to explicitly delete. Or even declare.

Value(const Value &val) = default;

137

Value &operator=(const Value &val) = default;

//Will perform an element-wise move.

Value(Value &&val) noexcept = default;

//Will perform an element-wise move.

Value &operator=(Value &&val) noexcept = default;

};

138

Chapter 28: C++ function "call by value" vs.
"call by reference"
The scope of this section is to explain the differences in theory and implementation for what happens with the

parameters of a function upon calling.

In detail the parameters can be seen as variables before the function call and inside the function, where the visible

behaviour and accessibility to these variables differs with the method used to hand them over.

Additionally, the reusability of variables and their respective values after the function call also is explained by this

topic.

Section 28.1: Call by value

Upon calling a function there are new elements created on the program stack. These include some information

about the function and also space (memory locations) for the parameters and the return value.

When handing over a parameter to a function the value of the used variable (or literal) is copied into the memory

location of the function parameter. This implies that now there a two memory locations with the same value. Inside

of the function we only work on the parameter memory location.

After leaving the function the memory on the program stack is popped (removed) which erases all data of the

function call, including the memory location of the parameters we used inside. Thus, the values changed inside the

function do not affect the outside variables values.

In this code we create variables inside the main function. These get assigned values. Upon calling the functions

there are two new variables created: f and inner_b where b shares the name with the outer variable it does not

share the memory location. The behaviour of a<->f and b<->b is identical.

The following graphic symbolizes what is happening on the stack and why there is no change in varibale b. The

graphic is not fully accurate but emphazises the example.

int func(int f, int b) {

//new variables are created and values from the outside copied

//f has a value of 0

//inner_b has a value of 1

f = 1;

//f has a value of 1

b = 2;

//inner_b has a value of 2

return f+b;

}

int main(void) {

int a = 0;

int b = 1; //outer_b

int c;

c = func(a,b);

//the return value is copied to c

//a has a value of 0

//outer_b has a value of 1 <--- outer_b and inner_b are different variables

//c has a value of 3

}

139

It is called "call by value" because we do not hand over the variables but only the values of these variables.

140

Chapter 29: Copying vs Assignment
Right Hand Side of the equality for both copy and assignment constructors. For example the

assignment constructor : MyClass operator=(MyClass& rhs);

Placeholder Placeholder

Section 29.1: Assignment Operator

The Assignment Operator is when you replace the data with an already existing(previously initialized) object with

some other object's data. Lets take this as an example:

You can see here I call the assignment operator when I already initialized the foo object. Then later I assign foo2 to

foo . All the changes to appear when you call that equal sign operator is defined in your operator= function. You

can see a runnable output here: http://cpp.sh/3qtbm

Section 29.2: Copy Constructor

Copy constructor on the other hand , is the complete opposite of the Assignment Constructor. This time, it is used

to initialize an already nonexistent(or non-previously initialized) object. This means it copies all the data from the

object you are assigning it to , without actually initializing the object that is being copied onto. Now Let's take a look

at the same code as before but modify the assignment constructor to be a copy constructor :

rhs

// Assignment Operator

#include <iostream>

#include <string>

using std::cout;

using std::endl;

class Foo

{

public:

Foo(int data)

{

this->data = data;

}

~Foo(){};

Foo& operator=(const Foo& rhs)

{

data = rhs.data;

return *this;

}

int data;

};

int main()

{

Foo foo(2); //Foo(int data) called

Foo foo2(42);

foo = foo2; // Assignment Operator Called

cout << foo.data << endl; //Prints 42

}

// Copy Constructor

#include <iostream>

#include <string>

http://cpp.sh/3qtbm

141

You can see here Foo foo2 = foo; in the main function I immediately assign the object before actually initializing it,

which as said before means it's a copy constructor. And notice that I didn't need to pass the parameter int for the

foo2 object since I automatically pulled the previous data from the object foo. Here is an example output :

http://cpp.sh/5iu7

Section 29.3: Copy Constructor Vs Assignment Constructor

Ok we have briefly looked over what the copy constructor and assignment constructor are above and gave

examples of each now let's see both of them in the same code. This code will be similar as above two. Let's take this

:

using std::cout;

using std::endl;

class Foo

{

public:

Foo(int data)

{

this->data = data;

}

~Foo(){};

Foo(const Foo& rhs)

{

data = rhs.data;

}

int data;

};

int main()

{

Foo foo(2); //Foo(int data) called

Foo foo2 = foo; // Copy Constructor called

cout << foo2.data << endl;

}

// Copy vs Assignment Constructor

#include <iostream>

#include <string>

using std::cout;

using std::endl;

class Foo

{

public:

Foo(int data)

{

this->data = data;

}

~Foo(){};

Foo(const Foo& rhs)

{

data = rhs.data;

}

Foo& operator=(const Foo& rhs)

{

data = rhs.data;

http://cpp.sh/5iu7

142

Output:

Here you can see we first call the copy constructor by executing the line Foo foo2 = foo; . Since we didn't initialize

it previously. And then next we call the assignment operator on foo3 since it was already initialized foo3=foo;

return *this;

}

int data;

};

int main()

{

Foo foo(2); //Foo(int data) / Normal Constructor called

Foo foo2 = foo; //Copy Constructor Called

cout << foo2.data << endl;

Foo foo3(42);

foo3=foo; //Assignment Constructor Called cout

<< foo3.data << endl;

}

2

2

143

Chapter 30: Pointers
A pointer is an address that refers to a location in memory. They're commonly used to allow functions or data

structures to know of and modify memory without having to copy the memory referred to. Pointers are usable with

both primitive (built-in) or user-defined types.

Pointers make use of the "dereference" * , "address of" & , and "arrow" -> operators. The '*' and '->' operators are

used to access the memory being pointed at, and the & operator is used to get an address in memory.

Section 30.1: Pointer Operations

There are two operators for pointers: Address-of operator (&): Returns the memory address of its operand.

Contents-of (Dereference) operator(*): Returns the value of the variable located at the address specified by its

operator.

The asterisk (*) is used in declaring a pointer for simple purpose of indicating that it is a pointer. Don't confuse this

with the dereference operator, which is used to obtain the value located at the specified address. They are simply

two different things represented with the same sign.

Section 30.2: Pointer basics

Version < C++11

Note: in all the following, the existence of the C++11 constant nullptr is assumed. For earlier versions, replace

nullptr with NULL, the constant that used to play a similar role.

Creating a pointer variable

A pointer variable can be created using the specific * syntax, e.g. int *pointer_to_int;.

When a variable is of a pointer type (int *), it just contains a memory address. The memory address is the location

at which data of the underlying type (int) is stored.

The difference is clear when comparing the size of a variable with the size of a pointer to the same type:

int var = 20;

int *ptr;

ptr = &var;

cout << var << endl;

//Outputs 20 (The value of var)

cout << ptr << endl;

//Outputs 0x234f119 (var's memory location)

cout << *ptr << endl;

//Outputs 20(The value of the variable stored in the pointer ptr

// Declare a struct type `big_struct` that contains

// three long long ints.

typedef struct {

long long int foo1;

long long int foo2;

long long int foo3;

} big_struct;

// Create a variable `bar` of type `big_struct`

144

Taking the address of another variable

Pointers can be assigned between each other just as normal variables; in this case, it is the memory address that is

copied from one pointer to another, not the actual data that a pointer points to.

Moreover, they can take the value nullptr which represents a null memory location. A pointer equal to nullptr

contains an invalid memory location and hence it does not refer to valid data.

You can get the memory address of a variable of a given type by prefixing the variable with the address of operator

&. The value returned by & is a pointer to the underlying type which contains the memory address of the variable

(which is valid data as long as the variable does not go out of scope).

In contrast with references:

assigning two pointers does not overwrite the memory that the assigned pointer refers to;

pointers can be null.

the address of operator is required explicitly.

Accessing the content of a pointer

As taking an address requires &, as well accessing the content requires the usage of the dereference operator *, as a

prefix. When a pointer is dereferenced, it becomes a variable of the underlying type (actually, a reference to it). It

can then be read and modified, if not const.

big_struct bar;

// Create a variable `p_bar` of type `pointer to big_struct`.

// Initialize it to `nullptr` (a null pointer).

big_struct *p_bar0 = nullptr;

// Print the size of `bar`

std::cout << "sizeof(bar) = " << sizeof(bar) << std::endl;

// Print the size of `p_bar`.

std::cout << "sizeof(p_bar0) = " << sizeof(p_bar0) << std::endl;

/* Produces:

sizeof(bar) = 24

sizeof(p_bar0) = 8

*/

// Copy `p_bar0` into `p_bar_1`.

big_struct *p_bar1 = p_bar0;

// Take the address of `bar` into `p_bar_2`

big_struct *p_bar2 = &bar;

// p_bar1 is now nullptr, p_bar2 is &bar.

p_bar0 = p_bar2;

// p_bar0 is now &bar.

p_bar2 = nullptr;

// p_bar0 == &bar

// p_bar1 == nullptr

// p_bar2 == nullptr

(*p_bar0).foo1 = 5;

// `p_bar0` points to `bar`. This prints 5.

145

The combination of * and the operator . is abbreviated by ->:

Dereferencing invalid pointers

When dereferencing a pointer, you should make sure it points to valid data. Dereferencing an invalid pointer (or a

null pointer) can lead to memory access violation, or to read or write garbage data.

In such scenario, g++ and clang++ correctly issue the warnings:

Hence, care must be taken when pointers are arguments of functions, as they could be null:

Section 30.3: Pointer Arithmetic

Increment / Decrement

A pointer can be incremented or decremented (prefix and postfix). Incrementing a pointer advances the pointer

value to the element in the array one element past the currently pointed to element. Decrementing a pointer

moves it to the previous element in the array.

std::cout << "bar.foo1 = " << bar.foo1 << std::endl;

// Assign the value pointed to by `p_bar0` to `baz`.

big_struct baz;

baz = *p_bar0;

// Now `baz` contains a copy of the data pointed to by `p_bar0`.

// Indeed, it contains a copy of `bar`.

// Prints 5 as well

std::cout << "baz.foo1 = " << baz.foo1 << std::endl;

std::cout << "bar.foo1 = " << (*p_bar0).foo1 << std::endl; // Prints 5

std::cout << "bar.foo1 = " << p_bar0->foo1 << std::endl; // Prints 5

big_struct *never_do_this() {

// This is a local variable. Outside `never_do_this` it doesn't exist.

big_struct retval;

retval.foo1 = 11;

// This returns the address of `retval`. return

&retval;

// `retval` is destroyed and any code using the value returned

// by `never_do_this` has a pointer to a memory location that

// contains garbage data (or is inaccessible).

}

(Clang) warning: address of stack memory associated with local variable 'retval' returned [-

Wreturn-stack-address]

(Gcc) warning: address of local variable ‘retval’ returned [-Wreturn-local-addr]

void naive_code(big_struct *ptr_big_struct) {

// ... some code which doesn't check if `ptr_big_struct` is valid.

ptr_big_struct->foo1 = 12;

}

// Segmentation fault.

naive_code(nullptr);

146

Pointer arithmetic is not permitted if the type that the pointer points to is not complete. void is always an

incomplete type.

If a pointer to the end element is incremented, then the pointer points to one element past the end of the array.

Such a pointer cannot be dereferenced, but it can be decremented.

Incrementing a pointer to the one-past-the-end element in the array, or decrementing a pointer to the first element

in an array yields undefined behavior.

A pointer to a non-array object can be treated, for the purposes of pointer arithmetic, as though it were an array of

size 1.

Addition / Subtraction

Integer values can be added to pointers; they act as incrementing, but by a specific number rather than by 1.

Integer values can be subtracted from pointers as well, acting as pointer decrementing. As with

incrementing/decrementing, the pointer must point to a complete type.

Pointer Differencing

The difference between two pointers to the same type can be computed. The two pointers must be within the same

array object; otherwise undefined behavior results.

Given two pointers P and Q in the same array, if P is the ith element in the array, and Q is the jth element, then P -

Q shall be i - j. The type of the result is std::ptrdiff_t, from <cstddef>.

char* str = new char[10]; // str = 0x010

++str; // str = 0x011 in this case sizeof(char) = 1 byte

int* arr = new int[10]; // arr = 0x00100

++arr; // arr = 0x00104 if sizeof(int) = 4 bytes

void* ptr = (void*)new char[10];

++ptr; // void is incomplete.

char* str = new char[10]; // str = 0x010

str += 2; // str = 0x010 + 2 * sizeof(char) = 0x012

int* arr = new int[10];

arr += 2;

// arr = 0x100

// arr = 0x100 + 2 * sizeof(int) = 0x108, assuming sizeof(int) == 4.

char* start = new char[10]; // str = 0x010

char* test = &start[5];

std::ptrdiff_t diff = test - start; //Equal to 5.

std::ptrdiff_t diff = start - test; //Equal to -5; ptrdiff_t is signed.

147

Chapter 31: Pointers to members

Section 31.1: Pointers to static member functions

A static member function is just like an ordinary C/C++ function, except with scope:

It is inside a class, so it needs its name decorated with the class name;

It has accessibility, with public, protected or private.

So, if you have access to the static member function and decorate it correctly, then you can point to the function

like any normal function outside a class:

Section 31.2: Pointers to member functions

To access a member function of a class, you need to have a "handle" to the particular instance, as either the

instance itself, or a pointer or reference to it. Given a class instance, you can point to various of its members with a

pointer-to-member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type

as what you are pointing to...

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

// Note that MyFn() is of type 'Fn'

int MyFn(int i) { return 2*i; }

class Class {

public:

// Note that Static() is of type 'Fn' static

int Static(int i) { return 3*i; }

}; // Class

int main() {

Fn *fn; // fn is a pointer to a type-of Fn

fn = &MyFn;

fn(3);

// Point to one function

// Call it

fn = &Class::Static; // Point to the other function

fn(4); // Call it

} // main()

typedef int Fn(int); // Fn is a type-of function that accepts an int and returns an int

class Class {

public:

// Note that A() is of type 'Fn'

int A(int a) { return 2*a; }

// Note that B() is of type 'Fn'

int B(int b) { return 3*b; }

}; // Class

int main() {

Class c;

Class *p = &c;

// Need a Class instance to play with

// Need a Class pointer to play with

Fn Class::*fn; // fn is a pointer to a type-of Fn within Class

fn = &Class::A; // fn now points to A within any Class

(c.*fn)(5); // Pass 5 to c's function A (via fn)

148

Unlike pointers to member variables (in the previous example), the association between the class instance and the

member pointer need to be bound tightly together with parentheses, which looks a little strange (as thoug h the .*

and ->* aren't strange enough!)

Section 31.3: Pointers to member variables

To access a member of a class, you need to have a "handle" to the particular instance, as either the instance itself,

or a pointer or reference to it. Given a class instance, you can point to various of its members with a pointer-to-

member, IF you get the syntax correct! Of course, the pointer has to be declared to be of the same type as what you

are pointing to...

The syntax of pointer-to-member requires some extra syntactic elements:

To define the type of the pointer, you need to mention the base type, as well as the fact that it is inside a

class: int Class::*ptr;.

If you have a class or reference and want to use it with a pointer-to-member, you need to use the .* operator

(akin to the . operator).

If you have a pointer to a class and want to use it with a pointer-to-member, you need to use the ->*

operator (akin to the -> operator).

Section 31.4: Pointers to static member variables

A static member variable is just like an ordinary C/C++ variable, except with scope:

fn = &Class::B; // fn now points to B within any Class

(p->*fn)(6); // Pass 6 to c's (via p) function B (via fn)

} // main()

class Class {

public:

int x, y, z;

char m, n, o;

}; // Class

int x; // Global variable

int main() {

Class c; // Need a Class instance to play with

Class *p = &c; // Need a Class pointer to play with

int *p_i; // Pointer to an int

p_i = &x;

p_i =

&c.x;

// Now pointing to x

// Now pointing to c's x

int Class::*p_C_i; // Pointer to an int within Class

p_C_i = &Class::x; // Point to x within any Class

int i = c.*p_C_i; // Use p_c_i to fetch x from c's instance

p_C_i = &Class::y; // Point to y within any Class

i = c.*p_C_i; // Use p_c_i to fetch y from c's instance

p_C_i = &Class::m; // ERROR! m is a char, not an int!

char Class::*p_C_c = &Class::m; // That's better...

} // main()

149

It is inside a class, so it needs its name decorated with the class name;

It has accessibility, with public, protected or private.

So, if you have access to the static member variable and decorate it correctly, then you can point to the variable

like any normal variable outside a class:

class Class {

public:

static int i;

}; // Class

int Class::i = 1; // Define the value of i (and where it's stored!)

int j = 2; // Just another global variable

int main() {

int k = 3; // Local variable

int *p;

p = &k; // Point to k

*p = 2; // Modify it p

= &j; // Point to j

*p = 3; // Modify it

p = &Class::i; // Point to Class::i

*p = 4; // Modify it

} // main()

150

Chapter 32: The This Pointer

Section 32.1: this Pointer

All non-static member functions have a hidden parameter, a pointer to an instance of the class, named this; this

parameter is silently inserted at the beginning of the parameter list, and handled entirely by the compiler. When a

member of the class is accessed inside a member function, it is silently accessed through this; this allows the

compiler to use a single non-static member function for all instances, and allows a member function to call other

member functions polymorphically.

struct ThisPointer {

int i;

ThisPointer(int ii);

virtual void func();

int get_i() const;

void set_i(int ii);

};

ThisPointer::ThisPointer(int ii) : i(ii) {}

// Compiler rewrites as:

ThisPointer::ThisPointer(int ii) : this->i(ii) {}

// Constructor is responsible for turning allocated memory into 'this'.

// As the constructor is responsible for creating the object, 'this' will not be "fully"

// valid until the instance is fully constructed.

/* virtual */ void ThisPointer::func() { if

(some_external_condition) {

set_i(182);

} else {

i = 218;

}

}

// Compiler rewrites as:

/* virtual */ void ThisPointer::func(ThisPointer* this) { if

(some_external_condition) {

this->set_i(182);

} else {

this->i = 218;

}

}

int ThisPointer::get_i() const { return i; }

// Compiler rewrites as:

int ThisPointer::get_i(const ThisPointer* this) { return this->i; }

void ThisPointer::set_i(int ii) { i = ii; }

// Compiler rewrites as:

void ThisPointer::set_i(ThisPointer* this, int ii) { this->i = ii; }

In a constructor, this can safely be used to (implicitly or explicitly) access any field that has already been initialised,

or any field in a parent class; conversely, (implicitly or explicitly) accessing any fields that haven't yet been initialised,

or any fields in a derived class, is unsafe (due to the derived class not yet being constructed, and thus its fields

neither being initialised nor existing). It is also unsafe to call virtual member functions through this in the

constructor, as any derived class functions will not be considered (due to the derived class not yet being

constructed, and thus its constructor not yet updating the vtable).

151

Also note that while in a constructor, the type of the object is the type which that constructor constructs. This holds

true even if the object is declared as a derived type. For example, in the below example, ctd_good and ctd_bad are

type CtorThisBase inside CtorThisBase(), and type CtorThis inside CtorThis(), even though their canonical type

is CtorThisDerived. As the more-derived classes are constructed around the base class, the instance gradually

goes through the class hierarchy until it is a fully-constructed instance of its intended type.

With these classes and member functions:

In the good constructor, for ctd_good:

CtorThisBase is fully constructed by the time the CtorThis constructor is entered. Therefore, s is in a

valid state while initialising i, and can thus be accessed.

i is initialised before j(this->i) is reached. Therefore, i is in a valid state while initialising j, and can thus

be accessed.

j is initialised before k(j) is reached. Therefore, j is in a valid state while initialising k, and can thus be

accessed.

In the bad constructor, for ctd_bad:

k is initialised after j(this->k) is reached. Therefore, k is in an invalid state while initialising j, and

accessing it causes undefined behaviour.

CtorThisDerived is not constructed until after CtorThis is constructed. Therefore, b is in an invalid

state while initialising k, and accessing it causes undefined behaviour.

The object ctd_bad is still a CtorThis until it leaves CtorThis(), and will not be updated to use

class CtorThisBase {

short s;

public:

CtorThisBase() : s(516) {}

};

class CtorThis : public CtorThisBase { int

i, j, k;

public:

// Good constructor.

CtorThis() : i(s + 42), j(this->i), k(j) {}

// Bad constructor.

CtorThis(int ii) : i(ii), j(this->k), k(b ? 51 : -51) {

virt_func();

}

virtual void virt_func() { i += 2; }

};

class CtorThisDerived : public CtorThis { bool

b;

public:

CtorThisDerived() : b(true) {}

CtorThisDerived(int ii) : CtorThis(ii), b(false) {}

void virt_func() override { k += (2 * i); }

};

// ...

CtorThisDerived ctd_good;

CtorThisDerived ctd_bad(3);

152

CtorThisDerived's vtable until CtorThisDerived(). Therefore, virt_func() will call

CtorThis::virt_func(), regardless of whether it is intended to call that or

CtorThisDerived::virt_func().

Section 32.2: Using the this Pointer to Access Member Data

In this context, using the this pointer isn't entirely necessary, but it will make your code clearer to the reader, by

indicating that a given function or variable is a member of the class. An example in this situation:

See it in action here.

Section 32.3: Using the this Pointer to Di erentiate Between
Member Data and Parameters

This is an actual useful strategy to differentiate member data from parameters... Lets take this example :

// Example for this pointer

#include <iostream>

#include <string>

using std::cout;

using std::endl;

class Class

{

public:

Class();

~Class();

int getPrivateNumber () const;

private:

int private_number = 42;

};

Class::Class(){}

Class::~Class(){}

int Class::getPrivateNumber() const

{

return this->private_number;

}

int main()

{

Class class_example;

cout << class_example.getPrivateNumber() << endl;

}

// Dog Class Example

#include <iostream>

#include <string>

using std::cout;

using std::endl;

/*

* @class Dog

* @member name

* Dog's name

* @function bark

http://cpp.sh/9flka

153

* Dog Barks!

* @function getName

* To Get Private

* Name Variable

*/

class Dog

{

public:

Dog(std::string name);

~Dog();

void bark() const; std::string

 getName() const;

private:

std::string name;

};

Dog::Dog(std::string name)

{

/*

* this->name is the

* name variable from

* the class dog . and

* name is from the

* parameter of the function

*/

this->name = name;

}

Dog::~Dog(){}

void Dog::bark() const

{

cout << "BARK" << endl;

}

std::string Dog::getName() const

{

return this->name;

}

int main()

{

Dog dog("Max");

cout << dog.getName() << endl;

dog.bark();

}

You can see here in the constructor we execute the following:

Here , you can see we are assinging the parameter name to the name of the private variable from the class

Dog(this->name) .

To see the output of above code : http://cpp.sh/75r7

Section 32.4: this Pointer CV-Qualifiers

this can also be cv-qualified, the same as any other pointer. However, due to the this parameter not being listed

this->name = name;

http://cpp.sh/75r7

154

in the parameter list, special syntax is required for this; the cv-qualifiers are listed after the parameter list, but

before the function's body.

As this is a parameter, a function can be overloaded based on its this cv-qualifier(s).

When this is const (including const volatile), the function is unable to write to member variables through it,

whether implicitly or explicitly. The sole exception to this is mutable member variables, which can be written

regardless of const-ness. Due to this, const is used to indicate that the member function doesn't change the

object's logical state (the way the object appears to the outside world), even if it does modify the physical state (the

way the object looks under the hood).

Logical state is the way the object appears to outside observers. It isn't directly tied to physical state, and

indeed, might not even be stored as physical state. As long as outside observers can't see any changes,

the logical state is constant, even if you flip every single bit in the object.

Physical state, also known as bitwise state, is how the object is stored in memory. This is the object's nitty-

gritty, the raw 1s and 0s that make up its data. An object is only physically constant if its representation in

memory never changes.

Note that C++ bases constness on logical state, not physical state.

struct ThisCVQ {

void no_qualifier()

void c_qualifier() const

void v_qualifier() volatile

{} // "this" is: ThisCVQ*

{} // "this" is: const ThisCVQ*

{} // "this" is: volatile ThisCVQ*

void cv_qualifier() const volatile {} // "this" is: const volatile ThisCVQ*

};

struct CVOverload {

int func()

int func() const

int func() volatile

{ return 3; }

{ return 33; }

{ return 333; }

int func() const volatile { return 3333; }

};

class DoSomethingComplexAndOrExpensive {

mutable ResultType cached_result;

mutable bool state_changed;

ResultType calculate_result();

void modify_somehow(const Param& p);

// ...

public:

DoSomethingComplexAndOrExpensive(Param p) : state_changed(true) {

modify_somehow(p);

}

void change_state(Param p) {

modify_somehow(p);

state_changed = true;

}

155

Note that while you technically could use const_cast on this to make it non-cv-qualified, you really, REALLY

shouldn't, and should use mutable instead. A const_cast is liable to invoke undefined behaviour when used on an

object that actually is const, while mutable is designed to be safe to use. It is, however, possible that you may run

into this in extremely old code.

An exception to this rule is defining non-cv-qualified accessors in terms of const accessors; as the object is

guaranteed to not be const if the non-cv-qualified version is called, there's no risk of UB.

This prevents unnecessary duplication of code.

As with regular pointers, if this is volatile (including const volatile), it is loaded from memory each time it is

accessed, instead of being cached. This has the same effects on optimisation as declaring any other pointer

volatile would, so care should be taken.

Note that if an instance is cv-qualified, the only member functions it is allowed to access are member functions

whose this pointer is at least as cv-qualified as the instance itself:

Non-cv instances can access any member functions.

const instances can access const and const volatile functions. volatile

instances can access volatile and const volatile functions. const

volatile instances can access const volatile functions.

This is one of the key tenets of const correctness.

// Return some complex and/or expensive-to-calculate result.

// As this has no reason to modify logical state, it is marked as "const".

ResultType get_result() const;

};

ResultType DoSomethingComplexAndOrExpensive::get_result() const {

// cached_result and state_changed can be modified, even with a const "this" pointer.

// Even though the function doesn't modify logical state, it does modify physical state

// by caching the result, so it doesn't need to be recalculated every time the function

// is called. This is indicated by cached_result and state_changed being mutable.

if (state_changed) {

cached_result = calculate_result();

state_changed = false;

}

return cached_result;

}

class CVAccessor {

int arr[5];

public:

const int& get_arr_element(size_t i) const { return arr[i]; }

int& get_arr_element(size_t i) {

return const_cast<int&>(const_cast<const CVAccessor*>(this)->get_arr_element(i));

}

};

struct CVAccess {

void func()

void func_c() const

void func_v() volatile

{}

{}

{}

void func_cv() const volatile {}

156

Section 32.5: this Pointer Ref-Qualifiers

Version ≥ C++11

Similarly to this cv-qualifiers, we can also apply ref-qualifiers to *this. Ref-qualifiers are used to choose between

normal and rvalue reference semantics, allowing the compiler to use either copy or move semantics depending on

which are more appropriate, and are applied to *this instead of this.

Note that despite ref-qualifiers using reference syntax, this itself is still a pointer. Also note that ref-qualifiers don't

actually change the type of *this; it's just easier to describe and understand their effects by looking at them as if

they did.

A member function cannot have overloads both with and without ref-qualifiers; the programmer has to choose

};

CVAccess cva;

cva.func(); // Good.

cva.func_c(); // Good.

cva.func_v(); // Good.

cva.func_cv(); // Good.

const CVAccess c_cva;

c_cva.func(); // Error.

c_cva.func_c(); // Good.

c_cva.func_v(); // Error.

c_cva.func_cv(); // Good.

volatile CVAccess v_cva;

v_cva.func(); // Error.

v_cva.func_c(); // Error.

v_cva.func_v(); // Good.

v_cva.func_cv(); // Good.

const volatile CVAccess cv_cva;

cv_cva.func(); // Error.

cv_cva.func_c(); // Error.

cv_cva.func_v(); // Error.

cv_cva.func_cv(); // Good.

struct RefQualifiers {

std::string s;

RefQualifiers(const std::string& ss = "The nameless one.") : s(ss) {}

// Normal version.

void func() & { std::cout << "Accessed on normal instance "

// Rvalue version.

<< s << std::endl;
}

void func() && { std::cout << "Accessed on temporary instance " << s << std::endl; }

const std::string& still_a_pointer() & { return this->s; }

const std::string& still_a_pointer() && { this->s = "Bob"; return this->s; }

};

// ...

RefQualifiers rf("Fred");

rf.func(); // Output: Accessed on normal instance Fred

RefQualifiers{}.func(); // Output: Accessed on temporary instance The nameless one

157

between one or the other. Thankfully, cv-qualifiers can be used in conjunction with ref-qualifiers, allowing const

correctness rules to be followed.

struct RefCV {

void func() & {}

void func() && {}

void func() const& {}

void func() const&& {}

void func() volatile& {}

void func() volatile&& {}

void func() const volatile& {}

void func() const volatile&& {}

};

158

Chapter 33: Smart Pointers

Section 33.1: Unique ownership (std::unique_ptr)

Version ≥ C++11

A std::unique_ptr is a class template that manages the lifetime of a dynamically stored object. Unlike for

std::shared_ptr, the dynamic object is owned by only one instance of a std::unique_ptr at any time,

(Note: std::unique_ptr is available since C++11 and std::make_unique since C++14.)

Only the variable ptr holds a pointer to a dynamically allocated int. When a unique pointer that owns an object

goes out of scope, the owned object is deleted, i.e. its destructor is called if the object is of class type, and the

memory for that object is released.

To use std::unique_ptr and std::make_unique with array-types, use their array specializations:

You can access the std::unique_ptr just like a raw pointer, because it overloads those operators.

You can transfer ownership of the contents of a smart pointer to another pointer by using std::move, which will

cause the original smart pointer to point to nullptr.

Passing unique_ptr to functions as parameter:

Returning unique_ptr from functions. This is the preferred C++11 way of writing factory functions, as it clearly

// Creates a dynamic int with value of 20 owned by a unique pointer

std::unique_ptr<int> ptr = std::make_unique<int>(20);

// Creates a unique_ptr to an int with value 59

std::unique_ptr<int> ptr = std::make_unique<int>(59);

// Creates a unique_ptr to an array of 15 ints

std::unique_ptr<int[]> ptr = std::make_unique<int[]>(15);

// 1. std::unique_ptr

std::unique_ptr<int> ptr = std::make_unique<int>();

// Change value to 1

*ptr = 1;

// 2. std::unique_ptr (by moving 'ptr' to 'ptr2', 'ptr' doesn't own the object anymore)

std::unique_ptr<int> ptr2 = std::move(ptr);

int a = *ptr2; // 'a' is 1

int b = *ptr; // undefined behavior! 'ptr' is 'nullptr'

// (because of the move command above)

void foo(std::unique_ptr<int> ptr)

{

// Your code goes here

}

std::unique_ptr<int> ptr = std::make_unique<int>(59);

foo(std::move(ptr))

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

159

conveys the ownership semantics of the return: the caller owns the resulting unique_ptr and is responsible for it.

Compare this to:

Version < C++14

The class template make_unique is provided since C++14. It's easy to add it manually to C++11 code:

Version ≥ C++11

Unlike the dumb smart pointer (std::auto_ptr), unique_ptr can also be instantiated with vector allocation (not

std::vector). Earlier examples were for scalar allocations. For example to have a dynamically allocated integer

array for 10 elements, you would specify int[] as the template type (and not just int):

Which can be simplified with:

Now, you use arr_ptr as if it is an array:

You need not to worry about de-allocation. This template specialized version calls constructors and destructors

appropriately. Using vectored version of unique_ptr or a vector itself - is a personal choice.

In versions prior to C++11, std::auto_ptr was available. Unlike unique_ptr it is allowed to copy auto_ptrs, upon

which the source ptr will lose the ownership of the contained pointer and the target receives it.

Section 33.2: Sharing ownership (std::shared_ptr)

The class template std::shared_ptr defines a shared pointer that is able to share ownership of an object with

std::unique_ptr<int> foo()

{

std::unique_ptr<int> ptr = std::make_unique<int>(59);

return ptr;

}

std::unique_ptr<int> ptr = foo();

int* foo_cpp03();

int* p = foo_cpp03(); // do I own p? do I have to delete it at some point?

// it's not readily apparent what the answer is.

template<typename T, typename... Args>

typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type

make_unique(Args&&... args)

{ return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); }

// Use make_unique for arrays

template<typename T>

typename std::enable_if<std::is_array<T>::value, std::unique_ptr<T>>::type

make_unique(size_t n)

{ return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); }

std::unique_ptr<int[]> arr_ptr = std::make_unique<int[]>(10);

auto arr_ptr = std::make_unique<int[]>(10);

arr_ptr[2] = 10; // Modify third element

http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

160

other shared pointers. This contrasts to std::unique_ptr which represents exclusive ownership.

The sharing behavior is implemented through a technique known as reference counting, where the number of

shared pointers that point to the object is stored alongside it. When this count reaches zero, either through the

destruction or reassignment of the last std::shared_ptr instance, the object is automatically destroyed.

To create multiple smart pointers that share the same object, we need to create another shared_ptr that aliases

the first shared pointer. Here are 2 ways of doing it:

Either of the above ways makes secondShared a shared pointer that shares ownership of our instance of Foo with

firstShared.

The smart pointer works just like a raw pointer. This means, you can use * to dereference them. The regular ->

operator works as well:

Finally, when the last aliased shared_ptr goes out of scope, the destructor of our Foo instance is called.

Warning: Constructing a shared_ptr might throw a bad_alloc exception when extra data for shared ownership

semantics needs to be allocated. If the constructor is passed a regular pointer it assumes to own the object pointed

to and calls the deleter if an exception is thrown. This means shared_ptr<T>(new T(args)) will not leak a T object if

allocation of shared_ptr<T> fails. However, it is advisable to use make_shared<T>(args) or

allocate_shared<T>(alloc, args), which enable the implementation to optimize the memory allocation.

Allocating Arrays([]) using shared_ptr

Version ≥ C++11 Version < C++17

Unfortunately, there is no direct way to allocate Arrays using make_shared<>.

It is possible to create arrays for shared_ptr<> using new and std::default_delete.

For example, to allocate an array of 10 integers, we can write the code as

Specifying std::default_delete is mandatory here to make sure that the allocated memory is correctly cleaned up

using delete[].

If we know the size at compile time, we can do it this way:

// Creation: 'firstShared' is a shared pointer for a new instance of 'Foo'

std::shared_ptr<Foo> firstShared = std::make_shared<Foo>(/*args*/);

std::shared_ptr<Foo> secondShared(firstShared); // 1st way: Copy constructing

std::shared_ptr<Foo> secondShared;

secondShared = firstShared; // 2nd way: Assigning

secondShared->test(); // Calls Foo::test()

shared_ptr<int> sh(new int[10], std::default_delete<int[]>());

template<class Arr>

struct shared_array_maker {};

template<class T, std::size_t N>

struct shared_array_maker<T[N]> {

std::shared_ptr<T> operator()const{

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/unique_ptr

161

then make_shared_array<int[10]> returns a shared_ptr<int> pointing to 10 ints all default constructed.

Version ≥ C++17

With C++17, shared_ptr gained special support for array types. It is no longer necessary to specify the array-deleter

explicitly, and the shared pointer can be dereferenced using the [] array index operator:

Shared pointers can point to a sub-object of the object it owns:

Both p2 and p1 own the object of type Foo, but p2 points to its int member x. This means that if p1 goes out of

scope or is reassigned, the underlying Foo object will still be alive, ensuring that p2 does not dangle.

Important: A shared_ptr only knows about itself and all other shared_ptr that were created with the alias

constructor. It does not know about any other pointers, including all other shared_ptrs created with a reference to

the same Foo instance:

Ownership Transfer of shared_ptr

By default, shared_ptr increments the reference count and doesn't transfer the ownership. However, it can be

made to transfer the ownership using std::move:

Section 33.3: Sharing with temporary ownership

auto r = std::make_shared<std::array<T,N>>();

if (!r) return {};

return {r.data(), r};

}

};

template<class Arr>

auto make_shared_array()

-> decltype(shared_array_maker<Arr>{}())

{ return shared_array_maker<Arr>{}(); }

std::shared_ptr<int[]> sh(new int[10]);

sh[0] = 42;

struct Foo { int x; };

std::shared_ptr<Foo> p1 = std::make_shared<Foo>();

std::shared_ptr<int> p2(p1, &p1->x);

Foo *foo = new Foo;

std::shared_ptr<Foo> shared1(foo);

std::shared_ptr<Foo> shared2(foo); // don't do this

shared1.reset(); // this will delete foo, since shared1

// was the only shared_ptr that owned it

shared2->test(); // UNDEFINED BEHAVIOR: shared2's foo has been

// deleted already!!

shared_ptr<int> up = make_shared<int>();

// Transferring the ownership

shared_ptr<int> up2 = move(up);

// At this point, the reference count of up = 0 and the

// ownership of the pointer is solely with up2 with reference count = 1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0414r2.html

162

(std::weak_ptr)

Instances of std::weak_ptr can point to objects owned by instances of std::shared_ptr while only becoming

temporary owners themselves. This means that weak pointers do not alter the object's reference count and

therefore do not prevent an object's deletion if all of the object's shared pointers are reassigned or destroyed.

In the following example instances of std::weak_ptr are used so that the destruction of a tree object is not

inhibited:

As child nodes are added to the root node's children, their std::weak_ptr member parent is set to the root node.

The member parent is declared as a weak pointer as opposed to a shared pointer such that the root node's

reference count is not incremented. When the root node is reset at the end of main(), the root is destroyed. Since

the only remaining std::shared_ptr references to the child nodes were contained in the root's collection children,

all child nodes are subsequently destroyed as well.

Due to control block implementation details, shared_ptr allocated memory may not be released until shared_ptr

reference counter and weak_ptr reference counter both reach zero.

#include <memory>

#include <vector>

struct TreeNode {

std::weak_ptr<TreeNode> parent;

std::vector< std::shared_ptr<TreeNode> > children;

};

int main() {

// Create a TreeNode to serve as the root/parent.

std::shared_ptr<TreeNode> root(new TreeNode);

// Give the parent 100 child nodes.

for (size_t i = 0; i < 100; ++i) {

std::shared_ptr<TreeNode> child(new TreeNode);

root->children.push_back(child);

child->parent = root;

}

// Reset the root shared pointer, destroying the root object, and

// subsequently its child nodes.

root.reset();

}

#include <memory>

int main()

{

{

std::weak_ptr<int> wk;

{

// std::make_shared is optimized by allocating only once

// while std::shared_ptr<int>(new int(42)) allocates twice.

// Drawback of std::make_shared is that control block is tied to our integer

std::shared_ptr<int> sh = std::make_shared<int>(42);

wk = sh;

// sh memory should be released at this point...

}

// ... but wk is still alive and needs access to control block

}

// now memory is released (sh and wk)

http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/weak_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

163

Since std::weak_ptr does not keep its referenced object alive, direct data access through a std::weak_ptr is not

possible. Instead it provides a lock() member function that attempts to retrieve a std::shared_ptr to the

referenced object:

Section 33.4: Using custom deleters to create a wrapper to a
C interface

Many C interfaces such as SDL2 have their own deletion functions. This means that you cannot use smart pointers

directly:

Instead, you need to define your own deleter. The examples here use the SDL_Surface structure which should be

freed using the SDL_FreeSurface() function, but they should be adaptable to many other C interfaces.

The deleter must be callable with a pointer argument, and therefore can be e.g. a simple function pointer:

Any other callable object will work, too, for example a class with an operator():

}

#include <cassert>

#include <memory>

int main()

{

{

std::weak_ptr<int> wk;

std::shared_ptr<int> sp;

{

std::shared_ptr<int> sh = std::make_shared<int>(42);

wk = sh;

// calling lock will create a shared_ptr to the object referenced by wk

sp = wk.lock();

// sh will be destroyed after this point, but sp is still alive

}

// sp still keeps the data alive.

// At this point we could even call lock() again

// to retrieve another shared_ptr to the same data from wk

assert(*sp == 42);

assert(!wk.expired());

// resetting sp will delete the data,

// as it is currently the last shared_ptr with ownership

sp.reset();

// attempting to lock wk now will return an empty shared_ptr,

// as the data has already been deleted sp

= wk.lock();

assert(!sp);

assert(wk.expired());

}

}

std::unique_ptr<SDL_Surface> a; // won't work, UNSAFE!

std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> a(pointer, SDL_FreeSurface);

struct SurfaceDeleter {

void operator()(SDL_Surface* surf) {

SDL_FreeSurface(surf);

}

};

https://www.libsdl.org/
https://wiki.libsdl.org/SDL_Surface
https://wiki.libsdl.org/SDL_FreeSurface
https://wiki.libsdl.org/SDL_FreeSurface
https://wiki.libsdl.org/SDL_FreeSurface

164

This not only provides you with safe, zero overhead (if you use unique_ptr) automatic memory management, you

also get exception safety.

Note that the deleter is part of the type for unique_ptr, and the implementation can use the empty base

optimization to avoid any change in size for empty custom deleters. So while std::unique_ptr<SDL_Surface,

SurfaceDeleter> and std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> solve the same problem in a

similar way, the former type is still only the size of a pointer while the latter type has to hold two pointers: both the

SDL_Surface* and the function pointer! When having free function custom deleters, it is preferable to wrap the

function in an empty type.

In cases where reference counting is important, one could use a shared_ptr instead of an unique_ptr. The

shared_ptr always stores a deleter, this erases the type of the deleter, which might be useful in APIs. The

disadvantages of using shared_ptr over unique_ptr include a higher memory cost for storing the deleter and a

performance cost for maintaining the reference count.

Version ≥ C++17

With template auto, we can make it even easier to wrap our custom deleters:

With which the above example is simply:

Here, the purpose of auto is to handle all free functions, whether they return void (e.g. SDL_FreeSurface) or not

(e.g. fclose).

Section 33.5: Unique ownership without move semantics
(auto_ptr)

Version < C++11

NOTE: std::auto_ptr has been deprecated in C++11 and will be removed in C++17. You should only use this if you

are forced to use C++03 or earlier and are willing to be careful. It is recommended to move to unique_ptr in

combination with std::move to replace std::auto_ptr behavior.

std::unique_ptr<SDL_Surface, SurfaceDeleter> a(pointer, SurfaceDeleter{}); // safe

std::unique_ptr<SDL_Surface, SurfaceDeleter> b(pointer); // equivalent to the above

// as the deleter is value-initialized

// deleter required at construction time and is part of the type

std::unique_ptr<SDL_Surface, void(*)(SDL_Surface*)> a(pointer, SDL_FreeSurface);

// deleter is only required at construction time, not part of the type std::shared_ptr<SDL_Surface>

b(pointer, SDL_FreeSurface);

template <auto DeleteFn>

struct FunctionDeleter {

template <class T>

void operator()(T* ptr) {

DeleteFn(ptr);

}

};

template <class T, auto DeleteFn>

using unique_ptr_deleter = std::unique_ptr<T, FunctionDeleter<DeleteFn>>;

unique_ptr_deleter<SDL_Surface, SDL_FreeSurface> c(pointer);

http://en.cppreference.com/w/cpp/memory/unique_ptr
http://en.cppreference.com/w/cpp/memory/shared_ptr

165

Before we had std::unique_ptr, before we had move semantics, we had std::auto_ptr. std::auto_ptr provides

unique ownership but transfers ownership upon copy.

As with all smart pointers, std::auto_ptr automatically cleans up resources (see RAII):

but allows only one owner:

This allows to use std::auto_ptr to keep ownership explicit and unique at the danger of losing ownership

unintended:

The transfer of ownership happened in the "copy" constructor. auto_ptr's copy constructor and copy assignment

operator take their operands by non-const reference so that they could be modified. An example implementation

might be:

{

std::auto_ptr<int> p(new int(42));

std::cout << *p;

} // p is deleted here, no memory leaked

std::auto_ptr<X> px = ...;

std::auto_ptr<X> py = px;

// px is now empty

void f(std::auto_ptr<X>) {

// assumes ownership of X

// deletes it at end of scope

};

std::auto_ptr<X> px = ...;

f(px); // f acquires ownership of underlying X

// px is now empty

px->foo(); // NPE!

// px.~auto_ptr() does NOT delete

template <typename T>

class auto_ptr {

T* ptr;

public:

auto_ptr(auto_ptr& rhs)

: ptr(rhs.release())

{ }

auto_ptr& operator=(auto_ptr& rhs) {

reset(rhs.release());

return *this;

}

T* release() {

T* tmp = ptr;

ptr = nullptr;

return tmp;

}

void reset(T* tmp = nullptr) { if

(ptr != tmp) {

delete ptr;

ptr = tmp;

}

}

166

This breaks copy semantics, which require that copying an object leaves you with two equivalent versions of it. For

any copyable type, T, I should be able to write:

But for auto_ptr, this is not the case. As a result, it is not safe to put auto_ptrs in containers.

Section 33.6: Casting std::shared_ptr pointers

It is not possible to directly use static_cast, const_cast, dynamic_cast and reinterpret_cast on

std::shared_ptr to retrieve a pointer sharing ownership with the pointer being passed as argument. Instead, the

functions std::static_pointer_cast, std::const_pointer_cast, std::dynamic_pointer_cast and

std::reinterpret_pointer_cast should be used:

Note that std::reinterpret_pointer_cast is not available in C++11 and C++14, as it was only proposed by N3920

and adopted into Library Fundamentals TS in February 2014. However, it can be implemented as follows:

Section 33.7: Writing a smart pointer: value_ptr

A value_ptr is a smart pointer that behaves like a value. When copied, it copies its contents. When created, it

creates its contents.

/* other functions ...
*/ };

T a = ...;

T b(a);

assert(b == a);

struct Base { virtual ~Base() noexcept {}; };

struct Derived: Base {};

auto derivedPtr(std::make_shared<Derived>());

auto basePtr(std::static_pointer_cast<Base>(derivedPtr));

auto constBasePtr(std::const_pointer_cast<Base const>(basePtr));

auto constDerivedPtr(std::dynamic_pointer_cast<Derived const>(constBasePtr));

template <typename To, typename From>

inline std::shared_ptr<To> reinterpret_pointer_cast(

std::shared_ptr<From> const & ptr) noexcept

{ return std::shared_ptr<To>(ptr, reinterpret_cast<To *>(ptr.get())); }

// Like std::default_delete:

template<class T>

struct default_copier {

// a copier must handle a null T const* in and return null: T*

operator()(T const* tin)const {

if (!tin) return nullptr; return

new T(*tin);

}

void operator()(void* dest, T const* tin)const { if

(!tin) return;

return new(dest) T(*tin);

}

};

// tag class to handle empty case:

struct empty_ptr_t {};

constexpr empty_ptr_t empty_ptr{};

// the value pointer type itself:

https://isocpp.org/files/papers/N3920.html
https://isocpp.org/blog/2014/02/trip-report

167

template<class T, class Copier=default_copier<T>, class Deleter=std::default_delete<T>,

class Base=std::unique_ptr<T, Deleter>

>

struct value_ptr:Base, private Copier {

using copier_type=Copier;

// also typedefs from unique_ptr

using Base::Base;

value_ptr(T const& t):

Base(std::make_unique<T>(t)),

Copier()

{}

value_ptr(T && t):

Base(std::make_unique<T>(std::move(t))),

Copier()

{}

// almost-never-empty:

value_ptr():

Base(std::make_unique<T>()),

Copier()

{}

value_ptr(empty_ptr_t) {}

value_ptr(Base b, Copier c={}

): Base(std::move(b)),

Copier(std::move(c))

{}

Copier const& get_copier() const {

return *this;

}

value_ptr clone() const {

return {

Base(

get_copier()(this->get()),

this->get_deleter()

),

get_copier()

};

}

value_ptr(value_ptr&&)=default;

value_ptr& operator=(value_ptr&&)=default;

value_ptr(value_ptr const& o):value_ptr(o.clone()) {}

value_ptr& operator=(value_ptr const&o) {

if (o && *this) {

// if we are both non-null, assign contents:

**this = *o;

} else {

// otherwise, assign a clone (which could itself be null):

*this = o.clone();

}

return *this;

}

value_ptr& operator=(T const& t) {

if (*this) {

**this = t;

} else {

*this = value_ptr(t);

}

168

This particular value_ptr is only empty if you construct it with empty_ptr_t or if you move from it. It exposes the fact

it is a unique_ptr, so explicit operator bool() const works on it. .get() has been changed to return a reference

(as it is almost never empty), and .get_pointer() returns a pointer instead.

This smart pointer can be useful for pImpl cases, where we want value-semantics but we also don't want to expose

the contents of the pImpl outside of the implementation file.

With a non-default Copier, it can even handle virtual base classes that know how to produce instances of their

derived and turn them into value-types.

Section 33.8: Getting a shared_ptr referring to this

enable_shared_from_this enables you to get a valid shared_ptr instance to this.

By deriving your class from the class template enable_shared_from_this, you inherit a method shared_from_this

that returns a shared_ptr instance to this.

Note that the object must be created as a shared_ptr in first place:

Note(2) you cannot call enable_shared_from_this inside the constructor.

return *this;

}

value_ptr& operator=(T && t)

{ if (*this) {

**this = std::move(t);

} else {

*this = value_ptr(std::move(t));

}

return *this;

}

T& get() { return **this; }

T const& get() const { return **this; }

T* get_pointer() {

if (!*this) return nullptr;

return std::addressof(get());

}

T const* get_pointer() const {

if (!*this) return nullptr;

return std::addressof(get());

}

// operator-> from unique_ptr

};

template<class T, class...Args>

value_ptr<T> make_value_ptr(Args&&... args) {

return {std::make_unique<T>(std::forward<Args>(args)...)};

}

#include <memory>

class A: public enable_shared_from_this<A> {

};

A* ap1 =new A();

shared_ptr<A> ap2(ap1); // First prepare a shared pointer to the object and hold it!

// Then get a shared pointer to the object from the object itself

shared_ptr<A> ap3 = ap1->shared_from_this();

int c3 =ap3.use_count(); // =2: pointing to the same object

#include <memory> // enable_shared_from_this

169

If you use shared_from_this() on an object not owned by a shared_ptr, such as a local automatic object or a

global object, then the behavior is undefined. Since C++17 it throws std::bad_alloc instead.

Using shared_from_this() from a constructor is equivalent to using it on an object not owned by a shared_ptr,

because the objects is possessed by the shared_ptr after the constructor returns.

class Widget : public std::enable_shared_from_this< Widget >

{

public:

void DoSomething()

{

std::shared_ptr< Widget > self = shared_from_this();

someEvent -> Register(self);

}

private:

...

};

int main()

{

...

auto w = std::make_shared< Widget

>(); w -> DoSomething();

...

}

170

Chapter 34: Classes/Structures

Section 34.1: Class basics

A class is a user-defined type. A class is introduced with the class, struct or union keyword. In colloquial usage, the

term "class" usually refers only to non-union classes.

A class is a collection of class members, which can be:

member variables (also called "fields"),

member functions (also called "methods"),

member types or typedefs (e.g. "nested classes"),

member templates (of any kind: variable, function, class or alias template)

The class and struct keywords, called class keys, are largely interchangeable, except that the default access

specifier for members and bases is "private" for a class declared with the class key and "public" for a class declared

with the struct or union key (cf. Access modifiers).

For example, the following code snippets are identical:

By declaring a class` a new type is added to your program, and it is possible to instantiate objects of that class by

Members of a class are accessed using dot-syntax.

Section 34.2: Final classes and structs

Version ≥ C++11

Deriving a class may be forbidden with final specifier. Let's declare a final class:

Now any attempt to subclass it will cause a compilation error:

struct Vector

{

int x;

int y;

int z;

};

// are equivalent to

class Vector

{

public:

int x;

int y;

int z;

};

Vector my_vector;

my_vector.x = 10;

my_vector.y = my_vector.x + 1; // my_vector.y = 11;

my_vector.z = my_vector.y - 4; // my:vector.z = 7;

class A final {

};

171

Final class may appear anywhere in class hierarchy:

Section 34.3: Access specifiers

There are three keywords that act as access specifiers. These limit the access to class members following the

specifier, until another specifier changes the access level again:

Keyword Description

public Everyone has access

protected Only the class itself, derived classes and friends have access

private Only the class itself and friends have access

When the type is defined using the class keyword, the default access specifier is private, but if the type is defined

using the struct keyword, the default access specifier is public:

Access specifiers are mostly used to limit access to internal fields and methods, and force the programmer to use a

specific interface, for example to force use of getters and setters instead of referencing a variable directly:

Using protected is useful for allowing certain functionality of the type to be only accessible to the derived classes,

for example, in the following code, the method calculateValue() is only accessible to classes deriving from the

// Compilation error: cannot derive from final class:

class B : public A {

};

class A {

};

// OK.

class B final : public A {

};

// Compilation error: cannot derive from final class B.

class C : public B {

};

struct MyStruct { int x; };

class MyClass { int x; };

MyStruct s;

s.x = 9; // well formed, because x is public

MyClass c;

c.x = 9; // ill-formed, because x is private

class MyClass {

public: /* Methods: */

int x() const noexcept { return m_x; }

void setX(int const x) noexcept { m_x = x; }

private: /* Fields: */

int m_x;

};

172

base class Plus2Base, such as FortyTwo:

Note that the friend keyword can be used to add access exceptions to functions or types for accessing protected

and private members.

The public, protected, and private keywords can also be used to grant or limit access to base class subobjects.

See the Inheritance example.

Section 34.4: Inheritance

Classes/structs can have inheritance relations.

If a class/struct B inherits from a class/struct A, this means that B has as a parent A. We say that B is a derived

class/struct from A, and A is the base class/struct.

There are 3 forms of inheritance for a class/struct:

public

private

protected

Note that the default inheritance is the same as the default visibility of members: public if you use the struct

keyword, and private for the class keyword.

It's even possible to have a class derive from a struct (or vice versa). In this case, the default inheritance is

controlled by the child, so a struct that derives from a class will default to public inheritance, and a class that

derives from a struct will have private inheritance by default.

public inheritance:

struct Plus2Base {

int value() noexcept { return calculateValue() + 2; }

protected: /* Methods: */

virtual int calculateValue() noexcept = 0;

};

struct FortyTwo: Plus2Base {

protected: /* Methods: */

int calculateValue() noexcept final override { return 40; }

};

struct A

{

public:

int p1;

protected:

int p2;

private:

int p3;

};

//Make B inherit publicly (default) from A

struct B : A

{

};

struct B : public A // or just `struct B : A`

{

173

private inheritance:

protected inheritance:

Note that although protected inheritance is allowed, the actual use of it is rare. One instance of how protected

inheritance is used in application is in partial base class specialization (usually referred to as "controlled

polymorphism").

When OOP was relatively new, (public) inheritance was frequently said to model an "IS-A" relationship. That is,

public inheritance is correct only if an instance of the derived class is also an instance of the base class.

This was later refined into the Liskov Substitution Principle: public inheritance should only be used when/if an

instance of the derived class can be substituted for an instance of the base class under any possible circumstance

(and still make sense).

Private inheritance is typically said to embody a completely different relationship: "is implemented in terms of"

void foo()

{

p1 = 0; //well formed, p1 is public in B p2

= 0; //well formed, p2 is protected in B p3

= 0; //ill formed, p3 is private in A

}

};

B b;

b.p1 = 1; //well formed, p1 is public

b.p2 = 1; //ill formed, p2 is protected

b.p3 = 1; //ill formed, p3 is inaccessible

struct B : private A

{

void foo()

{

p1 = 0; //well formed, p1 is private in B

p2 = 0; //well formed, p2 is private in B

p3 = 0; //ill formed, p3 is private in A

}

};

B b;

b.p1 = 1; //ill formed, p1 is private

b.p2 = 1; //ill formed, p2 is private

b.p3 = 1; //ill formed, p3 is inaccessible

struct B : protected A

{

void foo()

{

p1 = 0; //well formed, p1 is protected in B

p2 = 0; //well formed, p2 is protected in B

p3 = 0; //ill formed, p3 is private in A

}

};

B b;

b.p1 = 1; //ill formed, p1 is protected b.p2

= 1; //ill formed, p2 is protected b.p3 =

1; //ill formed, p3 is inaccessible

https://en.wikipedia.org/wiki/Liskov_substitution_principle

174

(sometimes called a "HAS-A" relationship). For example, a Stack class could inherit privately from a Vector class.

Private inheritance bears a much greater similarity to aggregation than to public inheritance.

Protected inheritance is almost never used, and there's no general agreement on what sort of relationship it

embodies.

Section 34.5: Friendship

The friend keyword is used to give other classes and functions access to private and protected members of the

class, even through they are defined outside the class`s scope.

class Animal{

private:

double weight;

double height;

public:

friend void printWeight(Animal animal);

friend class AnimalPrinter;

// A common use for a friend function is to overload the operator<< for streaming. friend

std::ostream& operator<<(std::ostream& os, Animal animal);

};

void printWeight(Animal animal)

{

std::cout << animal.weight << "\n";

}

class AnimalPrinter

{

public:

void print(const Animal& animal)

{

// Because of the `friend class AnimalPrinter;" declaration, we are

// allowed to access private members here.

std::cout << animal.weight << ", " << animal.height << std::endl;

}

}

std::ostream& operator<<(std::ostream& os, Animal animal)

{

os << "Animal height: " << animal.height << "\n";

return os;

}

int main() {

Animal animal = {10, 5};

printWeight(animal);

AnimalPrinter aPrinter;

aPrinter.print(animal);

std::cout << animal;

}

10

10, 5

Animal height: 5

175

Section 34.6: Virtual Inheritance

When using inheritance, you can specify the virtual keyword:

When class B has virtual base A it means that A will reside in most derived class of inheritance tree, and thus that

most derived class is also responsible for initializing that virtual base:

If we un-comment /*A(88)*/ we won't get any error since C is now initializing it's indirect virtual base A.

Also note that when we're creating variable object, most derived class is C, so C is responsible for creating(calling

constructor of) A and thus value of A::member is 88, not 5 (as it would be if we were creating object of type B).

It is useful when solving the diamond problem.:

B and C both inherit from A, and D inherits from B and C, so there are 2 instances of A in D! This results in

ambiguity when you're accessing member of A through D, as the compiler has no way of knowing from which class

do you want to access that member (the one which B inherits, or the one that is inherited byC?).

Virtual inheritance solves this problem: Since virtual base resides only in most derived object, there will be only one

instance of A in D.

struct A{};

struct B: public virtual A{};

struct A

{

int member;

A(int param)

{

member = param;

}

};

struct B: virtual A

{

B(): A(5){}

};

struct C: B

{

C(): /*A(88)*/ {}

};

void f()

{

C object; //error since C is not initializing it's indirect virtual base `A`

}

A

/ \

B

C

A A

| |

B C

\ / \ /

D D

virtual inheritance normal inheritance

struct A

{

void foo() {}

https://en.wikipedia.org/wiki/Multiple_inheritance#The_diamond_problem

176

Removing the comments resolves the ambiguity.

Section 34.7: Private inheritance: restricting base class
interface

Private inheritance is useful when it is required to restrict the public interface of the class:

This approach efficiently prevents an access to the A public methods by casting to the A pointer or reference:

In the case of public inheritance such casting will provide access to all the A public methods despite on alternative

ways to prevent this in derived B, like hiding:

or private using:

then for both cases it is possible:

};

struct B : public /*virtual*/ A {};

struct C : public /*virtual*/ A {};

struct D : public B, public C

{

void bar()

{

foo(); //Error, which foo? B::foo() or C::foo()? - Ambiguous

}

};

class A {

public:

int move();

int turn();

};

class B : private A {

public:

using A::turn;

};

B b;

b.move(); // compile error

b.turn(); // OK

B b;

A& a = static_cast<A&>(b); // compile error

class B : public A {

private:

int move();

};

class B : public A {

private:

using A::move;

};

B b;

177

Section 34.8: Accessing class members

To access member variables and member functions of an object of a class, the . operator is used:

When accessing the members of a class via a pointer, the -> operator is commonly used. Alternatively, the instance

can be dereferenced and the . operator used, although this is less common:

When accessing static class members, the :: operator is used, but on the name of the class instead of an instance

of it. Alternatively, the static member can be accessed from an instance or a pointer to an instance using the . or ->

operator, respectively, with the same syntax as accessing non-static members.

A& a = static_cast<A&>(b); // OK for public inheritance

a.move(); // OK

struct SomeStruct {

int a;

int b;

void foo() {}

};

SomeStruct var;

// Accessing member variable a in var.

std::cout << var.a << std::endl;

// Assigning member variable b in var.

var.b = 1;

// Calling a member function.

var.foo();

struct SomeStruct {

int a;

int b;

void foo() {}

};

SomeStruct var;

SomeStruct *p = &var;

// Accessing member variable a in var via pointer.

std::cout << p->a << std::endl;

std::cout << (*p).a << std::endl;

// Assigning member variable b in var via pointer.

p->b = 1;

(*p).b = 1;

// Calling a member function via a pointer.

p->foo();

(*p).foo();

struct SomeStruct {

int a;

int b;

void foo() {}

static int c;

static void bar() {}

};

int SomeStruct::c;

SomeStruct var;

SomeStruct* p = &var;

// Assigning static member variable c in struct SomeStruct.

178

Background

The -> operator is needed because the member access operator . has precedence over the dereferencing operator

*.

One would expect that *p.a would dereference p (resulting in a reference to the object p is pointing to) and then

accessing its member a. But in fact, it tries to access the member a of p and then dereference it. I.e. *p.a is

equivalent to *(p.a). In the example above, this would result in a compiler error because of two facts: First, p is a

pointer and does not have a member a. Second, a is an integer and, thus, can't be dereferenced.

The uncommonly used solution to this problem would be to explicitly control the precedence: (*p).a

Instead, the -> operator is almost always used. It is a short-hand for first dereferencing the pointer and then

accessing it. I.e. (*p).a is exactly the same as p->a.

The :: operator is the scope operator, used in the same manner as accessing a member of a namespace. This is

because a static class member is considered to be in that class' scope, but isn't considered a member of instances

of that class. The use of normal . and -> is also allowed for static members, despite them not being instance

members, for historical reasons; this is of use for writing generic code in templates, as the caller doesn't need to be

concerned with whether a given member function is static or non-static.

Section 34.9: Member Types and Aliases

A class or struct can also define member type aliases, which are type aliases contained within, and treated as

members of, the class itself.

Like static members, these typedefs are accessed using the scope operator, ::.

As with normal type aliases, each member type alias is allowed to refer to any type defined or aliased before, but

not after, its definition. Likewise, a typedef outside the class definition can refer to any accessible typedefs within

the class definition, provided it comes after the class definition.

SomeStruct::c = 5;

// Accessing static member variable c in struct SomeStruct, through var and p.

var.a = var.c;

var.b = p->c;

// Calling a static member function.

SomeStruct::bar();

var.bar();

p->bar();

struct IHaveATypedef {

typedef int MyTypedef;

};

struct IHaveATemplateTypedef {

template<typename T>

using MyTemplateTypedef = std::vector<T>;

};

IHaveATypedef::MyTypedef i = 5; // i is an int.

IHaveATemplateTypedef::MyTemplateTypedef<int> v; // v is a std::vector<int>.

template<typename T>

struct Helper {

179

Member type aliases can be declared with any access level, and will respect the appropriate access modifier.

This can be used to provide a level of abstraction, allowing a class' designer to change its internal workings without

breaking code that relies on it.

In this situation, if the helper class is changed from SomeComplexType to some other type, only the typedef and the

T get() const { return static_cast<T>(42); }

};

struct IHaveTypedefs {

// typedef MyTypedef NonLinearTypedef; // Error if uncommented.

typedef int MyTypedef;

typedef Helper<MyTypedef> MyTypedefHelper;

};

IHaveTypedefs::MyTypedef i; // x_i is an int.

IHaveTypedefs::MyTypedefHelper hi; // x_hi is a Helper<int>.

typedef IHaveTypedefs::MyTypedef TypedefBeFree;

TypedefBeFree ii; // ii is an int.

class TypedefAccessLevels {

typedef int PrvInt;

protected:

typedef int ProInt;

public:

typedef int PubInt;

};

TypedefAccessLevels::PrvInt prv_i; // Error: TypedefAccessLevels::PrvInt is private.

TypedefAccessLevels::ProInt pro_i; // Error: TypedefAccessLevels::ProInt is protected.

TypedefAccessLevels::PubInt pub_i; // Good.

class Derived : public TypedefAccessLevels {

PrvInt prv_i; // Error: TypedefAccessLevels::PrvInt is private.

ProInt pro_i; // Good.

PubInt pub_i; // Good.

};

class Something {

friend class SomeComplexType;

short s;

// ...

public:

typedef SomeComplexType MyHelper;

MyHelper get_helper() const { return MyHelper(8, s, 19.5, "shoe", false); }

// ...

};

// ...

Something s;

Something::MyHelper hlp = s.get_helper();

180

friend declaration would need to be modified; as long as the helper class provides the same functionality, any code

that uses it as Something::MyHelper instead of specifying it by name will usually still work without any

modifications. In this manner, we minimise the amount of code that needs to be modified when the underlying

implementation is changed, such that the type name only needs to be changed in one location.

This can also be combined with decltype, if one so desires.

In this situation, changing the implementation of SomethingElse::helper will automatically change the typedef for

us, due to decltype. This minimises the number of modifications necessary when we want to change helper, which

minimises the risk of human error.

As with everything, however, this can be taken too far. If the typename is only used once or twice internally and

zero times externally, for example, there's no need to provide an alias for it. If it's used hundreds or thousands of

times throughout a project, or if it has a long enough name, then it can be useful to provide it as a typedef instead

of always using it in absolute terms. One must balance forwards compatibility and convenience with the amount of

unnecessary noise created.

This can also be used with template classes, to provide access to the template parameters from outside the class.

This is commonly used with containers, which will usually provide their element type, and other helper types, as

member type aliases. Most of the containers in the C++ standard library, for example, provide the following 12

helper types, along with any other special types they might need.

class SomethingElse {

AnotherComplexType<bool, int, SomeThirdClass> helper;

public:

typedef decltype(helper) MyHelper;

private:

InternalVariable<MyHelper> ivh;

// ...

public:

MyHelper& get_helper() const { return helper; }

// ...

};

template<typename T>

class SomeClass {

// ...

public:

typedef T MyParam;

MyParam getParam() { return static_cast<T>(42); }

};

template<typename T>

typename T::MyParam some_func(T& t) {

return t.getParam();

}

SomeClass<int> si;

int i = some_func(si);

template<typename T>

181

Prior to C++11, it was also commonly used to provide a "template typedef" of sorts, as the feature wasn't yet

available; these have become a bit less common with the introduction of alias templates, but are still useful in some

situations (and are combined with alias templates in other situations, which can be very useful for obtaining

individual components of a complex type such as a function pointer). They commonly use the name type for their

type alias.

This was often used with types with multiple template parameters, to provide an alias that defines one or more of

the parameters.

class SomeContainer {

// ...

public:

// Let's provide the same helper types as most standard containers.

typedef T value_type;

typedef std::allocator<value_type> allocator_type;

typedef value_type& reference;

typedef const value_type& const_reference;

typedef value_type* pointer;

typedef const value_type* const_pointer;

typedef MyIterator<value_type> iterator; typedef

MyConstIterator<value_type> const_iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

};

template<typename T>

struct TemplateTypedef {

typedef T type;

}

TemplateTypedef<int>::type i; // i is an int.

template<typename T, size_t SZ, size_t D>

class Array { /* ... */ };

template<typename T, size_t SZ>

struct OneDArray {

typedef Array<T, SZ, 1> type;

};

template<typename T, size_t SZ>

struct TwoDArray {

typedef Array<T, SZ, 2> type;

};

template<typename T>

struct MonoDisplayLine {

typedef Array<T, 80, 1> type;

};

OneDArray<int, 3>::type arr1i; // arr1i is an Array<int, 3, 1>.

TwoDArray<short, 5>::type arr2s; // arr2s is an Array<short, 5, 2>.

MonoDisplayLine<char>::type arr3c; // arr3c is an Array<char, 80, 1>.

182

Section 34.10: Nested Classes/Structures

A class or struct can also contain another class/struct definition inside itself, which is called a "nested class"; in

this situation, the containing class is referred to as the "enclosing class". The nested class definition is considered to

be a member of the enclosing class, but is otherwise separate.

From outside of the enclosing class, nested classes are accessed using the scope operator. From inside the

enclosing class, however, nested classes can be used without qualifiers:

As with a non-nested class/struct, member functions and static variables can be defined either within a nested

class, or in the enclosing namespace. However, they cannot be defined within the enclosing class, due to it being

considered to be a different class than the nested class.

As with non-nested classes, nested classes can be forward declared and defined later, provided they are defined

before being used directly.

struct Outer {

struct Inner { };

};

struct Outer {

struct Inner { };

Inner in;

};

// ...

Outer o;

Outer::Inner i = o.in;

// Bad.

struct Outer {

struct Inner {

void do_something();

};

void Inner::do_something() {}

};

// Good.

struct Outer {

struct Inner {

void do_something();

};

};

void Outer::Inner::do_something() {}

class Outer {

class Inner1;

class Inner2;

class Inner1 {};

Inner1 in1;

183

Version < C++11

Prior to C++11, nested classes only had access to type names, static members, and enumerators from the

enclosing class; all other members defined in the enclosing class were off-limits.

Version ≥ C++11

As of C++11, nested classes, and members thereof, are treated as if they were friends of the enclosing class, and

can access all of its members, according to the usual access rules; if members of the nested class require the ability

to evaluate one or more non-static members of the enclosing class, they must therefore be passed an instance:

Conversely, the enclosing class is not treated as a friend of the nested class, and thus cannot access its private

members without explicitly being granted permission.

Inner2* in2p;

public:

Outer();

~Outer();

};

class Outer::Inner2 {};

Outer::Outer() : in1(Inner1()), in2p(new Inner2) {}

Outer::~Outer() {

if (in2p) { delete in2p; }

}

class Outer {

struct Inner {

int get_sizeof_x() {

return sizeof(x); // Legal (C++11): x is unevaluated, so no instance is required.

}

int get_x() {

return x; // Illegal: Can't access non-static member without an instance.

}

int get_x(Outer& o) {

return o.x; // Legal (C++11): As a member of Outer, Inner can access private members.

}

};

int x;

};

class Outer {

class Inner {

// friend class Outer;

int x;

};

Inner in;

public:

int get_x() {

return in.x; // Error: int Outer::Inner::x is private.

// Uncomment "friend" line above to fix.

}

184

Friends of a nested class are not automatically considered friends of the enclosing class; if they need to be friends

of the enclosing class as well, this must be declared separately. Conversely, as the enclosing class is not

automatically considered a friend of the nested class, neither will friends of the enclosing class be considered

friends of the nested class.

As with all other class members, nested classes can only be named from outside the class if they have public

access. However, you are allowed to access them regardless of access modifier, as long as you don't explicitly name

them.

You can also create a type alias for a nested class. If a type alias is contained in the enclosing class, the nested type

and the type alias can have different access modifiers. If the type alias is outside the enclosing class, it requires that

either the nested class, or a typedef thereof, be public.

};

class Outer {

friend void barge_out(Outer& out, Inner& in);

class Inner {

friend void barge_in(Outer& out, Inner& in);

int i;

};

int o;

};

void barge_in(Outer& out, Outer::Inner& in) {

int i = in.i; // Good.

int o = out.o; // Error: int Outer::o is private.

}

void barge_out(Outer& out, Outer::Inner& in) {

int i = in.i; // Error: int Outer::Inner::i is private.

int o = out.o; // Good.

}

class Outer {

struct Inner {

void func() { std::cout << "I have no private taboo.\n"; }

};

public:

static Inner make_Inner() { return Inner(); }

};

// ...

Outer::Inner oi; // Error: Outer::Inner is private.

auto oi = Outer::make_Inner(); // Good.

oi.func(); // Good.

Outer::make_Inner().func(); // Good.

class Outer {

class Inner_ {};

public:

typedef Inner_ Inner;

185

As with other classes, nested classes can both derive from or be derived from by other classes.

This can be useful in situations where the enclosing class is derived from by another class, by allowing the

programmer to update the nested class as necessary. This can be combined with a typedef to provide a consistent

name for each enclosing class' nested class:

};

typedef Outer::Inner ImOut; // Good.

typedef Outer::Inner_ ImBad; // Error.

// ...

Outer::Inner oi; // Good.

Outer::Inner_ oi; // Error.

ImOut oi; // Good.

struct Base {};

struct Outer {

struct Inner : Base {};

};

struct Derived : Outer::Inner {};

class BaseOuter {

struct BaseInner_ {

virtual void do_something() {}

virtual void do_something_else();

} b_in;

public:

typedef BaseInner_ Inner;

virtual ~BaseOuter() = default;

virtual Inner& getInner() { return b_in; }

};

void BaseOuter::BaseInner_::do_something_else() {}

// ---

class DerivedOuter : public BaseOuter {

// Note the use of the qualified typedef; BaseOuter::BaseInner_ is private.

struct DerivedInner_ : BaseOuter::Inner {

void do_something() override {}

void do_something_else() override;

} d_in;

public:

typedef DerivedInner_ Inner;

BaseOuter::Inner& getInner() override { return d_in; }

};

void DerivedOuter::DerivedInner_::do_something_else() {}

// ...

186

In the above case, both BaseOuter and DerivedOuter supply the member type Inner, as BaseInner_ and

DerivedInner_, respectively. This allows nested types to be derived without breaking the enclosing class' interface,

and allows the nested type to be used polymorphically.

Section 34.11: Unnamed struct/class

Unnamed struct is allowed (type has no name)

or

and later

but NOT anonymous struct (unnamed type and unnamed object)

Note: Some compilers allow anonymous struct as extension.

// Calls BaseOuter::BaseInner_::do_something();

BaseOuter* b = new BaseOuter;

BaseOuter::Inner& bin = b->getInner();

bin.do_something();

b->getInner().do_something();

// Calls DerivedOuter::DerivedInner_::do_something();

BaseOuter* d = new DerivedOuter;

BaseOuter::Inner& din = d->getInner();

din.do_something();

d->getInner().do_something();

void foo()

{

struct /* No name */ {

float x;

float y;

} point;

point.x = 42;

}

struct Circle

{

struct /* No name */ {

float x;

float y;

} center; // but a member name

float radius;

};

Circle circle;

circle.center.x = 42.f;

struct InvalidCircle

{

struct /* No name */ {

float centerX;

float centerY;

}; // No member either.

float radius;

};

187

Version ≥ C++11

lamdba can be seen as a special unnamed struct.

decltype allows to retrieve the type of unnamed struct:

unnamed struct instance can be parameter of template method:

Section 34.12: Static class members

A class is also allowed to have static members, which can be either variables or functions. These are considered to

be in the class' scope, but aren't treated as normal members; they have static storage duration (they exist from the

start of the program to the end), aren't tied to a particular instance of the class, and only one copy exists for the

entire class.

class Example {

static int num_instances; // Static data member (static member variable).

int i; // Non-static member variable.

public:

static std::string static_str; // Static data member (static member variable).

static int static_func(); // Static member function.

// Non-static member functions can modify static member variables.

Example() { ++num_instances; }

void set_str(const std::string& str);

};

int Example::num_instances;

std::string Example::static_str = "Hello.";

// ...

Example one, two, three;

// Each Example has its own "i", such that:

// (&one.i != &two.i)

// (&one.i != &three.i)

// (&two.i != &three.i).

// All three Examples share "num_instances", such that:

decltype(circle.point) otherPoint;

void print_square_coordinates()

{

const struct {float x; float y;} points[] = {

{-1, -1}, {-1, 1}, {1, -1}, {1, 1}

};

// for range relies on `template <class T, std::size_t N> std::begin(T (&)[N])` for

(const auto& point : points) {

std::cout << "{" << point.x << ", " << point.y << "}\n";

}

decltype(points[0]) topRightCorner{1, 1};

auto it = std::find(points, points + 4, topRightCorner);

std::cout << "top right corner is the "

<< 1 + std::distance(points, it) << "th\n";

}

188

Static member variables are not considered to be defined inside the class, only declared, and thus have their

definition outside the class definition; the programmer is allowed, but not required, to initialise static variables in

their definition. When defining the member variables, the keyword static is omitted.

Due to this, static variables can be incomplete types (apart from void), as long as they're later defined as a

complete type.

Static member functions can be defined inside or outside the class definition, as with normal member functions. As

with static member variables, the keyword static is omitted when defining static member functions outside the

class definition.

// (&one.num_instances == &two.num_instances)

// (&one.num_instances == &three.num_instances)

// (&two.num_instances == &three.num_instances)

class Example {

static int num_instances; // Declaration.

public:

static std::string static_str; // Declaration.

// ...

};

int Example::num_instances; // Definition. Zero-initialised.

std::string Example::static_str = "Hello."; // Definition.

struct ForwardDeclared;

class ExIncomplete {

static ForwardDeclared fd;

static ExIncomplete i_contain_myself;

static int an_array[];

};

struct ForwardDeclared {};

ForwardDeclared ExIncomplete::fd;

ExIncomplete ExIncomplete::i_contain_myself;

int ExIncomplete::an_array[5];

// For Example above, either...

class Example {

// ...

public:

static int static_func() { return num_instances; }

// ...

void set_str(const std::string& str) { static_str = str; }

};

// Or...

class Example { /* ... */ };

int Example::static_func() { return num_instances; }

189

If a static member variable is declared const but not volatile, and is of an integral or enumeration type, it can be

initialised at declaration, inside the class definition.

Version ≥ C++11

As of C++11, static member variables of LiteralType types (types that can be constructed at compile time,

according to constexpr rules) can also be declared as constexpr; if so, they must be initialised within the class

definition.

If a const or constexpr static member variable is odr-used (informally, if it has its address taken or is assigned to a

reference), then it must still have a separate definition, outside the class definition. This definition is not allowed to

contain an initialiser.

As static members aren't tied to a given instance, they can be accessed using the scope operator, ::.

They can also be accessed as if they were normal, non-static members. This is of historical significance, but is used

less commonly than the scope operator to prevent confusion over whether a member is static or non-static.

void Example::set_str(const std::string& str) { static_str = str; }

enum E { VAL = 5 };

struct ExConst {

const static int ci = 5;

static const E ce = VAL;

const static double cd = 5;

static const volatile int cvi = 5;

// Good.

// Good.

// Error.

// Error.

const static double good_cd;

static const volatile int good_cvi;

};

const double ExConst::good_cd = 5; // Good.

const volatile int ExConst::good_cvi = 5; // Good.

struct ExConstexpr {

constexpr static int ci = 5;

static constexpr double cd = 5;

constexpr static int carr[] = { 1, 1, 2
};

// Good.

// Good.

// Good.

static constexpr ConstexprConstructibleClass c{}; // Good.

constexpr static int bad_ci; // Error.

};

constexpr int ExConstexpr::bad_ci = 5; // Still an error.

struct ExODR {

static const int odr_used = 5;

};

// const int ExODR::odr_used;

const int* odr_user = & ExODR::odr_used; // Error; uncomment above line to resolve.

std::string str = Example::static_str;

Example ex;

std::string rts = ex.static_str;

190

Class members are able to access static members without qualifying their scope, as with non-static class members.

They cannot be mutable, nor would they need to be; as they aren't tied to any given instance, whether an instance

is or isn't const doesn't affect static members.

Static members respect access modifiers, just like non-static members.

As they aren't tied to a given instance, static member functions have no this pointer; due to this, they can't access

non-static member variables unless passed an instance.

class ExTwo {

static int num_instances;

int my_num;

public:

ExTwo() : my_num(num_instances++) {}

static int get_total_instances() { return num_instances; }

int get_instance_number() const { return my_num; }

};

int ExTwo::num_instances;

struct ExDontNeedMutable {

int immuta;

mutable int muta;

static int i;

ExDontNeedMutable() : immuta(-5), muta(-5) {}

};

int ExDontNeedMutable::i;

// ...

const ExDontNeedMutable dnm;

dnm.immuta = 5; // Error: Can't modify read-only object.

dnm.muta = 5; // Good. Mutable fields of const objects can be written.

dnm.i = 5; // Good. Static members can be written regardless of an instance's const-ness.

class ExAccess {

static int prv_int;

protected:

static int pro_int;

public:

static int pub_int;

};

int ExAccess::prv_int;

int ExAccess::pro_int;

int ExAccess::pub_int;

// ...

int x1 = ExAccess::prv_int; // Error: int ExAccess::prv_int is private.

int x2 = ExAccess::pro_int; // Error: int ExAccess::pro_int is protected.

int x3 = ExAccess::pub_int; // Good.

191

Due to not having a this pointer, their addresses can't be stored in pointers-to-member-functions, and are instead

stored in normal pointers-to-functions.

Due to not having a this pointer, they also cannot be const or volatile, nor can they have ref-qualifiers. They also

cannot be virtual.

As they aren't tied to a given instance, static member variables are effectively treated as special global variables;

they're created when the program starts, and destroyed when it exits, regardless of whether any instances of the

class actually exist. Only a single copy of each static member variable exists (unless the variable is dec lared

thread_local (C++11 or later), in which case there's one copy per thread).

Static member variables have the same linkage as the class, whether the class has external or internal linkage. Local

classes and unnamed classes aren't allowed to have static members.

Section 34.13: Multiple Inheritance

Aside from single inheritance:

You can also have multiple inheritance:

class ExInstanceRequired {

int i;

public:

ExInstanceRequired() : i(0) {}

static void bad_mutate() { ++i *= 5; } // Error.

static void good_mutate(ExInstanceRequired& e) { ++e.i *= 5; } // Good.

};

struct ExPointer {

void nsfunc() {}

static void sfunc() {}

};

typedef void (ExPointer::* mem_f_ptr)();

typedef void (*f_ptr)();

mem_f_ptr p_sf = &ExPointer::sfunc; // Error.

f_ptr p_sf = &ExPointer::sfunc; // Good.

struct ExCVQualifiersAndVirtual {

static void func()

static void cfunc() const

static void vfunc() volatile

{} // Good.

{} // Error.

{} // Error.

static void cvfunc() const volatile {} // Error.

static void rfunc() & {} // Error.

static void rvfunc() && {} // Error.

virtual static void vsfunc()

static virtual void svfunc()

{} // Error.

{} // Error.

};

class A {};

class B : public A {};

class A {};

192

C will now have inherit from A and B at the same time.

Note: this can lead to ambiguity if the same names are used in multiple inherited classs or structs. Be careful!

Ambiguity in Multiple Inheritance

Multiple inheritance may be helpful in certain cases but, sometimes odd sort of problem encounters while using

multiple inheritance.

For example: Two base classes have functions with same name which is not overridden in derived class and if you

write code to access that function using object of derived class, compiler shows error because, it cannot determine

which function to call. Here is a code for this type of ambiguity in multiple inheritance.

But, this problem can be solved using scope resolution function to specify which function to class either base1 or

base2:

Section 34.14: Non-static member functions

A class can have non-static member functions, which operate on individual instances of the class.

class B {};

class C : public A, public B {};

class base1

{

public:

void funtion()

{ //code for base1 function }

};

class base2

{

void function()

{ // code for base2 function }

};

class derived : public base1, public base2

{

};

int main()

{

derived obj;

// Error because compiler can't figure out which function to call

//either function() of base1 or base2 .

obj.function()

}

int main()

{

obj.base1::function(); // Function of class base1 is called.

obj.base2::function(); // Function of class base2 is called.

}

class CL {

public:

void member_function() {}

193

These functions are called on an instance of the class, like so:

They can be defined either inside or outside the class definition; if defined outside, they are specified as being in

the class' scope.

They can be CV-qualified and/or ref-qualified, affecting how they see the instance they're called upon; the function

will see the instance as having the specified cv-qualifier(s), if any. Which version is called will be based on the

instance's cv-qualifiers. If there is no version with the same cv-qualifiers as the instance, then a more-cv-qualified

version will be called if available.

Version ≥ C++11

Member function ref-qualifiers indicate whether or not the function is intended to be called on rvalue instances,

and use the same syntax as function cv-qualifiers.

CV-qualifiers and ref-qualifiers can also be combined if necessary.

};

CL instance;

instance.member_function();

struct ST {

void defined_inside() {}

void defined_outside();

};

void ST::defined_outside() {}

struct CVQualifiers {

void func()

void func() const

{} // 1: Instance is non-cv-qualified.

{} // 2: Instance is const.

void cv_only() const volatile {}

};

CVQualifiers

 non_cv_instance

; const CVQualifiers c_instance;

non_cv_instance.func(); // Calls #1.

c_instance.func(); // Calls #2.

non_cv_instance.cv_only(); // Calls const volatile version.

c_instance.cv_only(); // Calls const volatile version.

struct RefQualifiers {

void func() & {} // 1: Called on normal instances.

void func() && {} // 2: Called on rvalue (temporary) instances.

};

RefQualifiers rf;

rf.func(); // Calls #1.

RefQualifiers{}.func(); // Calls #2.

struct BothCVAndRef {

void func() const& {} // Called on normal instances. Sees instance as const.

void func() && {} // Called on temporary instances.

};

194

They can also be virtual; this is fundamental to polymorphism, and allows a child class(es) to provide the same

interface as the parent class, while supplying their own functionality.

For more information, see here.

struct Base {

virtual void func() {}

};

struct Derived {

virtual void func() {}

};

Base* bp = new Base;

Base* dp = new

Derived;

bp.func(); // Calls Base::func().

dp.func(); // Calls Derived::func().

195

Chapter 35: Function Overloading
See also separate topic on Overload Resolution

Section 35.1: What is Function Overloading?

Function overloading is having multiple functions declared in the same scope with the exact same name exist in the

same place (known as scope) differing only in their signature, meaning the arguments they accept.

Suppose you are writing a series of functions for generalized printing capabilities, beginning with std::string:

This works fine, but suppose you want a function that also accepts an int and prints that too. You could write:

But because the two functions accept different parameters, you can simply write:

Now you have 2 functions, both named print, but with different signatures. One accepts std::string, the other one

an int. Now you can call them without worrying about different names:

Instead of:

When you have overloaded functions, the compiler infers which of the functions to call from the parameters you

provide it. Care must be taken when writing function overloads. For example, with implicit type conversions:

Now it's not immediately clear which overload of print is called when you write:

void print(const std::string &str)

{

std::cout << "This is a string: " << str << std::endl;

}

void print_int(int num)

{

std::cout << "This is an int: " << num << std::endl;

}

void print(int num)

{

std::cout << "This is an int: " << num << std::endl;

}

print("Hello world!"); //prints "This is a string: Hello world!"

print(1337); //prints "This is an int: 1337"

print("Hello world!");

print_int(1337);

void print(int num)

{

std::cout << "This is an int: " << num << std::endl;

}

void print(double num)

{

std::cout << "This is a double: " << num << std::endl;

}

196

And you might need to give your compiler some clues, like:

Some care also needs to be taken when writing overloads that accept optional parameters:

Because there's no way for the compiler to tell if a call like print(17) is meant for the first or second function

because of the optional second parameter, this will fail to compile.

Section 35.2: Return Type in Function Overloading

Note that you cannot overload a function based on its return type. For example:

This will cause a compilation error as the compiler will not be able to work out which version of getValue to call,

even though the return type is assigned to an int.

Section 35.3: Member Function cv-qualifier Overloading

Functions within a class can be overloaded for when they are accessed through a cv -qualified reference to that

class; this is most commonly used to overload for const, but can be used to overload for volatile and const

volatile, too. This is because all non-static member functions take this as a hidden parameter, which the cv-

qualifiers are applied to. This is most commonly used to overload for const, but can also be used for volatile and

const volatile.

This is necessary because a member function can only be called if it is at least as cv-qualified as the instance it's

called on. While a non-const instance can call both const and non-const members, a const instance can only call const

members. This allows a function to have different behaviour depending on the calling instance's cv-qualifiers, and

allows the programmer to disallow functions for an undesired cv-qualifier(s) by not providing a version with that

qualifier(s).

print(5);

print(static_cast<double>(5));

print(static_cast<int>(5));

print(5.0);

// WRONG CODE

void print(int num1, int num2 = 0)

{

//num2 defaults to 0 if not included

std::cout << "These are ints: << num1 << " and " << num2 <<

std::endl;

}

void print(int num)

{

std::cout << "This is an int: " << num << std::endl;

}

// WRONG CODE

std::string getValue()

{

return "hello";

}

int getValue()

{

return 0;

}

int x = getValue();

197

A class with some basic print method could be const overloaded like so:

This is a key tenet of const correctness: By marking member functions as const, they are allowed to be called on

const instances, which in turn allows functions to take instances as const pointers/references if they don't need to

modify them. This allows code to specify whether it modifies state by taking unmodified parameters as const and

modified parameters without cv-qualifiers, making code both safer and more readable.

#include <iostream>

class Integer

{

public:

Integer(int i_): i{i_}{}

void print()

{

std::cout << "int: " << i << std::endl;

}

void print() const

{

std::cout << "const int: " << i << std::endl;

}

protected:

int i;

};

int main()

{

Integer i{5};

const Integer &ic = i;

i.print(); // prints "int: 5" ic.print();

// prints "const int: 5"

}

class ConstCorrect

{

public:

void good_func() const

{

std::cout << "I care not whether the instance is const." << std::endl;

}

void bad_func()

{

std::cout << "I can only be called on non-const, non-volatile instances." << std::endl;

}

};

void i_change_no_state(const ConstCorrect& cc)

{

std::cout << "I can take either a const or a non-const ConstCorrect." << std::endl;

cc.good_func(); // Good. Can be called from const or non-const instance.

cc.bad_func(); // Error. Can only be called from non-const instance.

}

void const_incorrect_func(ConstCorrect& cc)

{

198

A common usage of this is declaring accessors as const, and mutators as non-const.

No class members can be modified within a const member function. If there is some member that you really need

to modify, such as locking a std::mutex, you can declare it as mutable:

cc.good_func(); // Good. Can be called from const or non-const instance.

cc.bad_func(); // Good. Can only be called from non-const instance.

}

class Integer

{

public:

Integer(int i_): i{i_}{}

int get() const

{

std::lock_guard<std::mutex> lock{mut};

return i;

}

void set(int i_)

{

std::lock_guard<std::mutex> lock{mut};

i = i_;

}

protected:

int i;

mutable std::mutex mut;

};

199

Chapter 36: Operator Overloading
In C++, it is possible to define operators such as + and -> for user-defined types. For example, the <string> header

defines a + operator to concatenate strings. This is done by defining an operator function using the operator

keyword.

Section 36.1: Arithmetic operators

You can overload all basic arithmetic operators:

+ and +=

- and -=

* and *=

/ and /=

& and &=

| and |=

^ and ^=

>> and >>=

<< and <<=

Overloading for all operators is the same. Scroll down for explanation

Overloading outside of class/struct:

Overloading inside of class/struct:

Note: operator+ should return by non-const value, as returning a reference wouldn't make sense (it returns a new

object) nor would returning a const value (you should generally not return by const). The first argument is passed

//operator+ should be implemented in terms of operator+= T

operator+(T lhs, const T& rhs)

{

lhs += rhs;

return lhs;

}

T& operator+=(T& lhs, const T& rhs)

{

//Perform addition

return lhs;

}

//operator+ should be implemented in terms of operator+= T

operator+(const T& rhs)

{

*this += rhs;

return *this;

}

T& operator+=(const T& rhs)

{

//Perform addition

return *this;

}

200

by value, why? Because

1. You can't modify the original object (Object foobar = foo + bar; shouldn't modify foo after all, it wouldn't

make sense)

2. You can't make it const, because you will have to be able to modify the object (because operator+ is

implemented in terms of operator+=, which modifies the object)

Passing by const& would be an option, but then you will have to make a temporary copy of the passed object. By

passing by value, the compiler does it for you.

operator+= returns a reference to the itself, because it is then possible to chain them (don't use the same variable

though, that would be undefined behavior due to sequence points).

The first argument is a reference (we want to modify it), but not const, because then you wouldn't be able to

modify it. The second argument should not be modified, and so for performance reason is passed by const&

(passing by const reference is faster than by value).

Section 36.2: Array subscript operator

You can even overload the array subscript operator [].

You should always (99.98% of the time) implement 2 versions, a const and a not-const version, because if the object

is const, it should not be able to modify the object returned by [].

The arguments are passed by const& instead of by value because passing by reference is faster than by value, and

const so that the operator doesn't change the index accidentally.

The operators return by reference, because by design you can modify the object [] return, i.e:

You can only overload inside a class/struct:

Multiple subscript operators, [][]..., can be achieved via proxy objects. The following example of a simple row-

major matrix class demonstrates this:

std::vector<int> v{ 1 };

v[0] = 2; //Changes value of 1 to 2

//wouldn't be possible if not returned by reference

//I is the index type, normally an int

T& operator[](const I& index)

{

//Do something

//return something

}

//I is the index type, normally an int const

T& operator[](const I& index) const

{

//Do something

//return something

}

template<class T>

201

class matrix {

// class enabling [][] overload to access matrix elements

template <class C>

class proxy_row_vector {

using reference = decltype(std::declval<C>()[0]);

using const_reference = decltype(std::declval<C const>()[0]);

public:

proxy_row_vector(C& _vec, std::size_t _r_ind, std::size_t _cols)

: vec(_vec), row_index(_r_ind), cols(_cols) {}

const_reference operator[](std::size_t _col_index) const {

return vec[row_index*cols + _col_index];

}

reference operator[](std::size_t _col_index) {

return vec[row_index*cols + _col_index];

}

private:

C& vec;

std::size_t row_index; // row index to access

std::size_t cols; // number of columns in matrix

};

using const_proxy = proxy_row_vector<const std::vector<T>>;

using proxy = proxy_row_vector<std::vector<T>>;

public:

matrix() : mtx(), rows(0), cols(0) {}

matrix(std::size_t _rows, std::size_t _cols)

: mtx(_rows*_cols), rows(_rows), cols(_cols) {}

// call operator[] followed by another [] call to access matrix elements

const_proxy operator[](std::size_t _row_index) const {

return const_proxy(mtx, _row_index, cols);

}

proxy operator[](std::size_t _row_index) {

return proxy(mtx, _row_index, cols);

}

private:

std::vector<T> mtx;

std::size_t rows;

std::size_t cols;

};

Section 36.3: Conversion operators

You can overload type operators, so that your type can be implicitly converted into the specified type.

The conversion operator must be defined in a class/struct:

Note: the operator is const to allow const objects to be converted.

Example:

operator T() const { /* return something */ }

struct Text

{

std::string text;

// Now Text can be implicitly converted into a const char*

/*explicit*/ operator const char*() const { return text.data(); }

202

Section 36.4: Complex Numbers Revisited

The code below implements a very simple complex number type for which the underlying field is automatically

promoted, following the language's type promotion rules, under application of the four basic operators (+, -, *, and

/) with a member of a different field (be it another complex<T> or some scalar type).

This is intended to be a holistic example covering operator overloading alongside basic use of templates.

#include <type_traits>

namespace not_std{

using std::decay_t;

//--

// complex< value_t >

//--

template<typename value_t>

struct complex

{

value_t x;

value_t y;

complex &operator += (const value_t &x)

{

this->x += x;

return *this;

}

complex &operator += (const complex &other)

{

this->x += other.x;

this->y += other.y;

return *this;

}

complex &operator -= (const value_t &x)

{

this->x -= x;

return *this;

}

complex &operator -= (const complex &other)

{

this->x -= other.x;

this->y -= other.y;

return *this;

}

complex &operator *= (const value_t &s)

{

// ^^^^^^^

// to disable implicit conversion

};

Text t;

t.text = "Hello world!";

//Ok

const char* copyoftext = t;

203

this->x *= s;

this->y *= s;

return *this;

}

complex &operator *= (const complex &other)

{

(*this) = (*this) * other;

return *this;

}

complex &operator /= (const value_t &s)

{

this->x /= s;

this->y /= s;

return *this;

}

complex &operator /= (const complex &other)

{

(*this) = (*this) / other;

return *this;

}

complex(const value_t &x, const value_t &y)

: x{x}

, y{y}

{}

template<typename other_value_t>

explicit complex(const complex<other_value_t> &other)

: x{static_cast<const value_t &>(other.x)}

, y{static_cast<const value_t &>(other.y)}

{}

complex &operator = (const complex &) = default;

complex &operator = (complex &&) = default;

complex(const complex &) = default;

complex(complex &&) = default;

complex() = default;

};

// Absolute value squared

template<typename value_t>

value_t absqr(const complex<value_t> &z)

{ return z.x*z.x + z.y*z.y; }

//--

// operator - (negation)

//--

template<typename value_t>

complex<value_t> operator - (const complex<value_t> &z)

{ return {-z.x, -z.y}; }

//--

// operator +

//--

template<typename left_t,typename right_t>

auto operator + (const complex<left_t> &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a.x + b.x)>>

{ return{a.x + b.x, a.y + b.y}; }

204

template<typename left_t,typename right_t>

auto operator + (const left_t &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a + b.x)>>

{ return{a + b.x, b.y}; }

template<typename left_t,typename right_t>

auto operator + (const complex<left_t> &a, const right_t &b)

-> complex<decay_t<decltype(a.x + b)>>

{ return{a.x + b, a.y}; }

//--

// operator -

//--

template<typename left_t,typename right_t>

auto operator - (const complex<left_t> &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a.x - b.x)>>

{ return{a.x - b.x, a.y - b.y}; }

template<typename left_t,typename right_t>

auto operator - (const left_t &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a - b.x)>>

{ return{a - b.x, - b.y}; }

template<typename left_t,typename right_t>

auto operator - (const complex<left_t> &a, const right_t &b)

-> complex<decay_t<decltype(a.x - b)>>

{ return{a.x - b, a.y}; }

//--

// operator *

//--

template<typename left_t, typename right_t>

auto operator * (const complex<left_t> &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a.x * b.x)>>

{

return {

a.x*b.x - a.y*b.y,

a.x*b.y + a.y*b.x

};

}

template<typename left_t, typename right_t>

auto operator * (const left_t &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a * b.x)>>

{ return {a * b.x, a * b.y}; }

template<typename left_t, typename right_t>

auto operator * (const complex<left_t> &a, const right_t &b)

-> complex<decay_t<decltype(a.x * b)>>

{ return {a.x * b, a.y * b}; }

//--

// operator /

//--

template<typename left_t, typename right_t>

auto operator / (const complex<left_t> &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a.x / b.x)>>

{

const auto r = absqr(b);

205

return {

(a.x*b.x + a.y*b.y) / r,

(-a.x*b.y + a.y*b.x) / r

};

}

template<typename left_t, typename right_t>

auto operator / (const left_t &a, const complex<right_t> &b)

-> complex<decay_t<decltype(a / b.x)>>

{

const auto s = a/absqr(b);

return {

b.x * s,

-b.y * s

};

}

template<typename left_t, typename right_t>

auto operator / (const complex<left_t> &a, const right_t &b)

-> complex<decay_t<decltype(a.x / b)>>

{ return {a.x / b, a.y / b}; }

}// namespace not_std

int main(int argc, char **argv)

{

using namespace not_std;

complex<float> fz{4.0f, 1.0f};

// makes a complex<double>

auto dz = fz * 1.0;

// still a complex<double>

auto idz = 1.0f/dz;

// also a complex<double>

auto one = dz * idz;

// a complex<double> again

auto one_again = fz * idz;

// Operator tests, just to make sure everything compiles.

complex<float> a{1.0f, -2.0f};

complex<double> b{3.0, -4.0};

// All of these are complex<double>

auto c0 = a + b;

auto c1 = a - b;

auto c2 = a *

b; auto c3 = a /

b;

// All of these are complex<float>

auto d0 = a + 1;

auto d1 = 1 + a;

auto d2 = a - 1;

auto d3 = 1 - a;

auto d4 = a * 1;

auto d5 = 1 * a;

auto d6 = a / 1;

206

auto d7 = 1 / a;

// All of these are complex<double>

return 0;

}

auto e0 = b + 1;

auto e1 = 1 + b;

auto e2 = b - 1;

auto e3 = 1 - b;

auto e4 = b * 1;

auto e5 = 1 * b;

auto e6 = b / 1;

auto e7 = 1 / b;

Section 36.5: Named operators

You can extend C++ with named operators that are "quoted" by standard C++ operators.

First we start with a dozen-line library:

this doesn't do anything yet.

First, appending vectors

namespace named_operator {

template<class D>struct make_operator{constexpr make_operator(){}};

template<class T, char, class O> struct half_apply { T&& lhs; };

template<class Lhs, class Op>

half_apply<Lhs, '*', Op> operator*(Lhs&& lhs, make_operator<Op>) {

return {std::forward<Lhs>(lhs)};

}

template<class Lhs, class Op, class Rhs>

auto operator*(half_apply<Lhs, '*', Op>&& lhs, Rhs&& rhs)

-> decltype(named_invoke(std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs)))

{

return named_invoke(std::forward<Lhs>(lhs.lhs), Op{}, std::forward<Rhs>(rhs));

}

}

namespace my_ns {

struct append_t : named_operator::make_operator<append_t> {};

constexpr append_t append{};

template<class T, class A0, class A1>

std::vector<T, A0> named_invoke(std::vector<T, A0> lhs, append_t, std::vector<T, A1> const& rhs

) {

lhs.insert(lhs.end(), rhs.begin(), rhs.end());

return std::move(lhs);

}

}

using my_ns::append;

std::vector<int> a {1,2,3};

std::vector<int> b {4,5,6};

207

The core here is that we define an append object of type append_t:named_operator::make_operator<append_t>.

We then overload named_invoke(lhs, append_t, rhs) for the types we want on the right and left.

The library overloads lhs*append_t, returning a temporary half_apply object. It also overloads half_apply*rhs to

call named_invoke(lhs, append_t, rhs).

We simply have to create the proper append_t token and do an ADL-friendly named_invoke of the proper signature,

and everything hooks up and works.

For a more complex example, suppose you want to have element-wise multiplication of elements of a std::array:

template<class=void, std::size_t...Is>

auto indexer(std::index_sequence<Is...>) {

return [](auto&& f) {

return f(std::integral_constant<std::size_t, Is>{}...);

};

}

template<std::size_t N>

auto indexer() { return indexer(std::make_index_sequence<N>{}); }

namespace my_ns {

struct e_times_t : named_operator::make_operator<e_times_t> {};

constexpr e_times_t e_times{};

template<class L, class R, std::size_t N,

class Out=std::decay_t<decltype(std::declval<L const&>()*std::declval<R const&>())>

>

std::array<Out, N> named_invoke(std::array<L, N> const& lhs, e_times_t, std::array<R, N> const&

rhs) {

using result_type = std::array<Out, N>;

auto index_over_N = indexer<N>();

return index_over_N([&](auto...is)->result_type {

return {{

(lhs[is] * rhs[is])...

}};

});

}

}

live example.

This element-wise array code can be extended to work on tuples or pairs or C-style arrays, or even variable length

containers if you decide what to do if the lengths don't match.

You could also an element-wise operator type and get lhs *element_wise<'+'>* rhs.

Writing a *dot* and *cross* product operators are also obvious uses.

The use of * can be extended to support other delimiters, like +. The delimeter precidence determines the

precidence of the named operator, which may be important when translating physics equations over to C++ with

minimal use of extra ()s.

With a slight change in the library above, we can support ->*then* operators and extend std::function prior to

the standard being updated, or write monadic ->*bind*. It could also have a stateful named operator, where we

carefully pass the Op down to the final invoke function, permitting:

auto c = a *append* b;

http://coliru.stacked-crooked.com/a/c071a0662834c838

208

generating a named container-appending operator in C++17.

Section 36.6: Unary operators

You can overload the 2 unary operators:

++foo and foo++

--foo and foo--

Overloading is the same for both types (++ and --). Scroll down for explanation

Overloading outside of class/struct:

Overloading inside of class/struct:

Note: The prefix operator returns a reference to itself, so that you can continue operations on it. The first argument

is a reference, as the prefix operator changes the object, that's also the reason why it isn't const (you wouldn't be

able to modify it otherwise).

named_operator<'*'> append = [](auto lhs, auto&& rhs) {

using std::begin; using std::end;

lhs.insert(end(lhs), begin(rhs), end(rhs));

return std::move(lhs);

};

//Prefix operator ++foo T&

operator++(T& lhs)

{

//Perform addition

return lhs;

}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)

//Should be implemented in terms of ++foo (prefix operator) T

operator++(T& lhs, int)

{

T t(lhs);

++lhs;

return t;

}

//Prefix operator ++foo T&

operator++()

{

//Perform addition

return *this;

}

//Postfix operator foo++ (int argument is used to separate pre- and postfix)

//Should be implemented in terms of ++foo (prefix operator) T

operator++(int)

{

T t(*this);

++(*this);

return t;

}

209

The postfix operator returns by value a temporary (the previous value), and so it cannot be a reference, as it would

be a reference to a temporary, which would be garbage value at the end of the function, because the temporary

variable goes out of scope). It also cannot be const, because you should be able to modify it directly.

The first argument is a non-const reference to the "calling" object, because if it were const, you wouldn't be able to

modify it, and if it weren't a reference, you wouldn't change the original value.

It is because of the copying needed in postfix operator overloads that it's better to make it a habit to use prefix ++

instead of postfix ++ in for loops. From the for loop perspective, they're usually functionally equivalent, but there

might be a slight performance advantage to using prefix ++, especially with "fat" classes with a lot of members to

copy. Example of using prefix ++ in a for loop:

Section 36.7: Comparison operators

You can overload all comparison operators:

== and !=

> and <

>= and <=

The recommended way to overload all those operators is by implementing only 2 operators (== and <) and then

using those to define the rest. Scroll down for explanation

Overloading outside of class/struct:

Overloading inside of class/struct:

for (list<string>::const_iterator it = tokens.begin(); it

!= tokens.end();

++it) { // Don't use it++

...

}

//Only implement those 2

bool operator==(const T& lhs, const T& rhs) { /* Compare */ }

bool operator<(const T& lhs, const T& rhs) { /* Compare */ }

//Now you can define the rest

bool operator!=(const T& lhs, const T& rhs) { return !(lhs == rhs); }

bool operator>(const T& lhs, const T& rhs) { return rhs < lhs; }

bool operator<=(const T& lhs, const T& rhs) { return !(lhs > rhs); }

bool operator>=(const T& lhs, const T& rhs) { return !(lhs < rhs); }

//Note that the functions are const, because if they are not const, you wouldn't be able

//to call them if the object is const

//Only implement those 2

bool operator==(const T& rhs) const { /* Compare */ }

bool operator<(const T& rhs) const { /* Compare */ }

//Now you can define the rest

bool operator!=(const T& rhs) const { return !(*this == rhs); }

bool operator>(const T& rhs) const { return rhs < *this; }

bool operator<=(const T& rhs) const { return !(*this > rhs); }

bool operator>=(const T& rhs) const { return !(*this < rhs); }

210

The operators obviously return a bool, indicating true or false for the corresponding operation.

All of the operators take their arguments by const&, because the only thing that does operators do is compare, so

they shouldn't modify the objects. Passing by & (reference) is faster than by value, and to make sure that the

operators don't modify it, it is a const-reference.

Note that the operators inside the class/struct are defined as const, the reason for this is that without the

functions being const, comparing const objects would not be possible, as the compiler doesn't know that the

operators don't modify anything.

Section 36.8: Assignment operator

The assignment operator is one of the most important operators because it allows you to change the status of a

variable.

If you do not overload the assignment operator for your class/struct, it is automatically generated by the

compiler: the automatically-generated assignment operator performs a "memberwise assignment", ie by invoking

assignment operators on all members, so that one object is copied to the other, a member at time. The assignment

operator should be overloaded when the simple memberwise assignment is not suitable for your class/struct, for

example if you need to perform a deep copy of an object.

Overloading the assignment operator = is easy, but you should follow some simple steps.

1. Test for self-assignment. This check is important for two reasons:

a self-assignment is a needless copy, so it does not make sense to perform it;

the next step will not work in the case of a self-assignment.

2. Clean the old data. The old data must be replaced with new ones. Now, you can understand the second

reason of the previous step: if the content of the object was destroyed, a self-assignment will fail to perform

the copy.

3. Copy all members. If you overload the assignment operator for your class or your struct, it is not

automatically generated by the compiler, so you will need to take charge of copying all members from the

other object.

4. Return *this. The operator returns by itself by reference, because it allows chaining (i.e. int b = (a = 6) +

4; //b == 10).

Note: other is passed by const&, because the object being assigned should not be changed, and passing by

reference is faster than by value, and to make sure than operator= doesn't modify it accidentally, it is const.

The assignment operator can only to be overloaded in the class/struct, because the left value of = is always the

class/struct itself. Defining it as a free function doesn't have this guarantee, and is disallowed because of that.

When you declare it in the class/struct, the left value is implicitly the class/struct itself, so there is no problem

with that.

//T is some type

T& operator=(const T& other)

{

//Do something (like copying values)

return *this;

}

211

Section 36.9: Function call operator

You can overload the function call operator ():

Overloading must be done inside of a class/struct:

For example:

Section 36.10: Bitwise NOT operator

Overloading the bitwise NOT (~) is fairly simple. Scroll down for explanation

Overloading outside of class/struct:

Overloading inside of class/struct:

Note: operator~ returns by value, because it has to return a new value (the modified value), and not a reference to

the value (it would be a reference to the temporary object, which would have garbage value in it as soon as the

operator is done). Not const either because the calling code should be able to modify it afterwards (i.e. int a = ~a

+ 1; should be possible).

//R -> Return type

//Types -> any different type

R operator()(Type name, Type2 name2, ...)

{

//Do something

//return something

}

//Use it like this (R is return type, a and b are variables)

R foo = object(a, b, ...);

struct Sum

{

int operator()(int a, int b)

{

return a + b;

}

};

//Create instance of struct

Sum sum;

int result = sum(1, 1); //result == 2

T operator~(T lhs)

{

//Do operation

return lhs;

}

T operator~()

{

T t(*this);

//Do operation

return t;

}

212

Inside the class/struct you have to make a temporary object, because you can't modify this, as it would modify

the original object, which shouldn't be the case.

Section 36.11: Bit shift operators for I/O

The operators << and >> are commonly used as "write" and "read" operators:

std::ostream overloads << to write variables to the underlying stream (example: std::cout)

std::istream overloads >> to read from the underlying stream to a variable (example: std::cin)

The way they do this is similar if you wanted to overload them "normally" outside of the class/struct, except that

specifying the arguments are not of the same type:

Return type is the stream you want to overload from (for example, std::ostream) passed by reference, to

allow chaining (Chaining: std::cout << a << b;). Example: std::ostream&

lhs would be the same as the return type

rhs is the type you want to allow overloading from (i.e. T), passed by const& instead of value for performance

reason (rhs shouldn't be changed anyway). Example: const Vector&.

Example:

//Overload std::ostream operator<< to allow output from Vector's

std::ostream& operator<<(std::ostream& lhs, const Vector& rhs)

{

lhs << "x: " << rhs.x << " y: " << rhs.y << " z: " << rhs.z <<

'\n'; return lhs;

}

Vector v = { 1, 2, 3};

//Now you can do

std::cout << v;

213

Chapter 37: Function Template
Overloading

Section 37.1: What is a valid function template overloading?

A function template can be overloaded under the rules for non-template function overloading (same name, but

different parameter types) and in addition to that, the overloading is valid if

The return type is different, or

The template parameter list is different, except for the naming of parameters and the presence of default

arguments (they are not part of the signature)

For a normal function, comparing two parameter types is is easy for the compiler, since it has all informat. But a

type within a template may not be determined yet. Therefore, the rule for when two parameter types are equal is

approximative here and says that the non-depependend types and values need to match and the spelling of

dependent types and expressions needs to be the same (more precisely, they need to conform to the so -called

ODR-rules), except that template parameters may be renamed. However, if under such different spellings, two

values within the types are deemed different, but will always instantiate to the same values, the overloading is

invalid, but no diagnostic is required from the compiler.

This is a valid overload, as "T" and "T*" are different spellings. But the following is invalid, with no diagnostic

required

template<typename T>

void f(T*) { }

template<typename T>

void f(T) { }

template<typename T>

void f(T (*x)[sizeof(T) + sizeof(T)]) { }

template<typename T>

void f(T (*x)[2 * sizeof(T)]) { }

214

Chapter 38: Virtual Member Functions

Section 38.1: Final virtual functions

C++11 introduced final specifier which forbids method overriding if appeared in method signature:

The specifier final can only be used with ̀ virtual' member function and can't be applied to non-virtual member

functions

Like final, there is also an specifier caller 'override' which prevent overriding of virtual functions in the derived

class.

The specifiers override and final may be combined together to have desired effect:

Section 38.2: Using override with virtual in C++11 and later

The specifier override has a special meaning in C++11 onwards, if appended at the end of function signature. This

signifies that a function is

Overriding the function present in base class &

The Base class function is virtual

There is no run time significance of this specifier as is mainly meant as an indication for compilers

The example below will demonstrate the change in behaviour with our without using override.

Without override:

class Base {

public:

virtual void foo() {

std::cout << "Base::Foo\n";

}

};

class Derived1 : public Base {

public:

// Overriding Base::foo

void foo() final {

std::cout << "Derived1::Foo\n";

}

};

class Derived2 : public Derived1 {

public:

// Compilation error: cannot override final method

virtual void foo() {

std::cout << "Derived2::Foo\n";

}

};

class Derived1 : public Base {

public:

void foo() final override { std::cout

<< "Derived1::Foo\n";

}

};

215

With override:

Note that override is not a keyword, but a special identifier which only may appear in function signatures. In all

other contexts override still may be used as an identifier:

Section 38.3: Virtual vs non-virtual member functions

With virtual member functions:

#include <iostream>

struct X {

virtual void f() { std::cout << "X::f()\n"; }

};

struct Y : X {

// Y::f() will not override X::f() because it has a different signature,

// but the compiler will accept the code (and silently ignore Y::f()). virtual

void f(int a) { std::cout << a << "\n"; }

};

#include <iostream>

struct X {

virtual void f() { std::cout << "X::f()\n"; }

};

struct Y : X {

// The compiler will alert you to the fact that Y::f() does not

// actually override anything.

virtual void f(int a) override { std::cout << a << "\n"; }

};

void foo() {

int override = 1; // OK.

int virtual = 2; // Compilation error: keywords can't be used as identifiers.

}

#include <iostream>

struct X {

virtual void f() { std::cout << "X::f()\n"; }

};

struct Y : X {

// Specifying virtual again here is optional

// because it can be inferred from X::f().

virtual void f() { std::cout << "Y::f()\n"; }

};

void call(X& a) {

a.f();

}

int main() {

X x;

Y y;

call(x); // outputs "X::f()"

call(y); // outputs "Y::f()"

216

Without virtual member functions:

Section 38.4: Behaviour of virtual functions in constructors
and destructors

The behaviour of virtual functions in constructors and destructors is often confusing when first encountered.

Output:

}

#include <iostream>

struct X {

void f() { std::cout << "X::f()\n"; }

};

struct Y : X {

void f() { std::cout << "Y::f()\n"; }

};

void call(X& a) {

a.f();

}

int main() {

X x;

Y y;

call(x); // outputs "X::f()"

call(y); // outputs "X::f()"

}

#include <iostream>

using namespace std;

class base {

public:

base() { f("base constructor"); }

~base() { f("base destructor"); }

virtual const char* v() { return "base::v()"; }

void f(const char* caller) {

cout << "When called from " << caller << ", " << v() << " gets called.\n";

}

};

class derived : public base {

public:

derived() { f("derived constructor"); }

~derived() { f("derived destructor"); }

const char* v() override { return "derived::v()"; }

};

int main() {

derived d;

}

217

When called from base constructor, base::v() gets called.

When called from derived constructor, derived::v() gets called.

When called from derived destructor, derived::v() gets called.

When called from base destructor, base::v() gets called.

The reasoning behind this is that the derived class may define additional members which are not yet initialized (in

the constructor case) or already destroyed (in the destructor case), and calling its member functions would be

unsafe. Therefore during construction and destruction of C++ objects, the dynamic type of *this is considered to be

the constructor's or destructor's class and not a more-derived class.

Example:

Section 38.5: Pure virtual functions

We can also specify that a virtual function is pure virtual (abstract), by appending

0 to the declaration. Classes

with one or more pure virtual functions are considered to be abstract, and cannot be instantiated; only derived

classes which define, or inherit definitions for, all pure virtual functions can be instantiated.

Even if a function is specified as pure virtual, it can be given a default implementation. Despite this, the function will

still be considered abstract, and derived classes will have to define it before they can be instantiated. In this case,

=

#include <iostream>

#include <memory>

using namespace std;

class base {

public:

base()

{

std::cout << "foo is " << foo() << std::endl;

}

virtual int foo() { return 42; }

};

class derived : public base {

unique_ptr<int> ptr_;

public:

derived(int i) : ptr_(new int(i*i)) { }

// The following cannot be called before derived::derived due to how C++ behaves,

// if it was possible... Kaboom!

int foo() override { return *ptr_; }

};

int main() {

derived d(4);

}

struct Abstract {

virtual void f() = 0;

};

struct Concrete {

void f() override {}

};

Abstract a; // Error.

Concrete c; // Good.

218

the derived class' version of the function is even allowed to call the base class' version.

There are a couple of reasons why we might want to do this:

If we want to create a class that can't itself be instantiated, but doesn't prevent its derived classes from being

instantiated, we can declare the destructor as pure virtual. Being the destructor, it must be defined anyways,

if we want to be able to deallocate the instance. And as the destructor is most likely already virtual to prevent

memory leaks during polymorphic use, we won't incur an unnecessary performance hit from declaring

another function virtual. This can be useful when making interfaces.

If most or all implementations of the pure virtual function will contain duplicate code, that code can instead

be moved to the base class version, making the code easier to maintain.

struct DefaultAbstract {

virtual void f() = 0;

};

void DefaultAbstract::f() {}

struct WhyWouldWeDoThis : DefaultAbstract {

void f() override { DefaultAbstract::f(); }

};

struct Interface {

virtual ~Interface() = 0;

};

Interface::~Interface() = default;

struct Implementation : Interface {};

// ~Implementation() is automatically defined by the compiler if not explicitly

// specified, meeting the "must be defined before instantiation" requirement.

class SharedBase {

State my_state;

std::unique_ptr<Helper> my_helper;

// ...

public:

virtual void config(const Context& cont) = 0;

// ...

};

/* virtual */ void SharedBase::config(const Context& cont) {

my_helper = new Helper(my_state, cont.relevant_field);

do_this();

and_that();

}

class OneImplementation : public SharedBase {

int i;

// ...

public:

void config(const Context& cont) override;

// ...

};

void OneImplementation::config(const Context& cont) /* override */ {

my_state = { cont.some_field, cont.another_field, i };

SharedBase::config(cont);

my_unique_setup();

};

219

// And so on, for other classes derived from SharedBase.

220

Chapter 39: Inline functions
A function defined with the inline specifier is an inline function. An inline function can be multiply defined without

violating the One Definition Rule, and can therefore be defined in a header with external linkage. Declaring a

function inline hints to the compiler that the function should be inlined during code generation, but does not

provide a guarantee.

Section 39.1: Non-member inline function definition

Section 39.2: Member inline functions

Section 39.3: What is function inlining?

In the above code, when add is inlined, the resulting code would become something like this

The inline function is nowhere to be seen, its body gets inlined into the caller's body. Had add not been inlined, a

inline int add(int x, int y)

{

return x + y;

}

// header (.hpp)

struct A

{

void i_am_inlined()

{

}

};

struct B

{

void i_am_NOT_inlined();

};

// source (.cpp)

void B::i_am_NOT_inlined()

{

}

inline int add(int x, int y)

{

return x + y;

}

int main()

{

int a = 1, b = 2;

int c = add(a, b);

}

int main()

{

int a = 1, b = 2;

int c = a + b;

}

221

function would be called. The overhead of calling a function -- such as creating a new stack frame, copying

arguments, making local variables, jump (losing locality of reference and there by cache misses), etc. -- has to be

incurred.

Section 39.4: Non-member inline function declaration

inline int add(int x, int y);

http://stackoverflow.com/q/10057443/183120

222

Chapter 40: Special Member Functions

Section 40.1: Default Constructor

A default constructor is a type of constructor that requires no parameters when called. It is named after the type it

constructs and is a member function of it (as all constructors are).

Another way to satisfy the "no parameters" requirement is for the developer to provide default values for all

parameters:

Under some circumstances (i.e., the developer provides no constructors and there are no other disqualifying

conditions), the compiler implicitly provides an empty default constructor:

Having some other type of constructor is one of the disqualifying conditions mentioned earlier:

class C{

int i;

public:

// the default constructor definition

C()

: i(0){ // member initializer list -- initialize i to 0

// constructor function body -- can do more complex things here

}

};

C c1; // calls default constructor of C to create object c1 C

c2 = C(); // calls default constructor explicitly

C c3(); // ERROR: this intuitive version is not possible due to "most vexing parse"

C c4{}; // but in C++11 {} CAN be used in a similar way

C c5[2]; // calls default constructor for both array elements

C* c6 = new C[2]; // calls default constructor for both array elements

class D{

int i;

int j;

public:

// also a default constructor (can be called with no parameters) D(

int i = 0, int j = 42)

: i(i), j(j){

}

};

D d; // calls constructor of D with the provided default values for the parameters

class C{

std::string s; // note: members need to be default constructible themselves

};

C c1; // will succeed -- C has an implicitly defined default constructor

class C{

int i;

public:

C(int i) : i(i){}

};

223

Version < c++11

To prevent implicit default constructor creation, a common technique is to declare it as private (with no definition).

The intention is to cause a compile error when someone tries to use the constructor (this either results in an Access

to private error or a linker error, depending on the compiler).

To be sure a default constructor (functionally similar to the implicit one) is defined, a developer could write an

empty one explicitly.

Version ≥ c++11

In C++11, a developer can also use the delete keyword to prevent the compiler from providing a default

constructor.

Furthermore, a developer may also be explicit about wanting the compiler to provide a default constructor.

Version ≥ c++14

You can determine whether a type has a default constructor (or is a primitive type) using

std::is_default_constructible from <type_traits>:

Version = c++11

In C++11, it is still possible to use the non-functor version of std::is_default_constructible:

C c1; // Compile ERROR: C has no (implicitly defined) default constructor

class C{

int i;

public:

// default constructor is explicitly deleted C()

= delete;

};

C c1; // Compile ERROR: C has its default constructor deleted

class C{

int i;

public:

// does have automatically generated default constructor (same as implicit one)

C() = default;

C(int i) : i(i){}

};

C c1; // default constructed

C c2(1); // constructed with the int taking constructor

class C1{ };

class C2{ public: C2(){} };

class C3{ public: C3(int){} };

using std::cout; using std::boolalpha; using std::endl;

using std::is_default_constructible;

cout << boolalpha << is_default_constructible<int>() << endl; // prints true cout

<< boolalpha << is_default_constructible<C1>() << endl; // prints true cout <<

boolalpha << is_default_constructible<C2>() << endl; // prints true cout <<

boolalpha << is_default_constructible<C3>() << endl; // prints false

cout << boolalpha << is_default_constructible<C1>::value << endl; // prints true

224

Section 40.2: Destructor

A destructor is a function without arguments that is called when a user-defined object is about to be destroyed. It is

named after the type it destructs with a ~ prefix.

Under most circumstances (i.e., a user provides no destructor, and there are no other disqualifying conditions), the

compiler provides a default destructor implicitly:

class C{

int* is;

string s;

public:

C()

: is(new int[10]){

}

~C(){ // destructor definition

delete[] is;

}

};

class C_child : public

C{ string s_ch;

public:

C_child(){}

~C_child(){} // child destructor

};

void f(){

C c1; // calls default constructor

C c2[2]; // calls default constructor for both elements

C* c3 = new C[2]; // calls default constructor for both array elements

C_child c_ch; // when destructed calls destructor of s_ch and of C base (and in turn s)

delete[] c3; // calls destructors on c3[0] and c3[1]

} // automatic variables are destroyed here -- i.e. c1, c2 and c_ch

class C{

int i;

string s;

};

void f(){

C* c1 = new C;

delete c1; // C has a destructor

}

class C{

int m;

private:

~C(){} // not public destructor!

};

class C_container{

C c;

};

void f(){

225

Version > c++11

In C++11, a developer can override this behavior by preventing the compiler from providing a default destructor.

Furthermore, a developer may also be explicit about wanting the compiler to provide a default destructor.

Version > c++11

You can determine whether a type has a destructor (or is a primitive type) using std::is_destructible from

<type_traits>:

Section 40.3: Copy and swap

If you're writing a class that manages resources, you need to implement all the special member functions (see Rule

of Three/Five/Zero). The most direct approach to writing the copy constructor and assignment operator would be:

C_container* c_cont = new C_container;

delete c_cont; // Compile ERROR: C has no accessible destructor

}

class C{

int m;

public:

~C() = delete; // does NOT have implicit destructor

};

void f{

C c1;

} // Compile ERROR: C has no destructor

class C{

int m;

public:

~C() = default; // saying explicitly it does have implicit/empty destructor

};

void f(){

C c1;

} // C has a destructor -- c1 properly destroyed

class C1{ };

class C2{ public: ~C2() = delete };

class C3 : public C2{ };

using std::cout; using std::boolalpha; using std::endl;

using std::is_destructible;

cout << boolalpha << is_destructible<int>() << endl; // prints true

cout << boolalpha << is_destructible<C1>() << endl; // prints true

cout << boolalpha << is_destructible<C2>() << endl; // prints false

cout << boolalpha << is_destructible<C3>() << endl; // prints false

person(const person &other)

: name(new char[std::strlen(other.name) + 1])

, age(other.age)

{

std::strcpy(name, other.name);

}

person& operator=(person const& rhs) {

if (this != &other) {

delete [] name;

226

But this approach has some problems. It fails the strong exception guarantee - if new[] throws, we've already

cleared the resources owned by this and cannot recover. We're duplicating a lot of the logic of copy construction in

copy assignment. And we have to remember the self-assignment check, which usually just adds overhead to the

copy operation, but is still critical.

To satisfy the strong exception guarantee and avoid code duplication (double so with the subsequent move

assignment operator), we can use the copy-and-swap idiom:

Why does this work? Consider what happens when we have

First, we copy-construct rhs from p2 (which we didn't have to duplicate here). If that operation throws, we don't do

anything in operator= and p1 remains untouched. Next, we swap the members between *this and rhs, and then

rhs goes out of scope. When operator=, that implicitly cleans the original resources of this (via the destructor,

which we didn't have to duplicate). Self-assignment works too - it's less efficient with copy-and-swap (involves an

extra allocation and deallocation), but if that's the unlikely scenario, we don't slow down the typical use case to

account for it.

Version ≥ C++11

The above formulation works as-is already for move assignment.

Here, we move-construct rhs from p2, and all the rest is just as valid. If a class is movable but not copyable, there is

no need to delete the copy-assignment, since this assignment operator will simply be ill-formed due to the deleted

copy constructor.

name = new char[std::strlen(other.name) + 1];

std::strcpy(name, other.name);

age = other.age;

}

return *this;

}

class person {

char* name;

int age;

public:

/* all the other functions ... */

friend void swap(person& lhs, person& rhs) {

using std::swap; // enable ADL

swap(lhs.name, rhs.name);

swap(lhs.age, rhs.age);

}

person& operator=(person rhs) {

swap(*this, rhs);

return *this;

}

};

person p1 = ...;

person p2 = ...;

p1 = p2;

p1 = std::move(p2);

227

Section 40.4: Implicit Move and Copy

Bear in mind that declaring a destructor inhibits the compiler from generating implicit move constructors and move

assignment operators. If you declare a destructor, remember to also add appropriate definitions for the move

operations.

Furthermore, declaring move operations will suppress the generation of copy operations, so these should also be

added (if the objects of this class are required to have copy semantics).

class Movable {

public:

virtual ~Movable() noexcept = default;

//

//

compiler won't generate these unless we tell it to

because we declared a destructor

Movable(Movable&&) noexcept = default;

Movable& operator=(Movable&&) noexcept = default;

//

//

declaring move operations will suppress generation

of copy operations unless we explicitly re-enable them

Movable(const Movable&) = default;

Movable& operator=(const Movable&) = default;

};

228

Chapter 41: Non-Static Member Functions

Section 41.1: Non-static Member Functions

A class or struct can have member functions as well as member variables. These functions have syntax mostly

similar to standalone functions, and can be defined either inside or outside the class definition; if defined outside

the class definition, the function's name is prefixed with the class' name and the scope (::) operator.

These functions are called on an instance (or reference to an instance) of the class with the dot (.) operator, or a

pointer to an instance with the arrow (->) operator, and each call is tied to the instance the function was called on;

when a member function is called on an instance, it has access to all of that instance's fields (through the this

pointer), but can only access other instances' fields if those instances are supplied as parameters.

These functions are allowed to access member variables and/or other member functions, regardless of either the

variable or function's access modifiers. They can also be written out-of-order, accessing member variables and/or

calling member functions declared before them, as the entire class definition must be parsed before the compiler

can begin to compile a class.

class CL {

public:

void definedInside() {}

void definedOutside();

};

void CL::definedOutside() {}

struct ST {

ST(const std::string& ss = "Wolf", int ii = 359) : s(ss), i(ii) { }

int get_i() const { return i; }

bool compare_i(const ST& other) const { return (i == other.i); }

private:

std::string s;

int i;

};

ST st1;

ST st2("Species", 8472);

int i = st1.get_i(); // Can access st1.i, but not st2.i.

bool b = st1.compare_i(st2); // Can access st1 & st2.

class Access {

public:

Access(int i_ = 8088, int j_ = 8086, int k_ = 6502) : i(i_), j(j_), k(k_) {}

int i;

int get_k() const { return k; }

bool private_no_more() const { return i_be_private(); }

protected:

int j;

int get_i() const { return i; }

private:

int k;

int get_j() const { return j; }

bool i_be_private() const { return ((i > j) && (k < j)); }

};

229

Section 41.2: Encapsulation

A common use of member functions is for encapsulation, using an accessor (commonly known as a getter) and a

mutator (commonly known as a setter) instead of accessing fields directly.

Inside the class, encapsulated can be freely accessed by any non-static member function; outside the class, access

to it is regulated by member functions, using get_encapsulated() to read it and set_encapsulated() to modify it.

This prevents unintentional modifications to the variable, as separate functions are used to read and write it. [There

are many discussions on whether getters and setters provide or break encapsulation, with good arguments for

both claims; such heated debate is outside the scope of this example.]

Section 41.3: Name Hiding & Importing

When a base class provides a set of overloaded functions, and a derived class adds another overload to the set, this

hides all of the overloads provided by the base class.

This is due to name resolution rules: During name lookup, once the correct name is found, we stop looking, even if

we clearly haven't found the correct version of the entity with that name (such as with hd.f(s)); due to this,

overloading the function in the derived class prevents name lookup from discovering the overloads in the base

class. To avoid this, a using-declaration can be used to "import" names from the base class into the derived class, so

class Encapsulator {

int encapsulated;

public:

int get_encapsulated() const { return encapsulated; }

void set_encapsulated(int e) { encapsulated = e; }

void some_func() {

do_something_with(encapsulated);

}

};

struct HiddenBase {

void f(int) { std::cout << "int" << std::endl; }

void f(bool) { std::cout << "bool" << std::endl; }

void f(std::string) { std::cout << "std::string" << std::endl; }

};

struct HidingDerived : HiddenBase {

void f(float) { std::cout << "float" << std::endl; }

};

// ...

HiddenBase hb;

HidingDerived hd;

std::string s;

hb.f(1); // Output:

hb.f(true); // Output:

hb.f(s); // Output:

int

bool

std::string;

hd.f(1.f); // Output:

hd.f(3); // Output:

hd.f(true); // Output:

float

float

float

hd.f(s); // Error: Can't convert from std::string to float.

230

that they will be available during name lookup.

If a derived class imports names with a using-declaration, but also declares functions with the same signature as

functions in the base class, the base class functions will silently be overridden or hidden.

A using-declaration can also be used to change access modifiers, provided the imported entity was public or

protected in the base class.

Similarly, if we explicitly want to call a member function from a specific class in the inheritance hierarchy, we can

qualify the function name when calling the function, specifying that class by name.

struct HidingDerived : HiddenBase {

// All members named HiddenBase::f shall be considered members of HidingDerived for lookup.

using HiddenBase::f;

void f(float) { std::cout << "float" << std::endl; }

};

// ...

HidingDerived hd;

hd.f(1.f); // Output:

hd.f(3); // Output:

hd.f(true); // Output:

hd.f(s); // Output:

float int

bool

std::string

struct NamesHidden {

virtual void hide_me() {}

virtual void hide_me(float) {}

void hide_me(int) {}

void hide_me(bool) {}

};

struct NameHider : NamesHidden {

using NamesHidden::hide_me;

void hide_me() {} // Overrides NamesHidden::hide_me().

void hide_me(int) {} // Hides NamesHidden::hide_me(int).

};

struct ProMem {

protected:

void func() {}

};

struct BecomesPub : ProMem {

using ProMem::func;

};

// ...

ProMem pm;

BecomesPub bp;

pm.func(); // Error: protected.

bp.func(); // Good.

struct One {

231

Section 41.4: Virtual Member Functions

Member functions can also be declared virtual. In this case, if called on a pointer or reference to an instance, they

will not be accessed directly; rather, they will look up the function in the virtual function table (a list of pointers-to-

member-functions for virtual functions, more commonly known as the vtable or vftable), and use that to call the

version appropriate for the instance's dynamic (actual) type. If the function is called directly, from a variable of a

class, no lookup is performed.

virtual void f() { std::cout << "One." << std::endl; }

};

struct Two : One {

void f() override {

One::f(); // this->One::f();

std::cout << "Two." << std::endl;

}

};

struct Three : Two {

void f() override {

Two::f(); // this->Two::f(); std::cout

<< "Three." << std::endl;

}

};

// ...

Three t;

t.f(); // Normal syntax.

t.Two::f(); // Calls version of f() defined in Two.

t.One::f(); // Calls version of f() defined in One.

struct Base {

virtual void func() { std::cout << "In Base." << std::endl; }

};

struct Derived : Base {

void func() override { std::cout << "In Derived." << std::endl; }

};

void slicer(Base x) { x.func(); }

// ...

Base b;

Derived d;

Base *pb = &b, *pd = &d; // Pointers.

Base &rb = b, &rd = d; // References.

b.func(); // Output: In Base.

d.func(); // Output: In

Derived.

pb->func(); // Output: In Base.

pd->func(); // Output: In Derived.

rb.func(); // Output: In Base.

rd.func(); // Output: In Derived.

232

Note that while pd is Base*, and rd is a Base&, calling func() on either of the two calls Derived::func() instead of

Base::func(); this is because the vtable for Derived updates the Base::func() entry to instead point to

Derived::func(). Conversely, note how passing an instance to slicer() always results in Base::func() being

called, even when the passed instance is a Derived; this is because of something known as data slicing, where

passing a Derived instance into a Base parameter by value renders the portion of the Derived instance that isn't a

Base instance inaccessible.

When a member function is defined as virtual, all derived class member functions with the same signature override

it, regardless of whether the overriding function is specified as virtual or not. This can make derived classes

harder for programmers to parse, however, as there's no indication as to which function(s) is/are virtual.

Note, however, that a derived function only overrides a base function if their signatures match; even if a derived

function is explicitly declared virtual, it will instead create a new virtual function if the signatures are mismatched.

Version ≥ C++11

As of C++11, intent to override can be made explicit with the context-sensitive keyword override. This tells the

compiler that the programmer expects it to override a base class function, which causes the compiler to omit an

error if it doesn't override anything.

This also has the benefit of telling programmers that the function is both virtual, and also declared in at least one

base class, which can make complex classes easier to parse.

When a function is declared virtual, and defined outside the class definition, the virtual specifier must be

included in the function declaration, and not repeated in the definition.

Version ≥ C++11

slicer(b); // Output: In Base.

slicer(d); // Output: In Base.

struct B {

virtual void f() {}

};

struct D : B {

void f() {} // Implicitly virtual, overrides B::f.

// You'd have to check B to know that, though.

};

struct BadB {

virtual void f() {}

};

struct BadD : BadB {

virtual void f(int i) {} // Does NOT override BadB::f.

};

struct CPP11B {

virtual void f() {}

};

struct CPP11D : CPP11B

{ void f() override

{}

void f(int i) override {} // Error: Doesn't actually override anything.

};

233

This also holds true for override.

If a base class overloads a virtual function, only overloads that are explicitly specified as virtual will be virtual.

For more information, see the relevant topic.

Section 41.5: Const Correctness

One of the primary uses for this cv-qualifiers is const correctness. This is the practice of guaranteeing that only

accesses that need to modify an object are able to modify the object, and that any (member or non-member)

function that doesn't need to modify an object doesn't have write access to that object (whether directly or

indirectly). This prevents unintentional modifications, making code less errorprone. It also allows any function that

doesn't need to modify state to be able to take either a const or non-const object, without needing to rewrite or

overload the function.

const correctness, due to its nature, starts at the bottom up: Any class member function that doesn't need to

change state is declared as const, so that it can be called on const instances. This, in turn, allows passed-by-

reference parameters to be declared const when they don't need to be modified, which allows functions to take

either const or non-const objects without complaining, and const-ness can propagate outwards in this manner.

Due to this, getters are frequently const, as are any other functions that don't need to modify logical state.

struct VB {

virtual void f(); // "virtual" goes here.

void g();

};

/* virtual */ void VB::f() {} // Not here.

virtual void VB::g() {} // Error.

struct BOverload {

virtual void func() {}

void func(int) {}

};

struct DOverload : BOverload

{ void func() override {}

void func(int) {}

};

// ...

BOverload* bo = new DOverload;

bo->func(); // Calls DOverload::func().

bo->func(1); // Calls BOverload::func(int).

class ConstIncorrect {

Field fld;

public:

ConstIncorrect(const Field& f) : fld(f) {} // Modifies.

const Field& get_field() { return fld; } // Doesn't modify; should be const.

void set_field(const Field& f) { fld = f; } // Modifies.

void do_something(int i) {

fld.insert_value(i);

}

// Modifies.

void do_nothing() { } // Doesn't modify; should be const.

};

234

As illustrated by the comments on ConstIncorrect and ConstCorrect, properly cv-qualifying functions also serves

as documentation. If a class is const correct, any function that isn't const can safely be assumed to change state,

and any function that is const can safely be assumed not to change state.

class ConstCorrect {

Field fld;

public:

ConstCorrect(const Field& f) : fld(f) {} // Not const: Modifies.

const Field& get_field() const { return fld; } // const: Doesn't modify.

void set_field(const Field& f) { fld = f; } // Not const: Modifies.

void do_something(int i) {

fld.insert_value(i);

}

void do_nothing() const { }

// Not const: Modifies.

// const: Doesn't modify.

};

// ...

const ConstIncorrect i_cant_do_anything(make_me_a_field());

// Now, let's read it...

Field f = i_cant_do_anything.get_field();

// Error: Loses cv-qualifiers, get_field() isn't const.

i_cant_do_anything.do_nothing();

// Error: Same as above.

// Oops.

const ConstCorrect but_i_can(make_me_a_field());

// Now, let's read it...

Field f = but_i_can.get_field(); // Good.

but_i_can.do_nothing(); // Good.

235

Chapter 42: Constant class member
functions

Section 42.1: constant member function

#include <iostream>

#include <map>

#include <string>

using namespace std;

class A {

public:

map<string, string> * mapOfStrings;

public:

A() {

mapOfStrings = new map<string, string>();

}

void insertEntry(string const & key, string const & value) const {

(*mapOfStrings)[key] = value; // This works? Yes it does.

delete mapOfStrings; // This also works

mapOfStrings = new map<string, string>(); // This * does * not work

}

void refresh() {

delete mapOfStrings;

mapOfStrings = new map<string, string>(); // Works as refresh is non const function

}

void getEntry(string const & key) const { cout

<< mapOfStrings->at(key);

}

};

int main(int argc, char* argv[]) {

A var;

var.insertEntry("abc", "abcValue");

var.getEntry("abc");

getchar();

return 0;

}

236

Chapter 43: C++ Containers
C++ containers store a collection of elements. Containers include vectors, lists, maps, etc. Using Templates, C++

containers contain collections of primitives (e.g. ints) or custom classes (e.g. MyClass).

Section 43.1: C++ Containers Flowchart

Choosing which C++ Container to use can be tricky, so here's a simple flowchart to help decide which Container is

right for the job.

This flowchart was based on Mikael Persson's post. This little graphic in the flowchart is from Megan Hopkins

https://stackoverflow.com/a/22671607
https://dribbble.com/shots/1673636-Pushpop

237

Chapter 44: Namespaces
Used to prevent name collisions when using multiple libraries, a namespace is a declarative prefix for functions,

classes, types, etc.

Section 44.1: What are namespaces?

A C++ namespace is a collection of C++ entities (functions, classes, variables), whose names are prefixed by the

name of the namespace. When writing code within a namespace, named entities belonging to that namespace

need not be prefixed with the namespace name, but entities outside of it must use the fully qualified name. The

fully qualified name has the format <namespace>::<entity>. Example:

Namespaces are useful for grouping related definitions together. Take the analogy of a shopping mall. Generally a

shopping mall is split up into several stores, each store selling items from a specific category. One store might sell

electronics, while another store might sell shoes. These logical separations in store types help the shoppers find the

items they're looking for. Namespaces help c++ programmers, like shoppers, find the functions, classes, and

variables they're looking for by organizing them in a logical manner. Example:

There is a single namespace predefined, which is the global namespace that has no name, but can be denoted by

::. Example:

namespace Example

{

const int test = 5;

const int test2 = test + 12; //Works within `Example` namespace

}

const int test3 = test + 3; //Fails; `test` not found outside of namespace. const

int test3 = Example::test + 3; //Works; fully qualified name used.

namespace Electronics

{

int TotalStock;

class Headphones

{

// Description of a Headphone (color, brand, model number, etc.)

};

class Television

{

// Description of a Television (color, brand, model number, etc.)

};

}

namespace Shoes

{

int TotalStock;

class Sandal

{

// Description of a Sandal (color, brand, model number, etc.)

};

class Slipper

{

// Description of a Slipper (color, brand, model number, etc.)

};

}

238

Section 44.2: Argument Dependent Lookup

When calling a function without an explicit namespace qualifier, the compiler can choose to call a function within a

namespace if one of the parameter types to that function is also in that namespace. This is called "Argument

Dependent Lookup", or ADL:

call fails because none of its parameter types come from the Test namespace. call_too works because

SomeClass is a member of Test and therefore it qualifies for ADL rules.

When does ADL not occur

ADL does not occur if normal unqualified lookup finds a class member, a function that has been declared at block

scope, or something that is not of function type. For example:

void bar() {

// defined in global namespace

}

namespace foo {

void bar() {

// defined in namespace foo

}

void barbar() {

bar(); // calls foo::bar()

::bar(); // calls bar() defined in global namespace

}

}

namespace Test

{

int call(int i);

class SomeClass {...};

int call_too(const SomeClass &data);

}

call(5); //Fails. Not a qualified function name.

Test::SomeClass data;

call_too(data); //Succeeds

void foo();

namespace N {

struct X {};

void foo(X) { std::cout << '1'; }

void qux(X) { std::cout << '2'; }

}

struct C {

void foo() {}

void bar() {

foo(N::X{}); // error: ADL is disabled and C::foo() takes no arguments

}

};

void bar() {

extern void foo(); // redeclares ::foo

foo(N::X{}); // error: ADL is disabled and ::foo() doesn't take any arguments

239

Section 44.3: Extending namespaces

A useful feature of namespaces is that you can expand them (add members to it).

Section 44.4: Using directive

The keyword 'using' has three flavors. Combined with keyword 'namespace' you write a 'using directive':

If you don't want to write Foo:: in front of every stuff in the namespace Foo, you can use using namespace Foo; to

import every single thing out of Foo.

It is also possible to import selected entities in a namespace rather than the whole namespace:

A word of caution: using namespaces in header files is seen as bad style in most cases. If this is done, the

namespace is imported in every file that includes the header. Since there is no way of "un-using" a namespace, this

can lead to namespace pollution (more or unexpected symbols in the global namespace) or, worse, conflicts. See

this example for an illustration of the problem:

}

int qux;

void baz() {

qux(N::X{}); // error: variable declaration disables ADL for "qux"

}

namespace Foo

{

void bar() {}

}

//some other stuff namespace

Foo

{

void bar2() {}

}

namespace Foo

{

void bar() {}

void baz() {}

}

//Have to use Foo::bar()

Foo::bar();

//Import Foo

using namespace Foo;

bar(); //OK

baz(); //OK

using Foo::bar;

bar(); //OK, was specifically imported

baz(); // Not OK, was not imported

/***** foo.h *****/

240

A using-directive cannot occur at class scope.

Section 44.5: Making namespaces

Creating a namespace is really easy:

To call bar, you have to specify the namespace first, followed by the scope resolution operator :::

It is allowed to create one namespace in another, for example:

Version ≥ C++17

The above code could be simplified to the following:

namespace Foo

{

class C;

}

/***** bar.h *****/

namespace Bar

{

class C;

}

/***** baz.h *****/

#include "foo.h"

using namespace Foo;

/***** main.cpp *****/

#include "bar.h"

#include "baz.h"

using namespace Bar;

C c; // error: Ambiguity between Bar::C and Foo::C

//Creates namespace foo

namespace Foo

{

//Declares function bar in namespace foo void

bar() {}

}

Foo::bar();

namespace A

{

namespace B

{

namespace C

{

void bar() {}

}

}

}

namespace A::B::C

{

void bar() {}

241

Section 44.6: Unnamed/anonymous namespaces

An unnamed namespace can be used to ensure names have internal linkage (can only be referred to by the current

translation unit). Such a namespace is defined in the same way as any other namespace, but without the name:

foo is only visible in the translation unit in which it appears.

It is recommended to never use unnamed namespaces in header files as this gives a version of the content for

every translation unit it is included in. This is especially important if you define non-const globals.

Section 44.7: Compact nested namespaces

Version ≥ C++17

You can enter both the a and b namespaces in one step with namespace a::b starting in C++17.

Section 44.8: Namespace alias

A namespace can be given an alias (i.e., another name for the same namespace) using the namespace identifier =

syntax. Members of the aliased namespace can be accessed by qualifying them with the name of the alias. In the

namespace a {

namespace b {

template<class T>

struct qualifies : std::false_type {};

}

}

namespace other {

struct bob {};

}

namespace a::b

{ template<>

struct qualifies<::other::bob> : std::true_type {};

}

}

namespace {

int foo = 42;

}

// foo.h

namespace {

std::string globalString;

}

// 1.cpp

#include "foo.h" //< Generates unnamed_namespace{1.cpp}::globalString ...

globalString = "Initialize";

// 2.cpp

#include "foo.h" //< Generates unnamed_namespace{2.cpp}::globalString ...

std::cout << globalString; //< Will always print the empty string

242

following example, the nested namespace AReallyLongName::AnotherReallyLongName is inconvenient to type, so

the function qux locally declares an alias N. Members of that namespace can then be accessed simply using N::.

Section 44.9: Inline namespace

Version ≥ C++11

inline namespace includes the content of the inlined namespace in the enclosing namespace, so

is mostly equivalent to

but element from Outer::Inner:: and those associated into Outer:: are identical.

So following is equivalent

The alternative using namespace Inner; would not be equivalent for some tricky parts as template specialization:

For

namespace AReallyLongName {

namespace AnotherReallyLongName {

int foo();

int bar();

void baz(int x, int y);

}

}

void qux() {

namespace N = AReallyLongName::AnotherReallyLongName;

N::baz(N::foo(), N::bar());

}

namespace Outer

{

inline namespace Inner

{

void foo();

}

}

namespace Outer

{

namespace Inner

{

void foo();

}

using Inner::foo;

}

Outer::foo();

Outer::Inner::foo();

#include <outer.h> // See below

class MyCustomType;

namespace Outer

{

243

The inline namespace allows the specialization of Outer::foo

Whereas the using namespace doesn't allow the specialization of Outer::foo

Inline namespace is a way to allow several version to cohabit and defaulting to the inline one

And with usage

template <>

void foo<MyCustomType>() { std::cout << "Specialization"; }

}

// outer.h

// include guard omitted for simplification

namespace Outer

{

inline namespace Inner

{

template <typename T>

void foo() { std::cout << "Generic"; }

}

}

// outer.h

// include guard omitted for simplification

namespace Outer

{

namespace Inner

{

template <typename T>

void foo() { std::cout << "Generic"; }

}

using namespace Inner;

// Specialization of `Outer::foo` is not possible

// it should be `Outer::Inner::foo`.

}

namespace MyNamespace

{

// Inline the last version

inline namespace Version2

{

void foo(); // New version

void bar();

}

namespace Version1 // The old one

{

void foo();

}

}

MyNamespace::Version1::foo(); // old version

MyNamespace::Version2::foo(); // new version

MyNamespace::foo(); // default version : MyNamespace::Version1::foo();

244

Section 44.10: Aliasing a long namespace

This is usually used for renaming or shortening long namespace references such referring to components of a

library.

Section 44.11: Alias Declaration scope

Alias Declaration are affected by preceding using statements

However, it is easier to get confused over which namespace you are aliasing when you have something like this:

namespace boost

{

namespace multiprecision

{

class Number ...

}

}

namespace Name1 = boost::multiprecision;

// Both Type declarations are equivalent

boost::multiprecision::Number X // Writing the full namespace path, longer

Name1::Number Y // using the name alias, shorter

namespace boost

{

namespace multiprecision

{

class Number ...

}

}

using namespace boost;

// Both Namespace are equivalent

namespace Name1 = boost::multiprecision;

namespace Name2 = multiprecision;

namespace boost

{

namespace multiprecision

{

class Number ...

}

}

namespace numeric

{

namespace multiprecision

{

class Number ...

}

}

using namespace numeric;

using namespace boost;

245

//

//

//

Not recommended as

its not explicitly clear whether Name1 refers to

numeric::multiprecision or boost::multiprecision

namespace Name1 = multiprecision;

//

//

For clarity, its recommended to use absolute paths

instead

namespace Name2 = numeric::multiprecision;

namespace Name3 = boost::multiprecision;

246

Chapter 45: Header Files

Section 45.1: Basic Example

The following example will contain a block of code that is meant to be split into several source files, as denoted by

// filename comments.

Source Files

// my_function.h

/* Note how this header contains only a declaration of a function.

* Header functions usually do not define implementations for declarations

* unless code must be further processed at compile time, as in templates.

*/

/* Also, usually header files include preprocessor guards so that every header

* is never included twice.

*

* The guard is implemented by checking if a header-file unique preprocessor

* token is defined, and only including the header if it hasn't been included

* once before.

*/

#ifndef

MY_FUNCTION_H

#define

MY_FUNCTION_H

// global_value and my_function() will be

// recognized as the same constructs if this header is included by different files.

const int global_value = 42;

int my_function(); #endif

// MY_FUNCTION_H

Header files are then included by other source files that want to use the functionality defined by the header

interface, but don't require knowledge of its implementation (thus, reducing code coupling). The following program

makes use of the header my_function.h as defined above:

// my_function.cpp

/* Note how the corresponding source file for the header includes the interface

* defined in the header so that the compiler is aware of what the source file is

* implementing.

*

* In this case, the source file requires knowledge of the global constant

* global_value only defined in my_function.h. Without inclusion of the header

* file, this source file would not compile.

*/

#include "my_function.h" // or #include "my_function.hpp" int

my_function() {

return global_value; // return 42;

}

// main.cpp

#include <iostream> // A C++ Standard Library header.

#include "my_function.h" // A personal header

int main(int argc, char** argv) { std::cout

<< my_function() << std::endl;

247

The Compilation Process

Since header files are often part of a compilation process workflow, a typical compilation process making use of the

header/source file convention will usually do the following.

Assuming that the header file and source code file is already in the same directory, a programmer would execute

the following commands:

Alternatively, if one wishes to compile main.cpp to an object file first, and then link only object files together as the

final step:

Section 45.2: Templates in Header Files

Templates require compile-time generation of code: a templated function, for example, will be effectively turned

into multiple distinct functions once a templated function is parameterized by use in source code.

This means that template function, member function, and class definitions cannot be delegated to a separate

source code file, as any code that will use any templated construct requires knowledge of its definition to generally

generate any derivative code.

Thus, templated code, if put in headers, must also contain its definition. An example of this is below:

return 0;

}

g++ -c my_function.cpp # Compiles the source file my_function.cpp

--> object file my_function.o

g++ main.cpp my_function.o # Links the object file containing the

implementation of int my_function()

to the compiled, object version of main.cpp

and then produces the final executable a.out

g++ -c my_function.cpp

g++ -c main.cpp

g++ main.o my_function.o

// templated_function.h

template <typename T>

T* null_T_pointer() {

T* type_point = NULL; // or, alternatively, nullptr instead of NULL

// for C++11 or later

return type_point;

}

248

Chapter 46: Using declaration
A using declaration introduces a single name into the current scope that was previously declared elsewhere.

Section 46.1: Importing names individually from a namespace

Once using is used to introduce the name cout from the namespace std into the scope of the main function, the

std::cout object can be referred to as cout alone.

Section 46.2: Redeclaring members from a base class to
avoid name hiding

If a using-declaration occurs at class scope, it is only allowed to redeclare a member of a base class. For example,

using std::cout is not allowed at class scope.

Often, the name redeclared is one that would otherwise be hidden. For example, in the below code, d1.foo only

refers to Derived1::foo(const char*) and a compilation error will occur. The function Base::foo(int) is hidden

not considered at all. However, d2.foo(42) is fine because the using-declaration brings Base::foo(int) into the set

of entities named foo in Derived2. Name lookup then finds both foos and overload resolution selects Base::foo.

Section 46.3: Inheriting constructors

Version ≥ C++11

As a special case, a using-declaration at class scope can refer to the constructors of a direct base class. Those

constructors are then inherited by the derived class and can be used to initialize the derived class.

#include <iostream>

int main() {

using std::cout;

cout << "Hello, world!\n";

}

struct Base {

void foo(int);

};

struct Derived1 : Base {

void foo(const char*);

};

struct Derived2 : Base {

using Base::foo;

void foo(const char*);

};

int main() {

Derived1 d1;

d1.foo(42); // error

Derived2 d2;

d2.foo(42); // OK

}

struct Base {

Base(int x, const char* s);

};

struct Derived1 : Base {

Derived1(int x, const char* s) : Base(x, s) {}

};

249

In the above code, both Derived1 and Derived2 have constructors that forward the arguments directly to the

corresponding constructor of Base. Derived1 performs the forwarding explicitly, while Derived2, using the C++11

feature of inheriting constructors, does so implicitly.

struct Derived2 : Base {

using Base::Base;

};

int main() {

Derived1 d1(42, "Hello, world");

Derived2 d2(42, "Hello, world");

}

250

Chapter 47: std::string
Strings are objects that represent sequences of characters. The standard string class provides a simple, safe and

versatile alternative to using explicit arrays of chars when dealing with text and other sequences of characters. The

C++ string class is part of the std namespace and was standardized in 1998.

Section 47.1: Tokenize

Listed from least expensive to most expensive at run-time:

1. std::strtok is the cheapest standard provided tokenization method, it also allows the delimiter to be

modified between tokens, but it incurs 3 difficulties with modern C++:

std::strtok cannot be used on multiple strings at the same time (though some implementations do

extend to support this, such as: strtok_s)

For the same reason std::strtok cannot be used on multiple threads simultaneously (this may

however be implementation defined, for example: Visual Studio's implementation is thread safe)

Calling std::strtok modifies the std::string it is operating on, so it cannot be used on const strings,

const char*s, or literal strings, to tokenize any of these with std::strtok or to operate on a

std::string who's contents need to be preserved, the input would have to be copied, then the copy

could be operated on

Generally any of these options cost will be hidden in the allocation cost of the tokens, but if the cheapest

algorithm is required and std::strtok's difficulties are not overcomable consider a hand-spun solution.

Live Example

2. The std::istream_iterator uses the stream's extraction operator iteratively. If the input std::string is

white-space delimited this is able to expand on the std::strtok option by eliminating its difficulties, allowing

inline tokenization thereby supporting the generation of a const vector<string>, and by adding support for

multiple delimiting white-space character:

Live Example

3. The std::regex_token_iterator uses a std::regex to iteratively tokenize. It provides for a more flexible

delimiter definition. For example, non-delimited commas and white-space:

// String to tokenize

std::string str{ "The quick brown fox" };

// Vector to store tokens

vector<std::string> tokens;

for (auto i = strtok(&str[0], " "); i != NULL; i = strtok(NULL, " "))

tokens.push_back(i);

// String to tokenize

const std::string str("The quick \tbrown \nfox");

std::istringstream is(str);

// Vector to store tokens

const std::vector<std::string> tokens = std::vector<std::string>(

std::istream_iterator<std::string>(is),

std::istream_iterator<std::string>());

https://msdn.microsoft.com/en-us/library/ftsafwz3.aspx
https://msdn.microsoft.com/en-us/library/2c8d19sb.aspx#Anchor_3
http://stackoverflow.com/a/38595708/2642059
http://ideone.com/8kAGoa
http://ideone.com/gWmfV9

251

Version ≥ C++11

Live Example

See the regex_token_iterator Example for more details.

Section 47.2: Conversion to (const) char*

In order to get const char* access to the data of a std::string you can use the string's c_str() member function.

Keep in mind that the pointer is only valid as long as the std::string object is within scope and remains

unchanged, that means that only const methods may be called on the object.

Version ≥ C++17

The data() member function can be used to obtain a modifiable char*, which can be used to manipulate the

std::string object's data.

Version ≥ C++11

A modifiable char* can also be obtained by taking the address of the first character: &s[0]. Within C++11, this is

guaranteed to yield a well-formed, null-terminated string. Note that &s[0] is well-formed even if s is empty,

whereas &s.front() is undefined if s is empty.

Version ≥ C++11

Section 47.3: Using the std::string_view class

Version ≥ C++17

C++17 introduces std::string_view, which is simply a non-owning range of const chars, implementable as either

a pair of pointers or a pointer and a length. It is a superior parameter type for functions that requires non-

modifiable string data. Before C++17, there were three options for this:

std::string str("This is a string.");

const char* cstr = str.c_str(); // cstr points to: "This is a string.\0"

const char* data = str.data(); // data points to: "This is a string.\0"

std::string str("This is a string.");

// Copy the contents of str to untie lifetime from the std::string object

std::unique_ptr<char []> cstr = std::make_unique<char[]>(str.size() + 1);

// Alternative to the line above (no exception safety):

// char* cstr_unsafe = new char[str.size() + 1];

std::copy(str.data(), str.data() + str.size(), cstr);

cstr[str.size()] = '\0'; // A null-terminator needs to be added

// delete[] cstr_unsafe;

std::cout << cstr.get();

// String to tokenize

const std::string str{ "The ,qu\\,ick ,\tbrown, fox" };

const std::regex re{ "\\s*((?:[^\\\\,]|\\\\.)*?)\\s*(?:,|$)" };

// Vector to store tokens

const std::vector<std::string> tokens{

std::sregex_token_iterator(str.begin(), str.end(), re, 1),

std::sregex_token_iterator()

};

void foo(std::string const& s); // pre-C++17, single argument, could incur

http://ideone.com/q58zoX

252

All of these can be replaced with:

Note that std::string_view cannot modify its underlying data.

string_view is useful when you want to avoid unnecessary copies.

It offers a useful subset of the functionality that std::string does, although some of the functions behave

differently:

Section 47.4: Conversion to std::wstring

In C++, sequences of characters are represented by specializing the std::basic_string class with a native

character type. The two major collections defined by the standard library are std::string and std::wstring:

std::string is built with elements of type char

std::wstring is built with elements of type wchar_t

To convert between the two types, use wstring_convert:

// allocation if caller's data was not in a string

// (e.g. string literal or vector<char>)

void foo(const char* s, size_t len); // pre-C++17, two arguments, have to pass them

// both everywhere

void foo(const char* s); // pre-C++17, single argument, but need to call

// strlen()

template <class StringT>

void foo(StringT const& s); // pre-C++17, caller can pass arbitrary char data

// provider, but now foo() has to live in a header

void foo(std::string_view s); // post-C++17, single argument, tighter coupling

// zero copies regardless of how caller is storing

// the data

std::string str = "lllloooonnnngggg sssstttrrriiinnnggg"; //A really long string

//Bad way - 'string::substr' returns a new string (expensive if the string is long)

std::cout << str.substr(15, 10) << '\n';

//Good way - No copies are created!

std::string_view view = str;

// string_view::substr returns a new string_view

std::cout << view.substr(15, 10) << '\n';

#include <string>

#include <codecvt>

#include <locale>

std::string input_str = "this is a -string-, which is a sequence based on the -char- type.";

std::wstring input_wstr = L"this is a -wide- string, which is based on the -wchar_t- type.";

// conversion

std::wstring str_turned_to_wstr =

std::wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes(input_str);

253

In order to improve usability and/or readability, you can define functions to perform the conversion:

Sample usage:

That's certainly more readable than std::wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes("Hello

World!").

Please note that char and wchar_t do not imply encoding, and gives no indication of size in bytes. For instance,

wchar_t is commonly implemented as a 2-bytes data type and typically contains UTF-16 encoded data under

Windows (or UCS-2 in versions prior to Windows 2000) and as a 4-bytes data type encoded using UTF-32 under

Linux. This is in contrast with the newer types char16_t and char32_t, which were introduced in C++11 and are

guaranteed to be large enough to hold any UTF16 or UTF32 "character" (or more precisely, code point) respectively.

Section 47.5: Lexicographical comparison

Two std::strings can be compared lexicographically using the operators ==, !=, <, <=, >, and >=:

All these functions use the underlying std::string::compare() method to perform the comparison, and return for

convenience boolean values. The operation of these functions may be interpreted as follows, regardless of the

actual implementation:

operator==:

If str1.length() == str2.length() and each character pair matches, then returns true, otherwise returns

std::string wstr_turned_to_str =

std::wstring_convert<std::codecvt_utf8<wchar_t>>().to_bytes(input_wstr);

#include <string>

#include <codecvt>

#include <locale>

using convert_t = std::codecvt_utf8<wchar_t>;

std::wstring_convert<convert_t, wchar_t> strconverter;

std::string to_string(std::wstring wstr)

{

return strconverter.to_bytes(wstr);

}

std::wstring to_wstring(std::string str)

{

return strconverter.from_bytes(str);

}

std::wstring a_wide_string = to_wstring("Hello World!");

std::string str1 = "Foo";

std::string str2 = "Bar";

assert(!(str1 < str2));

assert(str > str2);

assert(!(str1 <= str2));

assert(str1 >= str2);

assert(!(str1 == str2));

assert(str1 != str2);

254

false.

operator!=:

If str1.length() != str2.length() or one character pair doesn't match, returns true, otherwise it returns

false.

operator< or operator>:

Finds the first different character pair, compares them then returns the boolean result.

operator<= or operator>=:

Finds the first different character pair, compares them then returns the boolean result.

Note: The term character pair means the corresponding characters in both strings of the same positions. For

better understanding, if two example strings are str1 and str2, and their lengths are n and m respectively, then

character pairs of both strings means each str1[i] and str2[i] pairs where i = 0, 1, 2, ..., max(n,m). If for any i

where the corresponding character does not exist, that is, when i is greater than or equal to n or m, it would be

considered as the lowest value.

Here is an example of using <:

The steps are as follows:

1. Compare the first characters, 'B' == 'B' - move on.

2. Compare the second characters, 'a' == 'a' - move on.

3. Compare the third characters, 'r' == 'r' - move on.

4. The str2 range is now exhausted, while the str1 range still has characters. Thus, str2 < str1.

Section 47.6: Trimming characters at start/end

This example requires the headers <algorithm>, <locale>, and <utility>.

Version ≥ C++11

To trim a sequence or string means to remove all leading and trailing elements (or characters) matching a certain

predicate. We first trim the trailing elements, because it doesn't involve moving any elements, and then trim the

leading elements. Note that the generalizations below work for all types of std::basic_string (e.g. std::string

and std::wstring), and accidentally also for sequence containers (e.g. std::vector and std::list).

std::string str1 = "Barr";

std::string str2 = "Bar";

assert(str2 < str1);

template <typename Sequence, // any basic_string, vector, list etc.

typename Pred> // a predicate on the element (character) type

Sequence& trim(Sequence& seq, Pred pred) {

return trim_start(trim_end(seq, pred), pred);

}

http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/locale
http://en.cppreference.com/w/cpp/header/locale
http://en.cppreference.com/w/cpp/header/utility
http://en.cppreference.com/w/cpp/header/utility

255

Trimming the trailing elements involves finding the last element not matching the predicate, and erasing from there

on:

Trimming the leading elements involves finding the first element not matching the predicate and erasing up to

there:

To specialize the above for trimming whitespace in a std::string we can use the std::isspace() function as a

predicate:

Similarly, we can use the std::iswspace() function for std::wstring etc.

If you wish to create a new sequence that is a trimmed copy, then you can use a separate function:

Section 47.7: String replacement

Replace by position

To replace a portion of a std::string you can use the method replace from std::string.

replace has a lot of useful overloads:

template <typename Sequence, typename Pred>

Sequence& trim_end(Sequence& seq, Pred pred) {

auto last = std::find_if_not(seq.rbegin(),

seq.rend(),

pred);

seq.erase(last.base(), seq.end());

return seq;

}

template <typename Sequence, typename Pred>

Sequence& trim_start(Sequence& seq, Pred pred) {

auto first = std::find_if_not(seq.begin(),

seq.end(),

pred);

seq.erase(seq.begin(), first);

return seq;

}

std::string& trim(std::string& str, const std::locale& loc = std::locale()) {

return trim(str, [&loc](const char c){ return std::isspace(c, loc); });

}

std::string& trim_start(std::string& str, const std::locale& loc = std::locale()) {

return trim_start(str, [&loc](const char c){ return std::isspace(c, loc); });

}

std::string& trim_end(std::string& str, const std::locale& loc = std::locale()) {

return trim_end(str, [&loc](const char c){ return std::isspace(c, loc); });

}

template <typename Sequence, typename Pred>

Sequence trim_copy(Sequence seq, Pred pred) { // NOTE: passing seq by value

trim(seq, pred);

return seq;

}

http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/locale/isspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace
http://en.cppreference.com/w/cpp/string/wide/iswspace

256

Version ≥ C++14

Version ≥ C++11

Replace occurrences of a string with another string

Replace only the first occurrence of replace with with in str:

Replace all occurrence of replace with with in str:

Section 47.8: Converting to std::string

std::ostringstream can be used to convert any streamable type to a string representation, by inserting the object

//8)

str.replace(str.begin(), str.begin() + 5, { 'x', 'y', 'z' }); //"xyz foo, bar and world!"

//4)

str.replace(19, 5, alternate, 6); //"Hello foo, bar and foobar!"

//5)

str.replace(str.begin(), str.begin() + 5, str.begin() + 6, str.begin() + 9);

//"foo foo, bar and world!"

//6)

str.replace(0, 5, 3, 'z'); //"zzz foo, bar and world!"

//7)

str.replace(str.begin() + 6, str.begin() + 9, 3, 'x'); //"Hello xxx, bar and world!"

//Define string

std::string str = "Hello foo, bar and world!";

std::string alternate = "Hello foobar";

//1)

str.replace(6, 3, "bar"); //"Hello bar, bar and world!"

//2)

str.replace(str.begin() + 6, str.end(), "nobody!"); //"Hello nobody!"

//3)

str.replace(19, 5, alternate, 6, 6); //"Hello foo, bar and foobar!"

std::string replaceString(std::string str,

const std::string& replace,

const std::string& with){

std::size_t pos = str.find(replace); if

(pos != std::string::npos)

str.replace(pos, replace.length(), with);

return str;

}

std::string replaceStringAll(std::string str,

const std::string& replace,

const std::string& with) {

if(!replace.empty()) {

std::size_t pos = 0;

while ((pos = str.find(replace, pos)) != std::string::npos) {

str.replace(pos, replace.length(), with);

pos += with.length();

}

}

return str;

}

http://en.cppreference.com/w/cpp/io/basic_ostringstream
http://en.cppreference.com/w/cpp/io/basic_ostringstream
http://en.cppreference.com/w/cpp/io/basic_ostringstream

257

into a std::ostringstream object (with the stream insertion operator <<) and then converting the whole

std::ostringstream to a std::string.

For int for instance:

Writing your own conversion function, the simple:

works but isn't suitable for performance critical code.

User-defined classes may implement the stream insertion operator if desired:

Version ≥ C++11

Aside from streams, since C++11 you can also use the std::to_string (and std::to_wstring) function which is

overloaded for all fundamental types and returns the string representation of its parameter.

Section 47.9: Splitting

Use std::string::substr to split a string. There are two variants of this member function.

The first takes a starting position from which the returned substring should begin. The starting position must be

valid in the range (0, str.length()]:

The second takes a starting position and a total length of the new substring. Regardless of the length, the substring

will never go past the end of the source string:

#include <sstream>

int main()

{

int val = 4;

std::ostringstream str; str

<< val;

std::string converted = str.str();

return 0;

}

template<class T>

std::string toString(const T& x)

{

std::ostringstream ss; ss

<< x;

return ss.str();

}

std::ostream operator<<(std::ostream& out, const A& a)

{

// write a string representation of a to out

return out;

}

std::string s = to_string(0x12f3); // after this the string s contains "4851"

std::string str = "Hello foo, bar and world!"; std::string

newstr = str.substr(11); // "bar and world!"

std::string str = "Hello foo, bar and world!";

http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_string
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/to_wstring
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr
http://en.cppreference.com/w/cpp/string/basic_string/substr

258

Note that you can also call substr with no arguments, in this case an exact copy of the string is returned

Section 47.10: Accessing a character

There are several ways to extract characters from a std::string and each is subtly different.

operator[](n)

Returns a reference to the character at index n.

std::string::operator[] is not bounds-checked and does not throw an exception. The caller is responsible for

asserting that the index is within the range of the string:

at(n)

Returns a reference to the character at index n.

std::string::at is bounds checked, and will throw std::out_of_range if the index is not within the range of the

string:

Version ≥ C++11

Note: Both of these examples will result in undefined behavior if the string is empty.

front()

Returns a reference to the first character:

back()

Returns a reference to the last character:

Section 47.11: Checking if a string is a prefix of another

Version ≥ C++14

In C++14, this is easily done by std::mismatch which returns the first mismatching pair from two ranges:

std::string newstr = str.substr(15, 3); // "and"

std::string str = "Hello foo, bar and world!";

std::string newstr = str.substr(); // "Hello foo, bar and world!"

std::string str("Hello world!");

char c = str[6]; // 'w'

char c = str.at(7); // 'o'

char c = str.front(); // 'H'

char c = str.back(); // '!'

std::string prefix = "foo";

http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/mismatch
http://en.cppreference.com/w/cpp/algorithm/mismatch

259

Note that a range-and-a-half version of mismatch() existed prior to C++14, but this is unsafe in the case that the

second string is the shorter of the two.

Version < C++14

We can still use the range-and-a-half version of std::mismatch(), but we need to first check that the first string is at

most as big as the second:

Version ≥ C++17

With std::string_view, we can write the direct comparison we want without having to worry about allocation

overhead or making copies:

Section 47.12: Looping through each character

Version ≥ C++11

std::string supports iterators, and so you can use a ranged based loop to iterate through each character:

You can use a "traditional" for loop to loop through every character:

Section 47.13: Conversion to integers/floating point types

A std::string containing a number can be converted into an integer type, or a floating point type, using

conversion functions.

Note that all of these functions stop parsing the input string as soon as they encounter a non-numeric character, so

"123abc" will be converted into 123.

The std::ato* family of functions converts C-style strings (character arrays) to integer or floating-point types:

std::string string = "foobar";

bool isPrefix = std::mismatch(prefix.begin(), prefix.end(),

string.begin(), string.end()).first == prefix.end();

bool isPrefix = prefix.size() <= string.size() &&

std::mismatch(prefix.begin(), prefix.end(),

string.begin(), string.end()).first == prefix.end();

bool isPrefix(std::string_view prefix, std::string_view full)

{

return prefix == full.substr(0, prefix.size());

}

std::string str = "Hello World!";

for (auto c : str)

std::cout << c;

std::string str = "Hello World!";

for (std::size_t i = 0; i < str.length(); ++i)

std::cout << str[i];

std::string ten = "10";

double num1 = std::atof(ten.c_str());

260

Version ≥ C++11

However, use of these functions is discouraged because they return 0 if they fail to parse the string. This is bad

because 0 could also be a valid result, if for example the input string was "0", so it is impossible to determine if the

conversion actually failed.

The newer std::sto* family of functions convert std::strings to integer or floating-point types, and throw exceptions

if they could not parse their input. You should use these functions if possible:

Version ≥ C++11

Furthermore, these functions also handle octal and hex strings unlike the std::ato* family. The second parameter

is a pointer to the first unconverted character in the input string (not illustrated here), and the third parameter is

the base to use. 0 is automatic detection of octal (starting with 0) and hex (starting with 0x or 0X), and any other

value is the base to use

Section 47.14: Concatenation

You can concatenate std::strings using the overloaded + and += operators. Using the + operator:

Using the += operator:

You can also append C strings, including string literals:

std::string ten = "10";

int num1 = std::stoi(ten);

long num2 = std::stol(ten);

long long num3 = std::stoll(ten);

float num4 = std::stof(ten);

double num5 = std::stod(ten);

long double num6 = std::stold(ten);

long long num4 = std::atoll(ten.c_str());

int num2 = std::atoi(ten.c_str());

long num3 = std::atol(ten.c_str());

std::string ten = "10";

std::string ten_octal = "12";

std::string ten_hex = "0xA";

int num1 = std::stoi(ten, 0, 2); // Returns 2

int num2 = std::stoi(ten_octal, 0, 8); // Returns 10

long num3 = std::stol(ten_hex, 0, 16); // Returns 10

long num4 = std::stol(ten_hex); // Returns 0

long num5 = std::stol(ten_hex, 0, 0); // Returns 10 as it detects the leading 0x

std::string hello = "Hello";

std::string world = "world";

std::string helloworld = hello + world; // "Helloworld"

std::string hello = "Hello";

std::string world = "world"; hello

+= world; // "Helloworld"

std::string hello = "Hello";

std::string world = "world";

261

You can also use push_back() to push back individual chars:

There is also append(), which is pretty much like +=:

Section 47.15: Converting between character encodings

Converting between encodings is easy with C++11 and most compilers are able to deal with it in a cross-platform

manner through <codecvt> and <locale> headers.

Mind that Visual Studio 2015 provides supports for these conversion but a bug in their library implementation

requires to use a different template for wstring_convert when dealing with char16_t:

const char *comma = ", ";

std::string newhelloworld = hello + comma + world + "!"; // "Hello, world!"

std::string s = "a, b, ";

s.push_back('c'); // "a, b, c"

std::string app = "test and ";

app.append("test"); // "test and test"

#include <iostream>

#include <codecvt>

#include <locale>

#include <string>

using namespace std;

int main() {

// converts between wstring and utf8 string

wstring_convert<codecvt_utf8_utf16<wchar_t>> wchar_to_utf8;

// converts between u16string and utf8 string

wstring_convert<codecvt_utf8_utf16<char16_t>, char16_t> utf16_to_utf8;

wstring wstr = L"foobar";

string utf8str = wchar_to_utf8.to_bytes(wstr); wstring

wstr2 = wchar_to_utf8.from_bytes(utf8str);

wcout << wstr << endl;

cout << utf8str << endl;

wcout << wstr2 << endl;

u16string u16str = u"foobar";

string utf8str2 = utf16_to_utf8.to_bytes(u16str); u16string

u16str2 = utf16_to_utf8.from_bytes(utf8str2);

return 0;

}

using utf16_char = unsigned short; wstring_convert<codecvt_utf8_utf16<utf16_char>,

utf16_char> conv_utf8_utf16;

void strings::utf16_to_utf8(const std::u16string& utf16, std::string& utf8)

{

std::basic_string<utf16_char> tmp;

tmp.resize(utf16.length()); std::copy(utf16.begin(),

utf16.end(), tmp.begin()); utf8 =

conv_utf8_utf16.to_bytes(tmp);

}

https://social.msdn.microsoft.com/Forums/vstudio/en-US/8f40dcd8-c67f-4eba-9134-a19b9178e481/vs-2015-rc-linker-stdcodecvt-error?forum=vcgeneral

262

Section 47.16: Finding character(s) in a string

To find a character or another string, you can use std::string::find. It returns the position of the first character

of the first match. If no matches were found, the function returns std::string::npos

Found at position: 21

The search opportunities are further expanded by the following functions:

These functions can allow you to search for characters from the end of the string, as well as find the negative case

(ie. characters that are not in the string). Here is an example:

Found at position: 6

Note: Be aware that the above functions do not search for substrings, but rather for characters contained in the

search string. In this case, the last occurrence of 'g' was found at position 6 (the other characters weren't found).

void strings::utf8_to_utf16(const std::string& utf8, std::u16string& utf16)

{

std::basic_string<utf16_char> tmp = conv_utf8_utf16.from_bytes(utf8);

utf16.clear();

utf16.resize(tmp.length()); std::copy(tmp.begin(),

tmp.end(), utf16.begin());

}

std::string str = "Curiosity killed the cat";

auto it = str.find("cat");

if (it != std::string::npos)

std::cout << "Found at position: " << it << '\n';

else

std::cout << "Not found!\n";

find_first_of // Find first occurrence of characters

find_first_not_of // Find first absence of characters

find_last_of // Find last occurrence of characters

find_last_not_of // Find last absence of characters

std::string str = "dog dog cat cat";

std::cout << "Found at position: " << str.find_last_of("gzx") << '\n';

http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/find
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos
http://en.cppreference.com/w/cpp/string/basic_string/npos

263

Chapter 48: std::array
Parameter Definition

class T Specifies the data type of array members

std::size_t N Specifies the number of members in the array

Section 48.1: Initializing an std::array

Initializing std::array<T, N>, where T is a scalar type and N is the number of elements of type T

If T is a scalar type, std::array can be initialized in the following ways:

Initializing std::array<T, N>, where T is a non-scalar type and N is the number of elements of type T

If T is a non-scalar type std::array can be initialized in the following ways:

struct A { int values[3]; }; // An aggregate type

// 1) Using aggregate initialization with brace elision

// It works only if T is an aggregate type!

std::array<A, 2> a{ 0, 1, 2, 3, 4, 5 };

// or equivalently

std::array<A, 2> a = { 0, 1, 2, 3, 4, 5 };

// 2) Using aggregate initialization with brace initialization of sub-elements

std::array<A, 2> a{ A{ 0, 1, 2 }, A{ 3, 4, 5 } };

// or equivalently

std::array<A, 2> a = { A{ 0, 1, 2 }, A{ 3, 4, 5 } };

// 3)

std::array<A, 2> a{{ { 0, 1, 2 }, { 3, 4, 5 } }};

// or equivalently

std::array<A, 2> a = {{ { 0, 1, 2 }, { 3, 4, 5 } }};

// 4) Using the copy constructor std::array<A,

2> a{ 1, 2, 3 };

std::array<A, 2> a2(a);

// or equivalently

std::array<A, 2> a2 = a;

// 5) Using the move constructor

std::array<A, 2> a = std::array<A, 2>{ 0, 1, 2, 3, 4, 5 };

// 1) Using aggregate-initialization

std::array<int, 3> a{ 0, 1, 2 };

// or equivalently

std::array<int, 3> a = { 0, 1, 2 };

// 2) Using the copy constructor

std::array<int, 3> a{ 0, 1, 2

};

std::array<int, 3> a2(a);

// or equivalently

std::array<int, 3> a2 =

a;

// 3) Using the move constructor

std::array<int, 3> a = std::array<int, 3>{ 0, 1, 2 };

264

Section 48.2: Element access

1. at(pos)

Returns a reference to the element at position pos with bounds checking. If pos is not within the range of the

container, an exception of type std::out_of_range is thrown.

The complexity is constant O(1).

2) operator[pos]

Returns a reference to the element at position pos without bounds checking. If pos is not within the range of the

container, a runtime segmentation violation error can occur. This method provides element access equivalent to

classic arrays and thereof more efficient than at(pos).

The complexity is constant O(1).

3) std::get<pos>

This non-member function returns a reference to the element at compile-time constant position pos without

#include <array>

int main()

{

std::array<int, 3> arr;

// write values

arr.at(0) = 2;

arr.at(1) = 4;

arr.at(2) = 6;

// read values

int a = arr.at(0); // a is now 2

int b = arr.at(1); // b is now 4

int c = arr.at(2); // c is now 6

return 0;

}

#include <array>

int main()

{

std::array<int, 3> arr;

// write values

arr[0] = 2;

arr[1] = 4;

arr[2] = 6;

// read values

int a = arr[0]; // a is now 2

int b = arr[1]; // b is now 4

int c = arr[2]; // c is now 6

return 0;

}

265

bounds checking. If pos is not within the range of the container, a runtime segmentation violation error can occur.

The complexity is constant O(1).

4) front()

Returns a reference to the first element in container. Calling front() on an empty container is undefined.

The complexity is constant O(1).

Note: For a container c, the expression c.front() is equivalent to *c.begin().

5) back()

Returns reference to the last element in the container. Calling back() on an empty container is undefined.

The complexity is constant O(1).

#include <array>

int main()

{

std::array<int, 3> arr;

// write values

std::get<0>(arr) = 2;

std::get<1>(arr) = 4;

std::get<2>(arr) = 6;

// read values

int a = std::get<0>(arr); // a is now 2

int b = std::get<1>(arr); // b is now 4

int c = std::get<2>(arr); // c is now 6

return 0;

}

#include <array>

int main()

{

std::array<int, 3> arr{ 2, 4, 6

}; int a = arr.front(); // a is now

2

return 0;

}

#include <array>

int main()

{

std::array<int, 3> arr{ 2, 4, 6

}; int a = arr.back(); // a is now

6

return 0;

}

266

6) data()

Returns pointer to the underlying array serving as element storage. The pointer is such that range [data();

data() + size()) is always a valid range, even if the container is empty (data() is not dereferenceable in that

case).

The complexity is constant O(1).

Section 48.3: Iterating through the Array

std::array being a STL container, can use range-based for loop similar to other containers like vector

Section 48.4: Checking size of the Array

One of the main advantage of std::array as compared to C style array is that we can check the size of the array

using size() member function

Section 48.5: Changing all array elements at once

The member function fill() can be used on std::array for changing the values at once post initialization

#include <iostream>

#include <cstring>

#include <array>

int main ()

{

const char* cstr = "Test string";

std::array<char, 12> arr;

std::memcpy(arr.data(), cstr, 12); // copy cstr to arr

std::cout << arr.data(); // outputs: Test string return

0;

}

int main() {

std::array<int, 3> arr = { 1, 2, 3

}; for (auto i : arr)

cout << i << '\n';

}

int main() {

std::array<int, 3> arr = { 1, 2, 3 };

cout << arr.size() << endl;

}

int main() {

std::array<int, 3> arr = { 1, 2, 3 };

// change all elements of the array to 100

arr.fill(100);

}

267

Chapter 49: std::vector
A vector is a dynamic array with automatically handled storage. The elements in a vector can be accessed just as

efficiently as those in an array with the advantage being that vectors can dynamically change in size.

In terms of storage the vector data is (usually) placed in dynamically allocated memory thus requiring some minor

overhead; conversely C-arrays and std::array use automatic storage relative to the declared location and thus do

not have any overhead.

Section 49.1: Accessing Elements

There are two primary ways of accessing elements in a std::vector

index-based access

iterators

Index-based access:

This can be done either with the subscript operator [], or the member function at().

Both return a reference to the element at the respective position in the std::vector (unless it's a vector<bool>), so

that it can be read as well as modified (if the vector is not const).

[] and at() differ in that [] is not guaranteed to perform any bounds checking, while at() does. Accessing

elements where

exception.

0 or index >= size is undefined behavior for [], while at() throws a std::out_of_range

Note: The examples below use C++11-style initialization for clarity, but the operators can be used with all versions

(unless marked C++11).

Version ≥ C++11

Because the at() method performs bounds checking and can throw exceptions, it is slower than []. This makes []

preferred code where the semantics of the operation guarantee that the index is in bounds. In any case, accesses

to elements of vectors are done in constant time. That means accessing to the first element of the vector has the

same cost (in time) of accessing the second element, the third element and so on.

For example, consider this loop

Here we know that the index variable i is always in bounds, so it would be a waste of CPU cycles to check that i is

in bounds for every call to operator[].

std::vector<int> v{ 1, 2, 3
};
// using []

int a = v[1];

v[1] = 4;

// a is 2

// v now contains { 1, 4, 3 }

// using at()

int b = v.at(2); // b is 3

v.at(2) = 5; // v now contains { 1, 4, 5 }

int c = v.at(3); // throws std::out_of_range exception

index <

for (std::size_t i = 0; i < v.size(); ++i) {

v[i] = 1;

}

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector/operator_at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/container/vector/at
http://en.cppreference.com/w/cpp/error/out_of_range
http://en.cppreference.com/w/cpp/error/out_of_range
http://en.cppreference.com/w/cpp/error/out_of_range

268

The front() and back() member functions allow easy reference access to the first and last element of the vector,

respectively. These positions are frequently used, and the special accessors can be more readable than their

alternatives using []:

Note: It is undefined behavior to invoke front() or back() on an empty vector. You need to check that the

container is not empty using the empty() member function (which checks if the container is empty) before calling

front() or back(). A simple example of the use of 'empty()' to test for an empty vector follows:

The example above creates a vector with a sequence of numbers from 1 to 10. Then it pops the elements of the

vector out until the vector is empty (using 'empty()') to prevent undefined behavior. Then the sum of the numbers

in the vector is calculated and displayed to the user.

Version ≥ C++11

The data() method returns a pointer to the raw memory used by the std::vector to internally store its elements.

This is most often used when passing the vector data to legacy code that expects a C-style array.

Version < C++11

Before C++11, the data() method can be simulated by calling front() and taking the address of the returned

value:

This works because vectors are always guaranteed to store their elements in contiguous memory locations,

std::vector<int> v{ 4, 5, 6 }; // In pre-C++11 this is more verbose

int a = v.front(); // a is 4, v.front() is equivalent to v[0]

v.front() = 3; // v now contains {3, 5, 6}

int b = v.back(); // b is 6, v.back() is equivalent to v[v.size() - 1]

v.back() = 7; // v now contains {3, 5, 7}

int main ()

{

std::vector<int> v;

int sum (0);

for (int i=1;i<=10;i++) v.push_back(i);//create and initialize the vector while

(!v.empty())//loop through until the vector tests to be empty

{

sum += v.back();//keep a running total

v.pop_back();//pop out the element which removes it from the vector

}

std::cout << "total: " << sum << '\n';//output the total to the user

return 0;

}

std::vector<int> v{ 1, 2, 3, 4 }; // v contains {1, 2, 3, 4}

int* p = v.data(); // p points to 1

*p = 4; // v now contains {4, 2, 3, 4}

++p; // p points to 2

*p = 3; // v now contains {4, 3, 3, 4}

p[1] = 2; // v now contains {4, 3, 2, 4}

*(p + 2) = 1; // v now contains {4, 3, 2, 1}

std::vector<int> v(4);

int* ptr = &(v.front()); // or &v[0]

http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/front
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/back
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/empty
http://en.cppreference.com/w/cpp/container/vector/data
http://en.cppreference.com/w/cpp/container/vector/data
http://en.cppreference.com/w/cpp/container/vector/data

269

assuming the contents of the vector doesn't override unary operator&. If it does, you'll have to re-implement

std::addressof in pre-C++11. It also assumes that the vector isn't empty.

Iterators:

Iterators are explained in more detail in the example "Iterating over std::vector" and the article Iterators. In short,

they act similarly to pointers to the elements of the vector:

Version ≥ C++11

It is consistent with the standard that a std::vector<T>'s iterators actually be T*s, but most standard libraries do

not do this. Not doing this both improves error messages, catches non-portable code, and can be used to

instrument the iterators with debugging checks in non-release builds. Then, in release builds, the class wrapping

around the underlying pointer is optimized away.

You can persist a reference or a pointer to an element of a vector for indirect access. These references or pointers

to elements in the vector remain stable and access remains defined unless you add/remove elements at or before

the element in the vector, or you cause the vector capacity to change. This is the same as the rule for invalidating

iterators.

Version ≥ C++11

Section 49.2: Initializing a std::vector

A std::vector can be initialized in several ways while declaring it:

Version ≥ C++11

A vector can be initialized from another container in several ways:

std::vector<int> v{ 1, 2, 3 }; // v becomes {1, 2, 3}

// Different from std::vector<int> v(3, 6)

std::vector<int> v{ 3, 6 }; // v becomes {3, 6}

// Different from std::vector<int> v{3, 6} in C++11

std::vector<int> v(3, 6); // v becomes {6, 6, 6}

std::vector<int> v(4); // v becomes {0, 0, 0, 0}

std::vector<int> v{ 1, 2, 3
}; int* p = v.data() + 1;

v.insert(v.begin(), 0);

p = v.data() + 1;

v.reserve(10);

p = v.data() + 1;

v.erase(v.begin());

// p points to 2

// p is now invalid, accessing *p is a undefined behavior.

// p points to 1

// p is now invalid, accessing *p is a undefined behavior.

// p points to 1

// p is now invalid, accessing *p is a undefined behavior.

std::vector<int> v{ 4, 5, 6
};

auto it = v.begin(); int i = *it;

++it;

i = *it;

*it = 6;

auto e = v.end();

// i is 4

// i is 5

// v contains { 4, 6, 6 }

// e points to the element after the end of v. It can be

// used to check whether an iterator reached the end of the vector:

++it;

it == v.end();

++it;

it == v.end();

// false, it points to the element at position 2 (with value 6)

// true

http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/memory/addressof
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector/vector

270

Copy construction (from another vector only), which copies data from v2:

Version ≥ C++11

Move construction (from another vector only), which moves data from v2:

Iterator (range) copy-construction, which copies elements into v:

Version ≥ C++11

Iterator move-construction, using std::make_move_iterator, which moves elements into v:

With the help of the assign() member function, a std::vector can be reinitialized after its construction:

Section 49.3: Deleting Elements

Deleting the last element:

Deleting all elements:

Deleting element by index:

std::vector<int> v{ 1, 2, 3
};

v.clear();
// v becomes an empty vector

std::vector<int> v(v2);

std::vector<int> v = v2;

std::vector<int> v(std::move(v2));

std::vector<int> v = std::move(v2);

// from another vector

std::vector<int> v(v2.begin(), v2.begin() + 3); // v becomes {v2[0], v2[1], v2[2]}

// from an array

int z[] = { 1, 2, 3, 4 };

std::vector<int> v(z, z + 3); // v becomes {1, 2, 3}

// from a list

std::list<int> list1{ 1, 2, 3 };

std::vector<int> v(list1.begin(), list1.end()); // v becomes {1, 2, 3}

// from another vector

std::vector<int> v(std::make_move_iterator(v2.begin()),

std::make_move_iterator(v2.end());

// from a list

std::list<int> list1{ 1, 2, 3 };

std::vector<int> v(std::make_move_iterator(list1.begin()),

std::make_move_iterator(list1.end()));

v.assign(4, 100); // v becomes {100, 100, 100, 100}

v.assign(v2.begin(), v2.begin() + 3); // v becomes {v2[0], v2[1], v2[2]}

int z[] = { 1, 2, 3, 4
};

v.assign(z + 1, z + 4);
// v becomes {2, 3, 4}

std::vector<int> v{ 1, 2, 3
};

v.pop_back();
// v becomes {1, 2}

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };

v.erase(v.begin() + 3); // v becomes {1, 2, 3, 5, 6}

http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/iterator/make_move_iterator
http://en.cppreference.com/w/cpp/container/vector/assign
http://en.cppreference.com/w/cpp/container/vector/assign
http://en.cppreference.com/w/cpp/container/vector/assign

271

Note: For a vector deleting an element which is not the last element, all elements beyond the deleted element have

to be copied or moved to fill the gap, see the note below and std::list.

Deleting all elements in a range:

Note: The above methods do not change the capacity of the vector, only the size. See Vector Size and Capacity.

The erase method, which removes a range of elements, is often used as a part of the erase-remove idiom. That is,

first std::remove moves some elements to the end of the vector, and then erase chops them off. This is a relatively

inefficient operation for any indices less than the last index of the vector because all elements after the erased

segments must be relocated to new positions. For speed critical applications that require efficient removal of

arbitrary elements in a container, see std::list.

Deleting elements by value:

Deleting elements by condition:

Deleting elements by lambda, without creating additional predicate function

Version ≥ C++11

Deleting elements by condition from a loop:

While it is important not to increment it in case of a deletion, you should consider using a different method when

then erasing repeatedly in a loop. Consider remove_if for a more efficient way.

Deleting elements by condition from a reverse loop:

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };

v.erase(std::remove_if(v.begin(), v.end(),

[](auto& element){return element > 3;}), v.end()

);

// std::remove_if needs a function, that takes a vector element as argument and returns true,

// if the element shall be removed

bool _predicate(const int& element) {

return (element > 3); // This will cause all elements to be deleted that are larger than 3

}

...

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };

v.erase(std::remove_if(v.begin(), v.end(), _predicate), v.end()); // v becomes {1, 2, 3}

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };

v.erase(v.begin() + 1, v.begin() + 5); // v becomes {1, 6}

std::vector<int> v{ 1, 1, 2, 2, 3, 3

}; int value_to_remove = 2;

v.erase(std::remove(v.begin(), v.end(), value_to_remove), v.end()); // v becomes {1, 1, 3, 3}

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };

std::vector<int>::iterator it = v.begin();

while (it != v.end()) {

if (condition)

it = v.erase(it); // after erasing, 'it' will be set to the next element in v

else

++it; // manually set 'it' to the next element in v

}

std::vector<int> v{ -1, 0, 1, 2, 3, 4, 5, 6 };

typedef std::vector<int>::reverse_iterator rev_itr;

rev_itr it = v.rbegin();

while (it != v.rend()) { // after the loop only '0' will be in v

int value = *it;

if (value) {

++it;

http://en.cppreference.com/w/cpp/container/vector/erase
https://en.wikipedia.org/wiki/Erase%E2%80%93remove_idiom
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove
http://en.cppreference.com/w/cpp/algorithm/remove

272

Note some points for the preceding loop:

Given a reverse iterator it pointing to some element, the method base gives the regular (non-reverse)

iterator pointing to the same element.

vector::erase(iterator) erases the element pointed to by an iterator, and returns an iterator to the

element that followed the given element.

reverse_iterator::reverse_iterator(iterator) constructs a reverse iterator from an iterator.

Put altogether, the line it = rev_itr(v.erase(it.base())) says: take the reverse iterator it, have v erase the

element pointed by its regular iterator; take the resulting iterator, construct a reverse iterator from it, and assign it

to the reverse iterator it.

Deleting all elements using v.clear() does not free up memory (capacity() of the vector remains unchanged). To

reclaim space, use:

Version ≥ C++11

shrink_to_fit() frees up unused vector capacity:

The shrink_to_fit does not guarantee to really reclaim space, but most current implementations do.

Section 49.4: Iterating Over std::vector

You can iterate over a std::vector in several ways. For each of the following sections, v is defined as follows:

Iterating in the Forward Direction

Version ≥ C++11

// Range based for

for(const auto& value: v) {

std::cout << value << "\n";

}

// Using a for loop with iterator

for(auto it = std::begin(v); it != std::end(v); ++it) {

std::cout << *it << "\n";

}

// Using for_each algorithm, using a function or functor:

void fun(int const& value) {

std::cout << value << "\n";

}

std::for_each(std::begin(v), std::end(v), fun);

// See explanation below for the following line.

it = rev_itr(v.erase(it.base()));

} else

++it;

}

std::vector<int>().swap(v);

v.shrink_to_fit();

std::vector<int> v;

http://en.cppreference.com/w/cpp/iterator/reverse_iterator/base
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/capacity
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector/shrink_to_fit
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector

273

Version < C++11

Iterating in the Reverse Direction

Version ≥ C++14

Though there is no built-in way to use the range based for to reverse iterate; it is relatively simple to fix this. The

range based for uses begin() and end() to get iterators and thus simulating this with a wrapper object can achieve

the results we require.

Version ≥ C++14

Enforcing const elements

template<class C>

struct ReverseRange

{

C c; // could be a reference or a copy, if the original was a temporary

ReverseRange(C&& cin): c(std::forward<C>(cin)) {}

ReverseRange(ReverseRange&&)=default;

ReverseRange&

operator=(ReverseRange&&)=delete; auto begin()

const {return std::rbegin(c);} auto end()

 const {return std::rend(c);}

};

// C is meant to be deduced, and perfect forwarded into

template<class C>

ReverseRange<C> make_ReverseRange(C&& c) {return {std::forward<C>(c)};}

int main() {

std::vector<int> v { 1,2,3,4};

for(auto const& value: make_ReverseRange(v)) {

std::cout << value << "\n";

}

}

// There is no standard way to use range based for for this.

// See below for alternatives.

// Using for_each algorithm

// Note: Using a lambda for clarity. But a function or functor will work std::for_each(std::rbegin(v),

std::rend(v), [](auto const& value) {

std::cout << value << "\n";

});

// Using a for loop with iterator

for(auto rit = std::rbegin(v); rit != std::rend(v); ++rit) {

std::cout << *rit << "\n";

}

// Using a for loop with index for(std::size_t

i = 0; i < v.size(); ++i) {

std::cout << v[v.size() - 1 - i] << "\n";

}

// Using a for loop with iterator

for(std::vector<int>::iterator it = std::begin(v); it != std::end(v); ++it) {

std::cout << *it << "\n";

}

// Using a for loop with index for(std::size_t

i = 0; i < v.size(); ++i) {

std::cout << v[i] << "\n";

}

// Using for_each algorithm. Using a lambda:

std::for_each(std::begin(v), std::end(v), [](int const& value) {

std::cout << value << "\n";

});

274

Since C++11 the cbegin() and cend() methods allow you to obtain a constant iterator for a vector, even if the vector

is non-const. A constant iterator allows you to read but not modify the contents of the vector which is useful to

enforce const correctness:

Version ≥ C++11

Version ≥ C++17

as_const extends this to range iteration:

This is easy to implement in earlier versions of C++:

Version ≥ C++14

A Note on Efficiency

Since the class std::vector is basically a class that manages a dynamically allocated contiguous array, the same

principle explained here applies to C++ vectors. Accessing the vector's content by index is much more efficient

when following the row-major order principle. Of course, each access to the vector also puts its management

content into the cache as well, but as has been debated many times (notably here and here), the difference in

performance for iterating over a std::vector compared to a raw array is negligible. So the same principle of

efficiency for raw arrays in C also applies for C++'s std::vector.

Section 49.5: vector<bool>: The Exception To So Many, So
Many Rules

The standard (section 23.3.7) specifies that a specialization of vector<bool> is provided, which optimizes space by

packing the bool values, so that each takes up only one bit. Since bits aren't addressable in C++, this means that

several requirements on vector are not placed on vector<bool>:

The data stored is not required to be contiguous, so a vector<bool> can't be passed to a C API which expects

a bool array.

at(), operator [], and dereferencing of iterators do not return a reference to bool. Rather they return a

template <class T>

constexpr std::add_const_t<T>& as_const(T& t) noexcept {

return t;

}

// forward iteration

for (auto pos = v.cbegin(); pos != v.cend(); ++pos) {

// type of pos is vector<T>::const_iterator

// *pos = 5; // Compile error - can't write via const iterator

}

// reverse iteration

for (auto pos = v.crbegin(); pos != v.crend(); ++pos) {

// type of pos is vector<T>::const_iterator

// *pos = 5; // Compile error - can't write via const iterator

}

// expects Functor::operand()(T&)

for_each(v.begin(), v.end(), Functor());

// expects Functor::operand()(const T&)

for_each(v.cbegin(), v.cend(), Functor())

for (auto const& e : std::as_const(v)) {

std::cout << e << '\n';

}

http://en.cppreference.com/w/cpp/utility/as_const
http://stackoverflow.com/questions/381621/using-arrays-or-stdvectors-in-c-whats-the-performance-gap
http://stackoverflow.com/questions/3664272/is-stdvector-so-much-slower-than-plain-arrays

275

proxy object that (imperfectly) simulates a reference to a bool by overloading its assignment operators. As an

example, the following code may not be valid for std::vector<bool>, because dereferencing an iterator

does not return a reference:

Version ≥ C++11

Similarly, functions expecting a bool& argument cannot be used with the result of operator [] or at() applied to

vector<bool>, or with the result of dereferencing its iterator:

The implementation of std::vector<bool> is dependent on both the compiler and architecture. The specialisation

is implemented by packing n Booleans into the lowest addressable section of memory. Here, n is the size in bits of

the lowest addressable memory. In most modern systems this is 1 byte or 8 bits. This means that one byte can

store 8 Boolean values. This is an improvement over the traditional implementation where 1 Boolean value is

stored in 1 byte of memory.

Note: The below example shows possible bitwise values of individual bytes in a traditional vs. optimized

vector<bool>. This will not always hold true in all architectures. It is, however, a good way of visualising the

optimization. In the below examples a byte is represented as [x, x, x, x, x, x, x, x].

Traditional std::vector<char> storing 8 Boolean values:

Version ≥ C++11

Bitwise representation:

Specialized std::vector<bool> storing 8 Boolean values:

Version ≥ C++11

Bitwise representation:

Notice in the above example, that in the traditional version of std::vector<bool>, 8 Boolean values take up 8 bytes

of memory, whereas in the optimized version of std::vector<bool>, they only use 1 byte of memory. This is a

significant improvement on memory usage. If you need to pass a vector<bool> to an C-style API, you may need to

copy the values to an array, or find a better way to use the API, if memory and performance are at risk.

Section 49.6: Inserting Elements

Appending an element at the end of a vector (by copying/moving):

std::vector<bool> optimized_vect = {true, false, false, false, true, false, true, true};

std::vector<char> trad_vect = {true, false, false, false, true, false, true, true};

std::vector<bool> v = {true, false};

for (auto &b: v) { } // error

void f(bool& b);

f(v[0]);

f(*v.begin());

// error

// error

[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,1]

[1,0,0,0,1,0,1,1]

struct Point {

double x, y;

276

Version ≥ C++11

Appending an element at the end of a vector by constructing the element in place:

Note that std::vector does not have a push_front() member function due to performance reasons. Adding an

element at the beginning causes all existing elements in the vector to be moved. If you want to frequently insert

elements at the beginning of your container, then you might want to use std::list or std::deque instead.

Inserting an element at any position of a vector:

Version ≥ C++11

Inserting an element at any position of a vector by constructing the element in place:

Inserting another vector at any position of the vector:

Inserting an array at any position of a vector:

Use reserve() before inserting multiple elements if resulting vector size is known beforehand to avoid multiple

reallocations (see vector size and capacity):

Be sure to not make the mistake of calling resize() in this case, or you will inadvertently create a vector with 200

elements where only the latter one hundred will have the value you intended.

Section 49.7: Using std::vector as a C array

There are several ways to use a std::vector as a C array (for example, for compatibility with C libraries). This is

possible because the elements in a vector are stored contiguously.

Point(double x, double y) : x(x), y(y) {}

};

std::vector<Point> v;

Point p(10.0, 2.0);

v.push_back(p); // p is copied into the vector.

std::vector<Point> v;

v.emplace_back(10.0, 2.0); // The arguments are passed to the constructor of the

// given type (here Point). The object is constructed

// in the vector, avoiding a copy.

std::vector<int> v{ 1, 2, 3 };

v.insert(v.begin(), 9); // v now contains {9, 1, 2, 3}

std::vector<int> v{ 1, 2, 3 };

v.emplace(v.begin()+1, 9); // v now contains {1, 9, 2, 3}

std::vector<int> v(4); // contains: 0, 0, 0, 0

std::vector<int> v2(2, 10); // contains: 10, 10

v.insert(v.begin()+2, v2.begin(), v2.end()); // contains: 0, 0, 10, 10, 0, 0

std::vector<int> v(4); // contains: 0, 0, 0, 0

int a [] = {1, 2, 3}; // contains: 1, 2, 3

v.insert(v.begin()+1, a, a+sizeof(a)/sizeof(a[0])); // contains: 0, 1, 2, 3, 0, 0, 0

std::vector<int> v;

v.reserve(100);

for(int i = 0; i < 100; ++i)

v.emplace_back(i);

http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.cplusplus.com/reference/vector/vector/resize/
http://www.cplusplus.com/reference/vector/vector/resize/
http://www.cplusplus.com/reference/vector/vector/resize/

277

Version ≥ C++11

In contrast to solutions based on previous C++ standards (see below), the member function .data() may also be

applied to empty vectors, because it doesn't cause undefined behavior in this case.

Before C++11, you would take the address of the vector's first element to get an equivalent pointer, if the vector

isn't empty, these both methods are interchangeable:

Note: If the vector is empty, v[0] and v.front() are undefined and cannot be used.

When storing the base address of the vector's data, note that many operations (such as push_back, resize, etc.) can

change the data memory location of the vector, thus invalidating previous data pointers. For example:

Section 49.8: Finding an Element in std::vector

The function std::find, defined in the <algorithm> header, can be used to find an element in a std::vector.

std::find uses the operator== to compare elements for equality. It returns an iterator to the first element in the

range that compares equal to the value.

If the element in question is not found, std::find returns std::vector::end (or std::vector::cend if the vector is

const).

Version < C++11

Version ≥ C++11

If you need to perform many searches in a large vector, then you may want to consider sorting the vector first,

std::vector<int> v { 5, 4, 3, 2, 1 };

auto it = std::find(v.begin(), v.end(), 4);

auto index = std::distance(v.begin(), it);

// `it` points to the second element of the vector, `index` is 1

auto missing = std::find(v.begin(), v.end(), 10);

auto index_missing = std::distance(v.begin(), missing);

// `missing` is v.end(), `index_missing` is 5 (ie. size of the vector)

static const int arr[] = {5, 4, 3, 2, 1};

std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[0]));

std::vector<int>::iterator it = std::find(v.begin(), v.end(), 4);

std::vector<int>::difference_type index = std::distance(v.begin(), it);

// `it` points to the second element of the vector, `index` is 1

std::vector<int>::iterator missing = std::find(v.begin(), v.end(), 10);

std::vector<int>::difference_type index_missing = std::distance(v.begin(), missing);

// `missing` is v.end(), `index_missing` is 5 (ie. size of the vector)

std::vector<int> v{ 1, 2, 3 };

int* p = v.data();

int* p = &v[0]; // combine subscript operator and 0 literal

int* p = &v.front(); // explicitly reference the first element

std::vector<int> v;

int* p = v.data();

v.resize(42); // internal memory location changed; value of p is now invalid

http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm

278

before using the binary_search algorithm.

To find the first element in a vector that satisfies a condition, std::find_if can be used. In addition to the two

parameters given to std::find, std::find_if accepts a third argument which is a function object or function pointer

to a predicate function. The predicate should accept an element from the container as an argument and return a

value convertible to bool, without modifying the container:

Version < C++11

Version ≥ C++11

Section 49.9: Concatenating Vectors

One std::vector can be append to another by using the member function insert():

However, this solution fails if you try to append a vector to itself, because the standard specifies that iterators given

to insert() must not be from the same range as the receiver object's elements.

Version ≥ c++11

Instead of using the vector's member functions, the functions std::begin() and std::end() can be used:

This is a more general solution, for example, because b can also be an array. However, also this solution doesn't

// find the first value that is even

std::vector<int> v = {1, 3, 7, 8};

auto it = std::find_if(v.begin(), v.end(), [](int val){return val % 2 == 0;});

// `it` points to 8, the first even element

auto missing = std::find_if(v.begin(), v.end(), [](int val){return val > 10;});

// `missing` is v.end(), as no element is greater than 10

bool isEven(int val) {

return (val % 2 ==

0);

}

struct moreThan {

moreThan(int limit) : _limit(limit) {}

bool operator()(int val) {

return val > _limit;

}

int _limit;

};

static const int arr[] = {1, 3, 7, 8};

std::vector<int> v (arr, arr + sizeof(arr) / sizeof(arr[0]));

std::vector<int>::iterator it = std::find_if(v.begin(), v.end(), isEven);

// `it` points to 8, the first even element

std::vector<int>::iterator missing = std::find_if(v.begin(), v.end(), moreThan(10));

// `missing` is v.end(), as no element is greater than 10

std::vector<int> a = {0, 1, 2, 3, 4};

std::vector<int> b = {5, 6, 7, 8, 9};

a.insert(a.end(), b.begin(), b.end());

a.insert(std::end(a), std::begin(b), std::end(b));

http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/container/vector/insert
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end

279

allow you to append a vector to itself.

If the order of the elements in the receiving vector doesn't matter, considering the number of elements in each

vector can avoid unnecessary copy operations:

Section 49.10: Matrices Using Vectors

Vectors can be used as a 2D matrix by defining them as a vector of vectors.

A matrix with 3 rows and 4 columns with each cell initialised as 0 can be defined as:

Version ≥ C++11

The syntax for initializing them using initialiser lists or otherwise are similar to that of a normal vector.

Values in such a vector can be accessed similar to a 2D array

Iterating over the entire matrix is similar to that of a normal vector but with an extra dimension.

Version ≥ C++11

A vector of vectors is a convenient way to represent a matrix but it's not the most efficient: individual vectors are

scattered around memory and the data structure isn't cache friendly.

Also, in a proper matrix, the length of every row must be the same (this isn't the case for a vector of vectors). The

additional flexibility can be a source of errors.

for(auto& row: matrix)

{

for(auto& col : row)

{

std::cout << col << std::endl;

}

}

if (b.size() < a.size()) a.insert(a.end(),

b.begin(), b.end());

else

b.insert(b.end(), a.begin(), a.end());

std::vector<std::vector<int> > matrix(3, std::vector<int>(4));

std::vector<std::vector<int>> matrix = { {0,1,2,3},

{4,5,6,7},

{8,9,10,11}

};

int var = matrix[0][2];

for(int i = 0; i < 3; ++i)

{

for(int j = 0; j < 4; ++j)

{

std::cout << matrix[i][j] << std::endl;

}

}

280

Section 49.11: Using a Sorted Vector for Fast Element Lookup

The <algorithm> header provides a number of useful functions for working with sorted vectors.

An important prerequisite for working with sorted vectors is that the stored values are comparable with <.

An unsorted vector can be sorted by using the function std::sort():

Sorted vectors allow efficient element lookup using the function std::lower_bound(). Unlike std::find(), this

performs an efficient binary search on the vector. The downside is that it only gives valid results for sorted input

ranges:

Note: If the requested value is not part of the vector, std::lower_bound() will return an iterator to the first element

that is greater than the requested value. This behavior allows us to insert a new element at its right place in an

already sorted vector:

If you need to insert a lot of elements at once, it might be more efficient to call push_back() for all them first and

then call std::sort() once all elements have been inserted. In this case, the increased cost of the sorting can pay

off against the reduced cost of inserting new elements at the end of the vector and not in the middle.

If your vector contains multiple elements of the same value, std::lower_bound() will try to return an iterator to the

first element of the searched value. However, if you need to insert a new element after the last element of the

searched value, you should use the function std::upper_bound() as this will cause less shifting around of

elements:

If you need both the upper bound and the lower bound iterators, you can use the function std::equal_range() to

retrieve both of them efficiently with one call:

In order to test whether an element exists in a sorted vector (although not specific to vectors), you can use the

function std::binary_search():

std::vector<int> v;

// add some code here to fill v with some elements

std::sort(v.begin(), v.end());

// search the vector for the first element with value 42

std::vector<int>::iterator it = std::lower_bound(v.begin(), v.end(), 42);

if (it != v.end() && *it == 42) {

// we found the element!

}

int const new_element = 33;

v.insert(std::lower_bound(v.begin(), v.end(), new_element), new_element);

v.insert(std::upper_bound(v.begin(), v.end(), new_element), new_element);

std::pair<std::vector<int>::iterator,

std::vector<int>::iterator> rg = std::equal_range(v.begin(), v.end(), 42);

std::vector<int>::iterator lower_bound = rg.first;

std::vector<int>::iterator upper_bound = rg.second;

bool exists = std::binary_search(v.begin(), v.end(), value_to_find);

http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/header/algorithm
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/lower_bound
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/find
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/upper_bound
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/equal_range
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search
http://en.cppreference.com/w/cpp/algorithm/binary_search

281

Section 49.12: Reducing the Capacity of a Vector

A std::vector automatically increases its capacity upon insertion as needed, but it never reduces its capacity after

element removal.

To reduce its capacity, we can copy the contents of a vector to a new temporary vector. The new vector will have the

minimum capacity that is needed to store all elements of the original vector. If the size reduction of the original

vector was significant, then the capacity reduction for the new vector is likely to be significant. We can then swap

the original vector with the temporary one to retain its minimized capacity:

Version ≥ C++11

In C++11 we can use the shrink_to_fit() member function for a similar effect:

Note: The shrink_to_fit() member function is a request and doesn't guarantee to reduce capacity.

Section 49.13: Vector size and capacity

Vector size is simply the number of elements in the vector:

1. Current vector size is queried by size() member function. Convenience empty() function returns true if size

is 0:

2. Default constructed vector starts with a size of 0:

3. Adding N elements to vector increases size by N (e.g. by push_back(), insert() or resize() functions).

4. Removing N elements from vector decreases size by N (e.g. by pop_back(), erase() or clear() functions).

5. Vector has an implementation-specific upper limit on its size, but you are likely to run out of RAM before

reaching it:

// Initialize a vector with 100 elements

std::vector<int> v(100);

// The vector's capacity is always at least as large as its size auto

const old_capacity = v.capacity();

// old_capacity >= 100

// Remove half of the elements

v.erase(v.begin() + 50, v.end()); // Reduces the size from 100 to 50 (v.size() == 50),

// but not the capacity (v.capacity() == old_capacity)

std::vector<int>(v).swap(v);

v.shrink_to_fit();

vector<int> v = { 1, 2, 3 }; // size is 3

const vector<int>::size_type size = v.size();

cout << size << endl; // prints 3

cout << boolalpha << v.empty() << endl; // prints false

vector<int> v; // size is 0

cout << v.size() << endl; // prints 0

vector<int> v;

282

Common mistake: size is not necessarily (or even usually) int:

Vector capacity differs from size. While size is simply how many elements the vector currently has, capacity is for

how many elements it allocated/reserved memory for. That is useful, because too frequent (re)allocations of too

large sizes can be expensive.

1. Current vector capacity is queried by capacity() member function. Capacity is always greater or equal to

size:

2. You can manually reserve capacity by reserve(N) function (it changes vector capacity to N):

3. You can request for the excess capacity to be released by shrink_to_fit() (but the implementation doesn't

have to obey you). This is useful to conserve used memory:

Vector partly manages capacity automatically, when you add elements it may decide to grow. Implementers like to

use 2 or 1.5 for the grow factor (golden ratio would be the ideal value - but is impractical due to being rational

number). On the other hand vector usually do not automatically shrink. For example:

const vector<int>::size_type max_size = v.max_size();

cout << max_size << endl; // prints some large number

v.resize(max_size); // probably won't work v.push_back(

1); // definitely won't work

// !!!bad!!!evil!!!

vector<int> v_bad(N, 1); // constructs large N size vector

for(int i = 0; i < v_bad.size(); ++i) { // size is not supposed to be int!

do_something(v_bad[i]);

}

vector<int> v = { 1, 2, 3 }; // size is 3, capacity is >= 3

const vector<int>::size_type capacity = v.capacity();

cout << capacity << endl; // prints number >= 3

// !!!bad!!!evil!!!

vector<int> v_bad;

for(int i = 0; i < 10000; ++i) {

v_bad.push_back(i); // possibly lot of reallocations

}

// good

vector<int> v_good;

v_good.reserve(10000); // good! only one allocation

for(int i = 0; i < 10000; ++i) {

v_good.push_back(i); // no allocations needed anymore

}

vector<int> v = { 1, 2, 3, 4, 5 }; // size is 5, assume capacity is 6

v.shrink_to_fit(); // capacity is 5 (or possibly still 6)

cout << boolalpha << v.capacity() == v.size() << endl; // prints likely true (but possibly

false)

vector<int> v; // capacity is possibly (but not guaranteed) to be 0

v.push_back(1); // capacity is some starter value, likely 1

v.clear(); // size is 0 but capacity is still same as before!

283

Section 49.14: Iterator/Pointer Invalidation

Iterators and pointers pointing into an std::vector can become invalid, but only when performing certain

operations. Using invalid iterators/pointers will result in undefined behavior.

Operations which invalidate iterators/pointers include:

Any insertion operation which changes the capacity of the vector will invalidate all iterators/pointers:

Version ≥ C++11

Any insertion operation, which does not increase the capacity, will still invalidate iterators/pointers pointing

to elements at the insertion position and past it. This includes the end iterator:

Any removal operation will invalidate iterators/pointers pointing to the removed elements and to any

elements past the removed elements. This includes the end iterator:

operator= (copy, move, or otherwise) and clear() will invalidate all iterators/pointers pointing into the

vector.

auto old_cap = v.capacity();

v.shrink_to_fit(); if(old_cap

!= v.capacity())

// Iterators were invalidated.

v = { 1, 2, 3, 4 }; // size is 4, and lets assume capacity is 4.

v.push_back(5); // capacity grows - let's assume it grows to 6 (1.5 factor)

v.push_back(6); // no change in capacity

v.push_back(7); // capacity grows - let's assume it grows to 9 (1.5 factor)

// and so on

v.pop_back(); v.pop_back(); v.pop_back(); v.pop_back(); // capacity stays the same

vector<int> v(5); // Vector has a size of 5; capacity is unknown. int

*p1 = &v[0];

v.push_back(2); // p1 may have been invalidated, since the capacity was unknown.

v.reserve(20);

int *p2 = &v[0];

v.push_back(4);

// Capacity is now at least 20.

// p2 is *not* invalidated, since the size of `v` is now 7.

v.insert(v.end(), 30, 9); // Inserts 30 elements at the end. The size exceeds the

// requested capacity of 20, so `p2` is (probably) invalidated.

int *p3 = &v[0];

v.reserve(v.capacity() + 20); // Capacity exceeded, thus `p3` is invalid.

vector<int> v(5);

v.reserve(20);

int *p1 = &v[0];

int *p2 = &v[3];

// Capacity is at least 20.

v.insert(v.begin() + 2, 5, 0); // `p2` is invalidated, but since the capacity

// did not change, `p1` remains valid.

int *p3 = &v[v.size() - 1];

v.push_back(10); // The capacity did not change, so `p3` and `p1` remain valid.

vector<int> v(10);

int *p1 = &v[0];

int *p2 = &v[5];

v.erase(v.begin() + 3, v.end()); // `p2` is invalid, but `p1` remains valid.

284

Section 49.15: Find max and min Element and Respective
Index in a Vector

To find the largest or smallest element stored in a vector, you can use the methods std::max_element and

std::min_element, respectively. These methods are defined in <algorithm> header. If several elements are

equivalent to the greatest (smallest) element, the methods return the iterator to the first such element. Return

v.end() for empty vectors.

Output:

maxElementIndex:3, maxElement:10

minElementIndex:1, minElement:2

Version ≥ C++11

The minimum and maximum element in a vector can be retrieved at the same time by using the method

std::minmax_element, which is also defined in <algorithm> header:

Output:

minimum element: 2

maximum element: 10

Section 49.16: Converting an array to std::vector

An array can easily be converted into a std::vector by using std::begin and std::end:

Version ≥ C++11

int values[5] = { 1, 2, 3, 4, 5 }; // source array

std::vector<int> v(std::begin(values), std::end(values)); // copy array to new vector

for(auto &x: v)

std::cout << x << "

"; std::cout << std::endl;

std::vector<int> v = {5, 2, 8, 10, 9};

int maxElementIndex = std::max_element(v.begin(),v.end()) - v.begin();

int maxElement = *std::max_element(v.begin(), v.end());

int minElementIndex = std::min_element(v.begin(),v.end()) - v.begin();

int minElement = *std::min_element(v.begin(), v.end());

std::cout << "maxElementIndex:" << maxElementIndex << ", maxElement:" << maxElement << '\n';

std::cout << "minElementIndex:" << minElementIndex << ", minElement:" << minElement << '\n';

std::vector<int> v = {5, 2, 8, 10, 9};

auto minmax = std::minmax_element(v.begin(), v.end());

std::cout << "minimum element: " << *minmax.first << '\n';

std::cout << "maximum element: " << *minmax.second << '\n';

http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/max_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm/min_element
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/minmax_element
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/begin
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end
http://en.cppreference.com/w/cpp/iterator/end

285

1 2 3 4 5

A C++11 initializer_list<> can also be used to initialize the vector at once

Section 49.17: Functions Returning Large Vectors

Version ≥ C++11

In C++11, compilers are required to implicitly move from a local variable that is being returned. Moreover, most

compilers can perform copy elision in many cases and elide the move altogether. As a result of this, returning large

objects that can be moved cheaply no longer requires special handling:

Version < C++11

Before C++11, copy elision was already allowed and implemented by most compilers. However, due to the absence

of move semantics, in legacy code or code that has to be compiled with older compiler versions which don't

implement this optimization, you can find vectors being passed as output arguments to prevent the unneeded

copy:

int main(int argc, char* argv[]) {

// convert main arguments into a vector of strings.

std::vector<std::string> args(argv, argv + argc);

}

initializer_list<int> arr = { 1,2,3,4,5

}; vector<int> vec1 {arr};

for (auto & i : vec1)

cout << i <<

endl;

#include <vector>

#include <iostream>

// If the compiler is unable to perform named return value optimization (NRVO)

// and elide the move altogether, it is required to move from v into the return value. std::vector<int>

fillVector(int a, int b) {

std::vector<int> v;

v.reserve(b-a+1);

for (int i = a; i <= b; i++)

{ v.push_back(i);

}

return v; // implicit move

}

int main() { // declare and fill vector

std::vector<int> vec = fillVector(1, 10);

// print vector

for (auto value : vec)

std::cout << value << " "; // this will print "1 2 3 4 5 6 7 8 9 10 " std::cout

<< std::endl;

return 0;

}

#include <vector>

#include <iostream>

286

// passing a std::vector by reference

void fillVectorFrom_By_Ref(int a, int b, std::vector<int> &v) {

assert(v.empty());

v.reserve(b-a+1);

for (int i = a; i <= b; i++)

{ v.push_back(i);

}

}

int main() {// declare vector

std::vector<int> vec;

// fill vector

fillVectorFrom_By_Ref(1, 10,

vec);

// print vector

for (std::vector<int>::const_iterator it = vec.begin(); it != vec.end(); ++it)

std::cout << *it << " "; // this will print "1 2 3 4 5 6 7 8 9 10 "

std::cout << std::endl;

return 0;

}

287

Chapter 50: std::map
To use any of std::map or std::multimap the header file <map> should be included.

std::map and std::multimap both keep their elements sorted according to the ascending order of keys. In

case of std::multimap, no sorting occurs for the values of the same key.

The basic difference between std::map and std::multimap is that the std::map one does not allow duplicate

values for the same key where std::multimap does.

Maps are implemented as binary search trees. So search(), insert(), erase() takes Θ (log n) time in average.

For constant time operation use std::unordered_map.

size() and empty() functions have Θ (1) time complexity, number of nodes is cached to avoid walking

through tree each time these functions are called.

Section 50.1: Accessing elements

An std::map takes (key, value) pairs as input.

Consider the following example of std::map initialization:

In an std::map , elements can be inserted as follows:

In the above example, if the key stackoverflow is already present, its value will be updated to 2. If it isn't already

present, a new entry will be created.

In an std::map, elements can be accessed directly by giving the key as an index:

Note that using the operator[] on the map will actually insert a new value with the queried key into the map. This

means that you cannot use it on a const std::map, even if the key is already stored in the map. To prevent this

insertion, check if the element exists (for example by using find()) or use at() as described below.

Version ≥ C++11

Elements of a std::map can be accessed with at():

Note that at() will throw an std::out_of_range exception if the container does not contain the requested

element.

In both containers std::map and std::multimap, elements can be accessed using iterators:

Version ≥ C++11

// Example using begin()

std::map < std::string, int > ranking { std::make_pair("stackoverflow", 2),

std::make_pair("docs-beta", 1) };

ranking["stackoverflow"]=2;

ranking["docs-beta"]=1;

std::cout << ranking["stackoverflow"] << std::endl;

std::cout << ranking.at("stackoverflow") << std::endl;

http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/multimap
http://en.cppreference.com/w/cpp/container/multimap
http://en.cppreference.com/w/cpp/container/multimap

288

Section 50.2: Inserting elements

An element can be inserted into a std::map only if its key is not already present in the map. Given for example:

A key-value pair is inserted into a std::map through the insert() member function. It requires a pair as an

argument:

The insert() function returns a pair consisting of an iterator and a bool value:

If the insertion was successful, the iterator points to the newly inserted element, and the bool value is

true.

If there was already an element with the same key, the insertion fails. When that happens, the iterator

points to the element causing the conflict, and the bool is value is false.

The following method can be used to combine insertion and searching operation:

For convenience, the std::map container provides the subscript operator to access elements in the map and

to insert new ones if they don't exist:

While simpler, it prevents the user from checking if the element already exists. If an element is missing,

std::map::operator[] implicitly creates it, initializing it with the default constructor before overwriting it

with the supplied value.

std::multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),

std::make_pair(1, "docs-beta"),

std::make_pair(2, "stackexchange") };

auto it = mmp.begin();

std::cout << it->first << " : " << it->second << std::endl; // Output: "1 : docs-beta" it++;

std::cout << it->first << " : " << it->second << std::endl; // Output: "2 : stackoverflow"

it++;

std::cout << it->first << " : " << it->second << std::endl; // Output: "2 : stackexchange"

// Example using rbegin()

std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),

std::make_pair(1, "docs-beta"),

std::make_pair(2, "stackexchange") };

auto it2 = mp.rbegin();

std::cout << it2->first << " : " << it2->second << std::endl; // Output: "2 : stackoverflow"

it2++;

std::cout << it2->first << " : " << it2->second << std::endl; // Output: "1 : docs-beta"

std::map< std::string, size_t > fruits_count;

fruits_count.insert({"grapes", 20});

fruits_count.insert(make_pair("orange", 30));

fruits_count.insert(pair<std::string, size_t>("banana", 40));

fruits_count.insert(map<std::string, size_t>::value_type("cherry", 50));

auto success = fruits_count.insert({"grapes", 20});

if (!success.second) { // we already have 'grapes' in the map

success.first->second += 20; // access the iterator to update the value

}

fruits_count["apple"] = 10;

289

insert() can be used to add several elements at once using a braced list of pairs. This version of insert()

returns void:

insert() can also be used to add elements by using iterators denoting the begin and end of value_type

values:

Example:

Time complexity for an insertion operation is O(log n) because std::map are implemented as trees.

Version ≥ C++11

A pair can be constructed explicitly using make_pair() and emplace():

If we know where the new element will be inserted, then we can use emplace_hint() to specify an iterator hint. If

the new element can be inserted just before hint, then the insertion can be done in constant time. Otherwise it

behaves in the same way as emplace():

Section 50.3: Searching in std::map or in std::multimap

There are several ways to search a key in std::map or in std::multimap.

To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key

does not exist.

fruits_count.insert({{"apricot", 1}, {"jackfruit", 1}, {"lime", 1}, {"mango", 7}});

std::map< std::string, size_t > fruit_list{ {"lemon", 0}, {"olive", 0}, {"plum", 0}};

fruits_count.insert(fruit_list.begin(), fruit_list.end());

std::map<std::string, size_t> fruits_count;

std::string fruit;

while(std::cin >> fruit){

// insert an element with 'fruit' as key and '1' as value

// (if the key is already stored in fruits_count, insert does nothing) auto

ret = fruits_count.insert({fruit, 1});

if(!ret.second){ // 'fruit' is already in the map

++ret.first->second; // increment the counter

}

}

std::map< std::string , int > runs;

runs.emplace("Babe Ruth", 714);

runs.insert(make_pair("Barry Bonds", 762));

std::map< std::string , int > runs;

auto it = runs.emplace("Barry Bonds", 762); // get iterator to the inserted element

// the next element will be before "Barry Bonds", so it is inserted before 'it' runs.emplace_hint(it,

"Babe Ruth", 714);

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7}

}; auto it = mmp.find(6);

if(it!=mmp.end())

std::cout << it->first << ", " << it->second << std::endl; //prints: 6, 5

else

290

Another way to find whether an entry exists in std::map or in std::multimap is using the count() function,

which counts how many values are associated with a given key. Since std::map associates only one value

with each key, its count() function can only return 0 (if the key is not present) or 1 (if it is). For

std::multimap, count() can return values greater than 1 since there can be several values associated with

the same key.

If you only care whether some element exists, find is strictly better: it documents your intent and, for

multimaps, it can stop once the first matching element has been found.

In the case of std::multimap, there could be several elements having the same key. To get this range, the

equal_range() function is used which returns std::pair having iterator lower bound (inclusive) and upper

bound (exclusive) respectively. If the key does not exist, both iterators would point to end().

Section 50.4: Initializing a std::map or std::multimap

std::map and std::multimap both can be initialized by providing key-value pairs separated by comma. Key-value

pairs could be provided by either {key, value} or can be explicitly created by std::make_pair(key, value). As

std::map does not allow duplicate keys and comma operator performs right to left, the pair on right would be

overwritten with the pair with same key on the left.

std::cout << "Value does not exist!" << std::endl;

it = mmp.find(66);

if(it!=mmp.end())

std::cout << it->first << ", " << it->second << std::endl;

else

std::cout << "Value does not exist!" << std::endl; // This line would be executed.

std::map< int , int > mp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

if(mp.count(3) > 0) // 3 exists as a key in map

std::cout << "The key exists!" << std::endl; // This line would be executed.

else

std::cout << "The key does not exist!" << std::endl;

auto eqr = mmp.equal_range(6);

auto st = eqr.first, en = eqr.second;

for(auto it = st; it != en; ++it){

std::cout << it->first << ", " << it->second << std::endl;

}

// prints: 6, 5

// 6, 7

std::multimap < int, std::string > mmp { std::make_pair(2, "stackoverflow"),

std::make_pair(1, "docs-beta"),

std::make_pair(2, "stackexchange") };

// 1 docs-beta

// 2 stackoverflow

// 2 stackexchange

std::map < int, std::string > mp { std::make_pair(2, "stackoverflow"),

std::make_pair(1, "docs-beta"),

std::make_pair(2, "stackexchange") };

// 1 docs-beta

// 2 stackoverflow

291

Both could be initialized with iterator.

Section 50.5: Checking number of elements

The container std::map has a member function empty(), which returns true or false, depending on whether the

map is empty or not. The member function size() returns the number of element stored in a std::map container:

Section 50.6: Types of Maps

Regular Map

A map is an associative container, containing key-value pairs.

In the above example, std::string is the key type, and size_t is a value.

The key acts as an index in the map. Each key must be unique, and must be ordered.

If you need mutliple elements with the same key, consider using multimap (explained below)

If your value type does not specify any ordering, or you want to override the default ordering, you may

provide one:

// From std::map or std::multimap iterator

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {6, 8}, {3, 4},

{6, 7} };

// {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 8}, {6, 7}, {8, 9}

auto it = mmp.begin();

std::advance(it,3); //moved cursor on first {6, 5}

std::map< int, int > mp(it, mmp.end()); // {6, 5}, {8, 9}

//From std::pair array

std::pair< int, int > arr[10];

arr[0] = {1, 3};

arr[1] = {1, 5};

arr[2] = {2, 5};

arr[3] = {0, 1};

std::map< int, int > mp(arr,arr+4); //{0 , 1}, {1, 3}, {2, 5}

//From std::vector of std::pair

std::vector< std::pair<int, int> > v{ {1, 5}, {5, 1}, {3, 6}, {3, 2} };

std::multimap< int, int > mp(v.begin(), v.end());

// {1, 5}, {3, 6}, {3, 2}, {5, 1}

std::map<std::string , int> rank {{"facebook.com", 1} ,{"google.com", 2}, {"youtube.com", 3}};

if(!rank.empty()){

std::cout << "Number of elements in the rank map: " << rank.size() << std::endl;

}

else{

std::cout << "The rank map is empty" << std::endl;

}

#include <string>

#include <map>

std::map<std::string, size_t> fruits_count;

#include <string>

#include <map>

292

If StrLess comparator returns false for two keys, they are considered the same even if their actual contents

differ.

Multi-Map

Multimap allows multiple key-value pairs with the same key to be stored in the map. Otherwise, its interface and

creation is very similar to the regular map.

Hash-Map (Unordered Map)

A hash map stores key-value pairs similar to a regular map. It does not order the elements with respect to the key

though. Instead, a hash value for the key is used to quickly access the needed key-value pairs.

Unordered maps are usually faster, but the elements are not stored in any predictable order. For example, iterating

over all elements in an unordered_map gives the elements in a seemingly random order.

Section 50.7: Deleting elements

Removing all elements:

Removing element from somewhere with the help of iterator:

Removing all elements in a range:

#include <cstring>

struct StrLess {

bool operator()(const std::string& a, const std::string& b) {

return strncmp(a.c_str(), b.c_str(), 8)<0;

//compare only up to 8 first characters

}

}

std::map<std::string, size_t, StrLess> fruits_count2;

#include <string>

#include <map>

std::multimap<std::string, size_t> fruits_count;

std::multimap<std::string, size_t, StrLess> fruits_count2;

#include <string>

#include <unordered_map>

std::unordered_map<std::string, size_t> fruits_count;

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7}

}; mmp.clear(); //empty multimap

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

// {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}

auto it = mmp.begin();

std::advance(it,3); // moved cursor on first {6, 5}

mmp.erase(it); // {1, 2}, {3, 4}, {3, 4}, {6, 7}, {8, 9}

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

// {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}

auto it = mmp.begin();

auto it2 = it;

https://en.wikipedia.org/wiki/Hash_function

293

Removing all elements having a provided value as key:

Removing elements that satisfy a predicate pred:

Section 50.8: Iterating over std::map or std::multimap

std::map or std::multimap could be traversed by the following ways:

While iterating over a std::map or a std::multimap, the use of auto is preferred to avoid useless implicit

conversions (see this SO answer for more details).

Section 50.9: Creating std::map with user-defined types as
key

In order to be able to use a class as the key in a map, all that is required of the key is that it be copiable and

assignable. The ordering within the map is defined by the third argument to the template (and the argument to

the constructor, if used). This defaults to std::less<KeyType>, which defaults to the < operator, but there's no

requirement to use the defaults. Just write a comparison operator (preferably as a functional object):

it++; //moved first cursor on first {3, 4}

std::advance(it2,3); //moved second cursor on first {6, 5}

mmp.erase(it,it2); // {1, 2}, {6, 5}, {6, 7}, {8, 9}

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

// {1, 2}, {3, 4}, {3, 4}, {6, 5}, {6, 7}, {8, 9}

mmp.erase(6); // {1, 2}, {3, 4}, {3, 4}, {8, 9}

std::map<int,int> m;

auto it = m.begin();

while (it != m.end())

{

if (pred(*it))

it = m.erase(it);

else

++it;

}

std::multimap< int , int > mmp{ {1, 2}, {3, 4}, {6, 5}, {8, 9}, {3, 4}, {6, 7} };

//Range based loop - since C++11

for(const auto &x: mmp)

std::cout<< x.first <<":"<< x.second << std::endl;

//Forward iterator for loop: it would loop through first element to last element

//it will be a std::map< int, int >::iterator

for (auto it = mmp.begin(); it != mmp.end(); ++it)

std::cout<< it->first <<":"<< it->second << std::endl; //Do something with iterator

//Backward iterator for loop: it would loop through last element to first element

//it will be a std::map< int, int >::reverse_iterator for

(auto it = mmp.rbegin(); it != mmp.rend(); ++it)

std::cout<< it->first <<" "<< it->second << std::endl; //Do something with iterator

struct CmpMyType

{

bool operator()(MyType const& lhs, MyType const& rhs) const

{

http://stackoverflow.com/questions/32510183/can-the-use-of-c11s-auto-improve-performance

294

X

X

a;

b;

Condition: Test: Result

In C++, the "compare" predicate must be a strict weak ordering. In particular, compare(X,X) must return false for

any X. i.e. if CmpMyType()(a, b) returns true, then CmpMyType()(b, a) must return false, and if both return false,

the elements are considered equal (members of the same equivalence class).

Strict Weak Ordering

This is a mathematical term to define a relationship between two objects.

Its definition is:

Two objects x and y are equivalent if both f(x, y) and f(y, x) are false. Note that an object is always (by the

irreflexivity invariant) equivalent to itself.

In terms of C++ this means if you have two objects of a given type, you should return the following values when

compared with the operator <.

a is equivalent to b: a < b false

a is equivalent to b b < a false

a is less than b

a < b true

a is less than b b < a false

b is less than a

a < b false

b is less than a b < a true

How you define equivalent/less is totally dependent on the type of your object.

// ...

}

};

http://www.sgi.com/tech/stl/StrictWeakOrdering.html

295

Chapter 51: std::optional

Section 51.1: Using optionals to represent the absence of a
value

Before C++17, having pointers with a value of nullptr commonly represented the absence of a value. This is a good

solution for large objects that have been dynamically allocated and are already managed by pointers. However, this

solution does not work well for small or primitive types such as int, which are rarely ever dynamically allocated or

managed by pointers. std::optional provides a viable solution to this common problem.

In this example, struct Person is defined. It is possible for a person to have a pet, but not necessary. Therefore,

the pet member of Person is declared with an std::optional wrapper.

Section 51.2: optional as return value

Here we return either the fraction a/b, but if it is not defined (would be infinity) we instead return the empty

optional.

A more complex case:

#include <iostream>

#include <optional>

#include <string>

struct Animal {

std::string name;

};

struct Person {

std::string name;

std::optional<Animal> pet;

};

int main() {

Person person;

person.name = "John";

if (person.pet) {

std::cout << person.name << "'s pet's name is "

<< person.pet->name << std::endl;

}

else {

std::cout << person.name << " is alone." << std::endl;

}

}

std::optional<float> divide(float a, float b) {

if (b!=0.f) return a/b;

return {};

}

template<class Range, class Pred>

auto find_if(Range&& r, Pred&& p)

{

using std::begin; using std::end;

auto b = begin(r), e = end(r);

auto r = std::find_if(b, e , p

); using iterator = decltype(r);

296

find(some_range, 7) searches the container or range some_range for something equal to the number 7.

find_if does it with a predicate.

It returns either an empty optional if it was not found, or an optional containing an iterator tothe element if it was.

This allows you to do:

or even

without having to mess around with begin/end iterators and tests.

Section 51.3: value_or

value_or either returns the value stored in the optional, or the argument if there is nothing store there.

This lets you take the maybe-null optional and give a default behavior when you actually need a value. By doing it

this way, the "default behavior" decision can be pushed back to the point where it is best made and immediately

needed, instead of generating some default value deep in the guts of some engine.

Section 51.4: Introduction

Optionals (also known as Maybe types) are used to represent a type whose contents may or may not be present.

They are implemented in C++17 as the std::optional class. For example, an object of type std::optional<int>

may contain some value of type int, or it may contain no value.

Optionals are commonly used either to represent a value that may not exist or as a return type from a function that

can fail to return a meaningful result.

Other approaches to optional

There are many other approach to solving the problem that std::optional solves, but none of them are quite

complete: using a pointer, using a sentinel, or using a pair<bool, T>.

Optional vs Pointer

if (r==e)

return std::optional<iterator>();

return std::optional<iterator>(r);

}

template<class Range, class T>

auto find(Range&& r, T const& t) {

return find_if(std::forward<Range>(r), [&t](auto&& x){return x==t;});

}

if (find(vec, 7)) {

// code

}

if (auto oit = find(vec, 7)) {

vec.erase(*oit);

}

void print_name(std::ostream& os, std::optional<std::string> const& name) {

std::cout "Name is: " << name.value_or("<name missing>") << '\n';

}

297

In some cases, we can provide a pointer to an existing object or nullptr to indicate failure. But this is limited to

those cases where objects already exist - optional, as a value type, can also be used to return new objects without

resorting to memory allocation.

Optional vs Sentinel

A common idiom is to use a special value to indicate that the value is meaningless. This may be 0 or -1 for integral

types, or nullptr for pointers. However, this reduces the space of valid values (you cannot differentiate between a

valid 0 and a meaningless 0) and many types do not have a natural choice for the sentinel value.

Optional vs std::pair<bool, T>

Another common idiom is to provide a pair, where one of the elements is a bool indicating whether or not the

value is meaningful.

This relies upon the value type being default-constructible in the case of error, which is not possible for some types

and possible but undesirable for others. An optional<T>, in the case of error, does not need to construct anything.

Section 51.5: Using optionals to represent the failure of a
function

Before C++17, a function typically represented failure in one of several ways:

A null pointer was returned.

e.g. Calling a function Delegate *App::get_delegate() on an App instance that did not have a

delegate would return nullptr.

This is a good solution for objects that have been dynamically allocated or are large and managed by

pointers, but isn't a good solution for small objects that are typically stack-allocated and passed by

copying.

A specific value of the return type was reserved to indicate failure.

e.g. Calling a function unsigned shortest_path_distance(Vertex a, Vertex b) on two vertices that

are not connected may return zero to indicate this fact.

The value was paired together with a bool to indicate is the returned value was meaningful.

e.g. Calling a function std::pair<int, bool> parse(const std::string &str) with a string argument

that is not an integer would return a pair with an undefined int and a bool set to false.

In this example, John is given two pets, Fluffy and Furball. The function Person::pet_with_name() is then called to

retrieve John's pet Whiskers. Since John does not have a pet named Whiskers, the function fails and std::nullopt is

returned instead.

#include <iostream>

#include <optional>

#include <string>

#include <vector>

struct Animal {

std::string name;

};

struct Person {

std::string name;

std::vector<Animal> pets;

std::optional<Animal> pet_with_name(const std::string &name) {

for (const Animal &pet : pets) {

298

if (pet.name == name) {

return pet;

}

}

return std::nullopt;

}

};

int main() {

Person john;

john.name = "John";

Animal fluffy;

fluffy.name = "Fluffy";

john.pets.push_back(fluffy);

Animal furball;

furball.name = "Furball";

john.pets.push_back(furball);

std::optional<Animal> whiskers = john.pet_with_name("Whiskers"); if

(whiskers) {

std::cout << "John has a pet named Whiskers." << std::endl;

}

else {

std::cout << "Whiskers must not belong to John." << std::endl;

}

}

299

Chapter 52: std::function: To wrap any
element that is callable

Section 52.1: Simple usage

Section 52.2: std::function used with std::bind

Think about a situation where we need to callback a function with arguments. std::function used with std::bind

gives a very powerful design construct as shown below.

#include <iostream>

#include <functional>

std::function<void(int , const std::string&)> myFuncObj;

void theFunc(int i, const std::string& s)

{

std::cout << s << ": " << i << std::endl;

}

int main(int argc, char *argv[])

{

myFuncObj = theFunc;

myFuncObj(10, "hello world");

}

class A

{

public:

std::function<void(int, const std::string&)> m_CbFunc = nullptr;

void foo()

{

if (m_CbFunc)

{

m_CbFunc(100, "event fired");

}

}

};

class B

{

public:

B()

{

auto aFunc = std::bind(&B::eventHandler, this, std::placeholders::_1,

std::placeholders::_2);

anObjA.m_CbFunc = aFunc;

}

void eventHandler(int i, const std::string& s)

{

std::cout << s << ": " << i << std::endl;

}

void DoSomethingOnA()

{

anObjA.foo();

}

A anObjA;

};

300

Section 52.3: Binding std::function to a di erent callable types

/*

* This example show some ways of using std::function to call

* a) C-like function

* b) class-member function

* c) operator()

* d) lambda function

*

* Function call can be made:

* a) with right arguments

* b) argumens with different order, types and count

*/

#include <iostream>

#include <functional>

#include <iostream>

#include <vector>

using std::cout;

using std::endl;

using namespace std::placeholders;

// simple function to be called

double foo_fn(int x, float y, double z)

{

double res = x + y + z;

std::cout << "foo_fn called with arguments: "

<< x << ", " << y << ", " << z

<< " result is : " << res

<<

std::endl; return res;

}

// structure with member function to call struct

foo_struct

{

// member function to call

double foo_fn(int x, float y, double z)

{

double res = x + y + z;

std::cout << "foo_struct::foo_fn called with arguments: "

<< x << ", " << y << ", " << z

<< " result is : " << res

<<

std::endl; return res;

}

// this member function has different signature - but it can be used too

// please not that argument order is changed too

double foo_fn_4(int x, double z, float y, long xx)

{

double res = x + y + z + xx;

std::cout << "foo_struct::foo_fn_4 called with arguments: "

int main(int argc, char *argv[])

{

B anObjB;

anObjB.DoSomethingOnA();

}

301

<< x << ", " << z << ", " << y << ", " << xx

<< " result is : " << res

<<

std::endl; return res;

}

// overloaded operator() makes whole object to be callable

double operator()(int x, float y, double z)

{

double res = x + y + z;

std::cout << "foo_struct::operator() called with arguments: "

<< x << ", " << y << ", " << z

<< " result is : " << res

<<

std::endl; return res;

}

};

int main(void)

{

// typedefs

using function_type = std::function<double(int, float, double)>;

// foo_struct instance

foo_struct fs;

// here we will store all binded functions

std::vector<function_type> bindings;

// var #1 - you can use simple function

function_type var1 = foo_fn;

bindings.push_back(var1);

// var #2 - you can use member function

function_type var2 = std::bind(&foo_struct::foo_fn, fs, _1, _2, _3);

bindings.push_back(var2);

// var #3 - you can use member function with different signature

// foo_fn_4 has different count of arguments and types

function_type var3 = std::bind(&foo_struct::foo_fn_4, fs, _1, _3, _2, 0l);

bindings.push_back(var3);

// var #4 - you can use object with overloaded operator()

function_type var4 = fs;

bindings.push_back(var4);

// var #5 - you can use lambda function

function_type var5 = [](int x, float y, double z)

{

double res = x + y + z;

std::cout << "lambda called with arguments: "

<< x << ", " << y << ", " << z

<< " result is : " << res

<<

std::endl; return res;

};

bindings.push_back(var5);

std::cout << "Test stored functions with arguments: x = 1, y = 2, z = 3"

<<

std::endl; for (auto f :

bindings)

302

Live

Output:

Section 52.4: Storing function arguments in std::tuple

Some programs need so store arguments for future calling of some function.

This example shows how to call any function with arguments stored in std::tuple

#include <iostream>

#include <functional>

#include <tuple>

#include <iostream>

// simple function to be called

double foo_fn(int x, float y, double z)

{

double res = x + y + z;

std::cout << "foo_fn called. x = " << x << " y = " << y << " z = " << z

<< " res=" <<

res; return res;

}

// helpers for tuple unrolling

template<int ...> struct seq {};

template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};

template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };

// invocation helper

template<typename FN, typename P, int ...S>

double call_fn_internal(const FN& fn, const P& params, const seq<S...>)

{

return fn(std::get<S>(params) ...);

}

// call function with arguments stored in std::tuple

template<typename Ret, typename ...Args>

Ret call_fn(const std::function<Ret(Args...)>& fn,

const std::tuple<Args...>& params)

{

return call_fn_internal(fn, params, typename gens<sizeof...(Args)>::type());

}

int main(void)

{

// arguments

std::tuple<int, float, double> t = std::make_tuple(1, 5, 10);

// function to call

f(1, 2,
3);

}

Test stored functions with arguments: x = 1, y = 2, z = 3

foo_fn called with arguments: 1, 2, 3 result is : 6

foo_struct::foo_fn called with arguments: 1, 2, 3 result is : 6

foo_struct::foo_fn_4 called with arguments: 1, 3, 2, 0 result is : 6

foo_struct::operator() called with arguments: 1, 2, 3 result is : 6

lambda called with arguments: 1, 2, 3 result is : 6

http://ideone.com/VIbkkZ

303

Live

Output:

Section 52.5: std::function with lambda and std::bind

#include <iostream>

#include <functional>

using std::placeholders::_1; // to be used in std::bind example int

stdf_foobar (int x, std::function<int(int)> moo)

{

return x + moo(x); // std::function moo called

}

int foo (int x) { return 2+x; }

int foo_2 (int x, int y) { return 9*x + y; }

int main()

{

int a = 2;

/* Function pointers */

std::cout << stdf_foobar(a, &foo) << std::endl; // 6 (2 + (2+2))

// can also be: stdf_foobar(2, foo)

/* Lambda expressions */

/* An unnamed closure from a lambda expression can be

* stored in a std::function object:

*/

int capture_value = 3;

std::cout << stdf_foobar(a,

[capture_value](int param) -> int { return 7 + capture_value * param;

})

<< std::endl;

// result: 15 == value + (7 * capture_value * value) == 2 + (7 + 3 * 2)

/* std::bind expressions */

/* The result of a std::bind expression can be passed.

* For example by binding parameters to a function pointer call:

*/

int b = stdf_foobar(a, std::bind(foo_2, _1, 3));

std::cout << b << std::endl;

// b == 23 == 2 + (9*2 + 3)

int c = stdf_foobar(a, std::bind(foo_2, 5, _1));

std::cout << c << std::endl;

// c == 49 == 2 + (9*5 + 2)

return 0;

}

std::function<double(int, float, double)> fn = foo_fn;

// invoke a function with stored arguments

call_fn(fn, t);

}

foo_fn called. x = 1 y = 5 z = 10 res=16

http://ideone.com/FZKALn

304

Section 52.6: `function` overhead

std::function can cause significant overhead. Because std::function has [value semantics][1], it must copy or

move the given callable into itself. But since it can take callables of an arbitrary type, it will frequently have to

allocate memory dynamically to do this.

Some function implementations have so-called "small object optimization", where small types (like function

pointers, member pointers, or functors with very little state) will be stored directly in the function object. But even

this only works if the type is noexcept move constructible. Furthermore, the C++ standard does not require that all

implementations provide one.

Consider the following:

A template parameter would be the preferred solution for SortMyContainer, but let us assume that this is not

possible or desirable for whatever reason. SortMyContainer does not need to store pred beyond its own call. And

yet, pred may well allocate memory if the functor given to it is of some non-trivial size.

function allocates memory because it needs something to copy/move into; function takes ownership of the

callable it is given. But SortMyContainer does not need to own the callable; it's just referencing it. So using function

here is overkill; it may be efficient, but it may not.

There is no standard library function type that merely references a callable. So an alternate solution will have to be

found, or you can choose to live with the overhead.

Also, function has no effective means to control where the memory allocations for the object come from. Yes, it

has constructors that take an allocator, but [many implementations do not implement them correctly... or even at

all][2].

Version ≥ C++17

The function constructors that take an allocator no longer are part of the type. Therefore, there is no way to

manage the allocation.

Calling a function is also slower than calling the contents directly. Since any function instance could hold any

callable, the call through a function must be indirect. The overhead of calling function is on the order of a virtual

function call.

//Header file

using MyPredicate = std::function<bool(const MyValue &, const MyValue &)>;

void SortMyContainer(MyContainer &C, const MyPredicate &pred);

//Source file

void SortMyContainer(MyContainer &C, const MyPredicate &pred)

{

std::sort(C.begin(), C.end(), pred);

}

305

Chapter 53: std::forward_list
std::forward_list is a container that supports fast insertion and removal of elements from anywhere in the

container. Fast random access is not supported. It is implemented as a singly-linked list and essentially does not

have any overhead compared to its implementation in C. Compared to std::list this container provides more

space efficient storage when bidirectional iteration is not needed.

Section 53.1: Example

Output:

Section 53.2: Methods

Method name Definition

operator= assigns values to the container

assign assigns values to the container

get_allocator returns the associated allocator

#include <forward_list>

#include <string>

#include <iostream>

template<typename T>

std::ostream& operator<<(std::ostream& s, const std::forward_list<T>& v) {

s.put('[');

char comma[3] = {'\0', ' ', '\0'};

for (const auto& e : v) {

s << comma <<

e; comma[0] =

',';

}

return s << ']';

}

int main()

{

// c++11 initializer list syntax:

std::forward_list<std::string> words1 {"the", "frogurt", "is", "also", "cursed"};

std::cout << "words1: " << words1 << '\n';

// words2 == words1

std::forward_list<std::string> words2(words1.begin(), words1.end());

std::cout << "words2: " << words2 << '\n';

// words3 == words1

std::forward_list<std::string> words3(words1);

std::cout << "words3: " << words3 << '\n';

// words4 is {"Mo", "Mo", "Mo", "Mo", "Mo"}

std::forward_list<std::string> words4(5, "Mo");

std::cout << "words4: " << words4 << '\n';

}

words1: [the, frogurt, is, also, cursed]

words2: [the, frogurt, is, also, cursed]

words3: [the, frogurt, is, also, cursed]

words4: [Mo, Mo, Mo, Mo, Mo]

306

Element access

front access the first element

Iterators

before_begin returns an iterator to the element before beginning

cbefore_begin returns a constant iterator to the element before beginning

begin returns an iterator to the beginning

cbegin returns a const iterator to the beginning

end returns an iterator to the end

cend returns a iterator to the end

Capacity

empty checks whether the container is empty

max_size returns the maximum possible number of elements

Modifiers

clear clears the contents

insert_after inserts elements after an element

emplace_after constructs elements in-place after an element

erase_after erases an element after an element

push_front inserts an element to the beginning

emplace_front constructs an element in-place at the beginning

pop_front removes the first element

resize changes the number of elements stored

swap swaps the contents

Operations

merge merges two sorted lists

splice_after moves elements from another forward_list

remove removes elements satisfying specific criteria

remove_if removes elements satisfying specific criteria

reverse reverses the order of the elements

unique removes consecutive duplicate elements

sort sorts the elements

307

Chapter 54: std::pair

Section 54.1: Compare operators

Parameters of these operators are lhs and rhs

operator== tests if both elements on lhs and rhs pair are equal. The return value is true if both lhs.first

== rhs.first AND lhs.second == rhs.second, otherwise false

operator!= tests if any elements on lhs and rhs pair are not equal. The return value is true if either

lhs.first != rhs.first OR lhs.second != rhs.second, otherwise return false.

operator< tests if lhs.first<rhs.first, returns true. Otherwise, if rhs.first<lhs.first returns false.

Otherwise, if lhs.second<rhs.second returns true, otherwise, returns false.

operator<= returns !(rhs<lhs)

operator> returns rhs<lhs

operator>= returns !(lhs<rhs)

Another example with containers of pairs. It uses operator< because it needs to sort container.

Section 54.2: Creating a Pair and accessing the elements

Pair allows us to treat two objects as one object. Pairs can be easily constructed with the help of template function

std::make_pair.

Alternative way is to create pair and assign its elements (first and second) later.

std::pair<int, int> p1 = std::make_pair(1, 2);

std::pair<int, int> p2 = std::make_pair(2, 2);

if (p1 == p2)

std::cout << "equals";

else

std::cout << "not equal"//statement will show this, because they are not identical

#include <iostream>

#include <utility>

#include <vector>

#include <algorithm>

#include <string>

int main()

{

std::vector<std::pair<int, std::string>> v = { {2, "baz"},

{2, "bar"},

{1, "foo"} };

std::sort(v.begin(), v.end());

for(const auto& p: v) {

std::cout << "(" << p.first << "," << p.second << ") ";

//output: (1,foo) (2,bar) (2,baz)

}

}

308

#include <iostream>

#include <utility>

int main()

{

std::pair<int,int> p = std::make_pair(1,2); //Creating the pair

std::cout << p.first << " " << p.second << std::endl; //Accessing the elements

//We can also create a pair and assign the elements later

std::pair<int,int> p1;

p1.first = 3;

p1.second = 4;

std::cout << p1.first << " " << p1.second << std::endl;

//We can also create a pair using a constructor

std::pair<int,int> p2 = std::pair<int,int>(5, 6);

std::cout << p2.first << " " << p2.second << std::endl;

return 0;

}

309

Chapter 55: std::atomics

Section 55.1: atomic types

Each instantiation and full specialization of the std::atomic template defines an atomic type. If one thread writes

to an atomic object while another thread reads from it, the behavior is well-defined (see memory model for details

on data races)

In addition, accesses to atomic objects may establish inter-thread synchronization and order non-atomic memory

accesses as specified by std::memory_order.

std::atomic may be instantiated with any TriviallyCopyable type T. std::atomic is neither copyable nor

movable.

The standard library provides specializations of the std::atomic template for the following types:

1. One full specialization for the type bool and its typedef name is defined that is treated as a non-specialized

std::atomic<T> except that it has standard layout, trivial default constructor, trivial destructors, and

supports aggregate initialization syntax:

Typedef name Full specialization

std::atomic_bool std::atomic<bool>

2)Full specializations and typedefs for integral types, as follows:

Typedef name Full specialization

std::atomic_char std::atomic<char>

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_char16_t std::atomic<char16_t>

std::atomic_char32_t std::atomic<char32_t>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_int8_t std::atomic<std::int8_t>

std::atomic_uint8_t std::atomic<std::uint8_t>

std::atomic_int16_t std::atomic<std::int16_t>

std::atomic_uint16_t std::atomic<std::uint16_t>

std::atomic_int32_t std::atomic<std::int32_t>

std::atomic_uint32_t std::atomic<std::uint32_t>

std::atomic_int64_t std::atomic<std::int64_t>

std::atomic_uint64_t std::atomic<std::uint64_t>

std::atomic_int_least8_t std::atomic<std::int_least8_t>

std::atomic_uint_least8_t std::atomic<std::uint_least8_t>

310

std::atomic_int_least16_t

std::atomic_int_least32_t

std::atomic_int_least64_t

std::atomic_uint_fast64_t

std::atomic_uint_fast32_t

std::atomic_uint_fast16_t

std::atomic<std::int_least16_t>

std::atomic_uint_least16_t std::atomic<std::uint_least16_t>

std::atomic<std::int_least32_t>

std::atomic_uint_least32_t std::atomic<std::uint_least32_t>

std::atomic<std::int_least64_t>

std::atomic_uint_least64_t std::atomic<std::uint_least64_t>

std::atomic_int_fast8_t std::atomic<std::int_fast8_t>

std::atomic_uint_fast8_t std::atomic<std::uint_fast8_t>

std::atomic_int_fast16_t std::atomic<std::int_fast16_t>

std::atomic<std::uint_fast16_t>

std::atomic_int_fast32_t std::atomic<std::int_fast32_t>

std::atomic<std::uint_fast32_t>

std::atomic_int_fast64_t std::atomic<std::int_fast64_t>

std::atomic<std::uint_fast64_t>

std::atomic_intptr_t std::atomic<std::intptr_t>

std::atomic_uintptr_t std::atomic<std::uintptr_t>

std::atomic_size_t std::atomic<std::size_t>

std::atomic_ptrdiff_t std::atomic<std::ptrdiff_t>

std::atomic_intmax_t std::atomic<std::intmax_t>

std::atomic_uintmax_t std::atomic<std::uintmax_t>

Simple example of using std::atomic_int

#include <iostream>

#include <atomic>

#include <thread>

// std::cout

// std::atomic, std::memory_order_relaxed

// std::thread

std::atomic_int foo (0);

void set_foo(int x) {

foo.store(x,std::memory_order_relaxed);

}

// set value atomically

void print_foo() {

int x;

do {

x = foo.load(std::memory_order_relaxed); // get value atomically

} while (x==0);

std::cout << "foo: " << x << '\n';

}

int main ()

{

std::thread first (print_foo); std::thread

second (set_foo,10); first.join();

//second.join();

return 0;

}

//output: foo: 10

311

Chapter 56: std::variant

Section 56.1: Create pseudo-method pointers

This is an advanced example.

You can use variant for light weight type erasure.

template<class F>

struct pseudo_method {

F f;

// enable C++17 class type deduction:

pseudo_method(F&& fin):f(std::move(fin)) {}

// Koenig lookup operator->*, as this is a pseudo-method it is appropriate: template<class

Variant> // maybe add SFINAE test that LHS is actually a variant. friend decltype(auto)

operator->*(Variant&& var, pseudo_method const& method) {

// var->*method returns a lambda that perfect forwards a function call,

// behaving like a method pointer basically:

return [&](auto&&...args)->decltype(auto) {

// use visit to get the type of the variant:

return std::visit(

[&](auto&& self)->decltype(auto) {

// decltype(x)(x) is perfect forwarding in a lambda:

return method.f(decltype(self)(self), decltype(args)(args)...);

},

std::forward<Var>(var)

);

};

}

};

this creates a type that overloads operator->* with a Variant on the left hand side.

Now if we have 2 types each with a print method:

note that they are unrelated types. We can:

// C++17 class type deduction to find template argument of `print` here.

// a pseudo-method lambda should take `self` as its first argument, then

// the rest of the arguments afterwards, and invoke the action:

pseudo_method print = [](auto&& self, auto&&...args)->decltype(auto) {

return decltype(self)(self).print(decltype(args)(args)...);

};

struct A {

void print(std::ostream& os) const {

os << "A";

}

};

struct B {

void print(std::ostream& os) const {

os << "B";

}

};

std::variant<A,B> var = A{};

312

and it will dispatch the call directly to A::print(std::cout) for us. If we instead initialized the var with B{}, it would

dispatch to B::print(std::cout).

If we created a new type C:

then:

will fail to compile, because there is no C.print(std::cout) method.

Extending the above would permit free function prints to be detected and used, possibly with use of if constexpr

within the print pseudo-method.

live example currently using boost::variant in place of std::variant.

Section 56.2: Basic std::variant use

This creates a variant (a tagged union) that can store either an int or a string.

We can store one of either type in it:

And we can access the contents via std::visit:

by passing in a polymorphic lambda or similar function object.

If we are certain we know what type it is, we can get it:

but this will throw if we get it wrong. get_if:

returns nullptr if you guess wrong.

Variants guarantee no dynamic memory allocation (other than which is allocated by their contained types). Only

one of the types in a variant is stored there, and in rare cases (involving exceptions while assigning and no safe way

to back out) the variant can become empty.

Variants let you store multiple value types in one variable safely and efficiently. They are basically smart, type-safe

(var->*print)(std::cout);

struct C {};

std::variant<A,B,C> var =

A{}; (var->*print)(std::cout);

std::variant< int, std::string > var;

var = "hello"s;

// Prints "hello\n":

visit([](auto&& e) {

std::cout << e << '\n';

}, var);

auto str = std::get<std::string>(var);

auto* str = std::get_if<std::string>(&var);

http://coliru.stacked-crooked.com/a/57f29d8406ad7b51

313

unions.

Section 56.3: Constructing a `std::variant`

This does not cover allocators.

struct A {};

struct B { B()=default; B(B const&)=default; B(int){}; };

struct C { C()=delete; C(int) {}; C(C const&)=default; };

struct D { D(std::initializer_list<int>) {}; D(D const&)=default; D()=default; };

std::variant<A,B> var_ab0; // contains a A()

std::variant<A,B> var_ab1 = 7; // contains a B(7)

std::variant<A,B> var_ab2 = var_ab1; // contains a B(7)

std::variant<A,B,C> var_abc0{ std::in_place_type<C>, 7 }; // contains a C(7)

std::variant<C> var_c0; // illegal, no default ctor for C

std::variant<A,D> var_ad0(std::in_place_type<D>, {1,3,3,4}); // contains D{1,3,3,4}

std::variant<A,D> var_ad1(std::in_place_index<0>); // contains A{}

std::variant<A,D> var_ad2(std::in_place_index<1>, {1,3,3,4}); // contains D{1,3,3,4}

314

Chapter 57: std::iomanip

Section 57.1: std::setprecision

When used in an expression out << setprecision(n) or in >> setprecision(n), sets the precision parameter of

the stream out or in to exactly n. Parameter of this function is integer, which is new value for precision.

Example:

Section 57.2: std::setfill

When used in an expression out << setfill(c) sets the fill character of the stream out to c.

Note: The current fill character may be obtained with std::ostream::fill.

Example:

Section 57.3: std::setiosflags

When used in an expression out << setiosflags(mask) or in >> setiosflags(mask), sets all format flags of the

stream out or in as specified by the mask.

List of all std::ios_base::fmtflags :

dec - use decimal base for integer I/O

oct - use octal base for integer I/O

#include <iostream>

#include <iomanip>

#include <cmath>

#include <limits> int

main()

{

const long double pi = std::acos(-1.L);

std::cout << "default precision (6): " << pi << '\n'

<< "std::precision(10): " << std::setprecision(10) << pi << '\n'

<< "max precision: "

<< std::setprecision(std::numeric_limits<long double>::digits10 + 1)

<< pi << '\n';

}

//Output

//default precision (6): 3.14159

//std::precision(10): 3.141592654

//max precision: 3.141592653589793239

#include <iostream>

#include <iomanip>

int main()

{

std::cout << "default fill: " << std::setw(10) << 42 << '\n'

<< "setfill('*'): " << std::setfill('*')

<< std::setw(10) << 42 << '\n';

}

//output::

//default fill: 42

//setfill('*'): ********42

315

hex - use hexadecimal base for integer I/O

basefield - dec|oct|hex|0 useful for masking operations

left - left adjustment(add fill characters to the right)

right - right adjustment (adds fill characters to the left)

internal - internal adjustment (adds fill characters to the internal designated point)

adjustfield - left|right|internal. Useful for masking operations

scientific - generate floating point types using scientific notation, or hex notation if combined with fixed

fixed - generate floating point types using fixed notation, or hex notation if combined with scientific

floatfield - scientific|fixed|(scientific|fixed)|0. Useful for masking operations

boolalpha - insert and extract bool type in alphanumeric format

showbase - generate a prefix indicating the numeric base for integer output, require the currency indicator in

monetary I/O

showpoint - generate a decimal-point character unconditionally for floating-point number output

showpos - generate a + character for non-negative numeric output

skipws - skip leading whitespace before certain input operations

unitbuf flush the output after each output operation

uppercase - replace certain lowercase letters with their uppercase equivalents in certain output output

operations

Example of manipulators:

#include <iostream>

#include <string>

#include<iomanip>

int main()

{

int l_iTemp = 47;

std::cout<< std::resetiosflags(std::ios_base::basefield);

std::cout<<std::setiosflags(std::ios_base::oct)<<l_iTemp<<std::endl;

//output: 57

std::cout<< std::resetiosflags(std::ios_base::basefield);

std::cout<<std::setiosflags(std::ios_base::hex)<<l_iTemp<<std::endl;

//output: 2f

std::cout<<std::setiosflags(std::ios_base::uppercase)<<l_iTemp<<std::endl;

//output 2F

std::cout<<std::setfill('0')<<std::setw(12);

std::cout<<std::resetiosflags(std::ios_base::uppercase);

std::cout<<std::setiosflags(std::ios_base::right)<<l_iTemp<<std::endl;

//output: 00000000002f

std::cout<<std::resetiosflags(std::ios_base::basefield|std::ios_base::adjustfield);

std::cout<<std::setfill('.')<<std::setw(10);

std::cout<<std::setiosflags(std::ios_base::left)<<l_iTemp<<std::endl;

//output: 47........

std::cout<<std::resetiosflags(std::ios_base::adjustfield)<<std::setfill('#');

std::cout<<std::setiosflags(std::ios_base::internal|std::ios_base::showpos);

std::cout<<std::setw(10)<<l_iTemp<<std::endl;

//output +#######47

double l_dTemp = -1.2;

double pi = 3.14159265359;

std::cout<<pi<<" "<<l_dTemp<<std::endl;

//output +3.14159 -1.2

std::cout<<std::setiosflags(std::ios_base::showpoint)<<l_dTemp<<std::endl;

//output -1.20000 std::cout<<setiosflags(std::ios_base::scientific)<<pi<<std::endl;

//output: +3.141593e+00

316

Section 57.4: std::setw

This outputs:

(where the last line is there to aid in seeing the character offsets).

Sometimes we need to set the width of the output field, usually when we need to get the output in some structured

and proper layout. That can be done using std::setw of std::iomanip.

The syntax for std::setw is:

where n is the length of the output field to be set

std::cout<<std::resetiosflags(std::ios_base::floatfield);

std::cout<<setiosflags(std::ios_base::fixed)<<pi<<std::endl;

//output: +3.141593 bool

b = true;

std::cout<<std::setiosflags(std::ios_base::unitbuf|std::ios_base::boolalpha)<<b;

//output: true

return 0;

}

int val = 10;

// val will be printed to the extreme left end of the output console:

std::cout << val << std::endl;

// val will be printed in an output field of length 10 starting from right end of the field: std::cout

<< std::setw(10) << val << std::endl;

10

10

1234567890

std::setw(int n)

317

Chapter 58: std::any

Section 58.1: Basic usage

Output

std::any an_object{ std::string("hello world") };

if (an_object.has_value()) {

std::cout << std::any_cast<std::string>(an_object) << '\n';

}

try {

std::any_cast<int>(an_object);

} catch(std::bad_any_cast&) {

std::cout << "Wrong type\n";

}

std::any_cast<std::string&>(an_object) = "42";

std::cout << std::any_cast<std::string>(an_object) << '\n';

hello world

Wrong type

42

318

Chapter 59: std::set and std::multiset

set is a type of container whose elements are sorted and unique. multiset is similar, but, in the case of multiset,

multiple elements can have the same value.

Section 59.1: Changing the default sort of a set

set and multiset have default compare methods, but in some cases you may need to overload them.

Let's imagine we are storing string values in a set, but we know those strings contain only numeric values. By

default the sort will be a lexicographical string comparison, so the order won't match the numerical sort. If you

want to apply a sort equivalent to what you would have with int values, you need a functor to overload the

compare method:

#include <iostream>

#include <set>

#include <stdlib.h>

struct custom_compare final

{

bool operator() (const std::string& left, const std::string& right) const

{

int nLeft = atoi(left.c_str());

int nRight = atoi(right.c_str());

return nLeft < nRight;

}

};

int main ()

{

std::set<std::string> sut({"1", "2", "5", "23", "6", "290"});

std::cout << "### Default sort on std::set<std::string> :" << std::endl;

for (auto &&data: sut)

std::cout << data << std::endl;

std::set<std::string, custom_compare> sut_custom({"1", "2", "5", "23", "6", "290"},

custom_compare{}); //< Compare object optional

as its default constructible.

std::cout << std::endl << "### Custom sort on set :" << std::endl;

for (auto &&data : sut_custom)

std::cout << data << std::endl;

auto compare_via_lambda = [](auto &&lhs, auto &&rhs){ return lhs > rhs; };

using set_via_lambda = std::set<std::string, decltype(compare_via_lambda)>;

set_via_lambda sut_reverse_via_lambda({"1", "2", "5", "23", "6", "290"},

compare_via_lambda);

std::cout << std::endl << "### Lambda sort on set :" << std::endl;

for (auto &&data : sut_reverse_via_lambda)

std::cout << data << std::endl;

return 0;

}

Output will be:

319

In the example above, one can find 3 different ways of adding compare operations to the std::set, each of them is

useful in its own context.

Default sort

This will use the compare operator of the key (first template argument). Often, the key will already provide a good

default for the std::less<T> function. Unless this function is specialized, it uses the operator< of the object. This is

especially useful when other code also tries to use some ordering, as this allows consistency over the whole code

base.

Writing the code this way, will reduce the effort to update your code when the key changes is API, like: a class

containing 2 members which changes to a class containing 3 members. By updating the operator< in the class, all

occurrences will get updated.

As you might expect, using the default sort is a reasonable default.

Custom sort

Adding a custom sort via an object with a compare operator is often used when the default comparison doesn't

comply. In the example above this is because the strings are referring to integers. In other cases, it's often used

when you want to compare (smart) pointers based upon the object they refer to or because you need different

constraints for comparing (example: comparing std::pair by the value of first).

When creating a compare operator, this should be a stable sorting. If the result of the compare operator changes

after insert, you will have undefined behavior. As a good practice, your compare operator should only use the

constant data (const members, const functions ...).

As in the example above, you will often encounter classes without members as compare operators. This results in

default constructors and copy constructors. The default constructor allows you to omit the instance at construction

time and the copy constructor is required as the set takes a copy of the compare operator.

Lambda sort

Lambdas are a shorter way to write function objects. This allows writing the compare operator on less lines, making

Default sort on std::set<std::string> :

1

2

23

290

5

6

Custom sort on set :

1

2

5

6

23

290

Lambda sort on set :

6

5

290

23

2

1

320

the overall code more readable.

The disadvantage of the use of lambdas is that each lambda gets a specific type at compile time, so

decltype(lambda) will be different for each compilation of the same compilation unit (cpp file) as over multiple

compilation units (when included via header file). For this reason, its recommended to use function objects as

compare operator when used within header files.

This construction is often encountered when a std::set is used within the local scope of a function instead, while

the function object is preferred when used as function arguments or class members.

Other sort options

As the compare operator of std::set is a template argument, all callable objects can be used as compare operator

and the examples above are only specific cases. The only restrictions these callable objects have are:

They must be copy constructable

They must be callable with 2 arguments of the type of the key. (implicit conversions are allowed, though not

recommended as it can hurt performance)

Section 59.2: Deleting values from a set

The most obvious method, if you just want to reset your set/multiset to an empty one, is to use clear:

Then the erase method can be used. It offers some possibilities looking somewhat equivalent to the insertion:

std::set<int> sut;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(3);

sut.clear(); //size of sut is 0

std::set<int> sut;

std::set<int>::iterator it;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(3);

sut.insert(30);

sut.insert(33);

sut.insert(45);

// Basic deletion

sut.erase(3);

// Using iterator it

= sut.find(22);

sut.erase(it);

// Deleting a range of values

it = sut.find(33);

sut.erase(it, sut.end());

std::cout << std::endl << "Set under test contains:" << std::endl;

for (it = sut.begin(); it != sut.end(); ++it)

{

std::cout << *it << std::endl;

321

Output will be:

All those methods also apply to multiset. Please note that if you ask to delete an element from a multiset, and it

is present multiple times, all the equivalent values will be deleted.

Section 59.3: Inserting values in a set

Three different methods of insertion can used with sets.

First, a simple insert of the value. This method returns a pair allowing the caller to check whether the insert

really occurred.

Second, an insert by giving a hint of where the value will be inserted. The objective is to optimize the

insertion time in such a case, but knowing where a value should be inserted is not the common case. Be

careful in that case; the way to give a hint differs with compiler versions.

Finally you can insert a range of values by giving a starting and an ending pointer. The starting one will be

included in the insertion, the ending one is excluded.

}

Set under test contains:

10

15

30

#include <iostream>

#include <set>

int main ()

{

std::set<int> sut;

std::set<int>::iterator it;

std::pair<std::set<int>::iterator,bool> ret;

// Basic insert

sut.insert(7);

sut.insert(5);

sut.insert(12);

ret = sut.insert(23);

if (ret.second==true)

std::cout << "# 23 has been inserted!" << std::endl;

ret = sut.insert(23); // since it's a set and 23 is already present in it, this insert should

fail

if (ret.second==false)

std::cout << "# 23 already present in set!" << std::endl;

// Insert with hint for optimization it

= sut.end();

// This case is optimized for C++11 and above

322

Output will be:

23 has been inserted!

23 already present in set!

Set under test contains:

5

7

12

20

23

30

// For earlier version, point to the element preceding your insertion

sut.insert(it, 30);

// inserting a range of values

std::set<int> sut2;

sut2.insert(20);

sut2.insert(30);

sut2.insert(45);

std::set<int>::iterator itStart = sut2.begin(); std::set<int>::iterator

itEnd = sut2.end();

sut.insert (itStart, itEnd); // second iterator is excluded from insertion

std::cout << std::endl << "Set under test contains:" << std::endl;

for (it = sut.begin(); it != sut.end(); ++it)

{

std::cout << *it << std::endl;

}

return 0;

}

323

Section 59.4: Inserting values in a multiset

All the insertion methods from sets also apply to multisets. Nevertheless, another possibility exists, which is

providing an initializer_list:

Section 59.5: Searching values in set and multiset

There are several ways to search a given value in std::set or in std::multiset:

To get the iterator of the first occurrence of a key, the find() function can be used. It returns end() if the key does

not exist.

Another way is using the count() function, which counts how many corresponding values have been found in the

set/multiset (in case of a set, the return value can be only 0 or 1). Using the same values as above, we will have:

In the case of std::multiset, there could be several elements having the same value. To get this range, the

equal_range() function can be used. It returns std::pair having iterator lower bound (inclusive) and upper bound

(exclusive) respectively. If the key does not exist, both iterators would point to the nearest superior value (based on

compare method used to sort the given multiset).

45

auto il = { 7, 5, 12 };

std::multiset<int> msut;

msut.insert(il);

std::set<int> sut;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(3); // contains 3, 10, 15, 22

auto itS = sut.find(10); // the value is found, so *itS == 10

itS = sut.find(555); // the value is not found, so itS == sut.end()

std::multiset<int> msut;

sut.insert(10);

sut.insert(15);

sut.insert(22);

sut.insert(15);

sut.insert(3); // contains 3, 10, 15, 15, 22

auto itMS = msut.find(10);

int result = sut.count(10); // result == 1

result = sut.count(555); // result == 0

result = msut.count(10); // result == 1

result = msut.count(15); // result == 2

auto eqr = msut.equal_range(15);

auto st = eqr.first; // point to first element '15'

auto en = eqr.second; // point to element '22'

324

eqr = msut.equal_range(9); // both eqr.first and eqr.second point to element '10'

325

Chapter 60: std::integer_sequence
The class template std::integer_sequence<Type, Values...> represents a sequence of values of type Type where

Type is one of the built-in integer types. These sequences are used when implementing class or function templates

which benefit from positional access. The standard library also contains "factory" types which create ascending

sequences of integer values just from the number of elements.

Section 60.1: Turn a std::tuple<T...> into function parameters

A std::tuple<T...> can be used to pass multiple values around. For example, it could be used to store a sequence

of parameters into some form of a queue. When processing such a tuple its elements need to be turned into

function call arguments:

#include <array>

#include <iostream>

#include <string>

#include <tuple>

#include <utility>

//

// Example functions to be called:

void f(int i, std::string const& s) {

std::cout << "f(" << i << ", " << s << ")\n";

}

void f(int i, double d, std::string const& s) {

std::cout << "f(" << i << ", " << d << ", " << s << ")\n";

}

void f(char c, int i, double d, std::string const& s) {

std::cout << "f(" << c << ", " << i << ", " << d << ", " << s << ")\n";

}

void f(int i, int j, int k) {

std::cout << "f(" << i << ", " << j << ", " << k << ")\n";

}

//

// The actual function expanding the tuple:

template <typename Tuple, std::size_t... I>

void process(Tuple const& tuple, std::index_sequence<I...>) {

f(std::get<I>(tuple)...);

}

// The interface to call. Sadly, it needs to dispatch to another function

// to deduce the sequence of indices created from std::make_index_sequence<N>

template <typename Tuple>

void process(Tuple const& tuple) {

process(tuple, std::make_index_sequence<std::tuple_size<Tuple>::value>());

}

//

int main() {

process(std::make_tuple(1, 3.14, std::string("foo")));

process(std::make_tuple('a', 2, 2.71, std::string("bar")));

process(std::make_pair(3, std::string("pair")));

process(std::array<int, 3>{ 1, 2, 3 });

}

As long as a class supports std::get<I>(object) and std::tuple_size<T>::value it can be expanded with the

above process() function. The function itself is entirely independent of the number of arguments.

326

Section 60.2: Create a parameter pack consisting of integers

std::integer_sequence itself is about holding a sequence of integers which can be turned into a parameter pack.

Its primary value is the possibility to create "factory" class templates creating these sequences:

#include <iostream>

#include <initializer_list>

#include <utility>

template <typename T, T... I>

void print_sequence(std::integer_sequence<T, I...>) {

std::initializer_list<bool>{ bool(std::cout << I << ' ')... };

std::cout << '\n';

}

template <int Offset, typename T, T... I>

void print_offset_sequence(std::integer_sequence<T, I...>) {

print_sequence(std::integer_sequence<T, T(I + Offset)...>());

}

int main() {

// explicitly specify sequences:

print_sequence(std::integer_sequence<int, 1, 2, 3>());

print_sequence(std::integer_sequence<char, 'f', 'o', 'o'>());

// generate sequences:

print_sequence(std::make_index_sequence<10>());

print_sequence(std::make_integer_sequence<short, 10>());

print_offset_sequence<'A'>(std::make_integer_sequence<char, 26>());

}

The print_sequence() function template uses an std::initializer_list<bool> when expanding the integer

sequence to guarantee the order of evaluation and not creating an unused [array] variable.

Section 60.3: Turn a sequence of indices into copies of an
element

Expanding the parameter pack of indices in a comma expression with a value creates a copy of the value for each of

the indices. Sadly, gcc and clang think the index has no effect and warn about it (gcc can be silenced by casting the

index to void):

#include <algorithm>

#include <array>

#include <iostream>

#include <iterator>

#include <string>

#include <utility>

template <typename T, std::size_t... I>

std::array<T, sizeof...(I)> make_array(T const& value, std::index_sequence<I...>)

{ return std::array<T, sizeof...(I)>{ (I, value)... };

}

template <int N, typename T>

std::array<T, N> make_array(T const& value) {

return make_array(value, std::make_index_sequence<N>());

}

int main() {

http://gcc.gnu.org/
http://clang.llvm.org/
http://gcc.gnu.org/

327

auto array = make_array<20>(std::string("value"));

std::copy(array.begin(), array.end(),

std::ostream_iterator<std::string>(std::cout, " "));

std::cout << "\n";

}

328

Chapter 61: Using std::unordered_map
std::unordered_map is just an associative container. It works on keys and their maps. Key as the names goes, helps

to have uniqueness in the map. While the mapped value is just a content that is associated with the key. The data

types of this key and map can be any of the predefined data type or user-defined.

Section 61.1: Declaration and Usage

As already mentioned you can declare an unordered map of any type. Let's have a unordered map named first with

string and integer type.

Section 61.2: Some Basic Functions

unordered_map<string, int> first; //declaration of the map

first["One"] = 1; // [] operator used to insert the value

first["Two"] = 2;

first["Three"] = 3;

first["Four"] = 4;

first["Five"] = 5;

pair <string,int> bar = make_pair("Nine", 9); //make a pair of same type

first.insert(bar); //can also use insert to feed the values

unordered_map<data_type, data_type> variable_name; //declaration

variable_name[key_value] = mapped_value; //inserting values

variable_name.find(key_value); //returns iterator to the key value

variable_name.begin(); // iterator to the first element

variable_name.end(); // iterator to the last + 1 element

329

Chapter 62: Standard Library Algorithms

Section 62.1: std::next_permutation

Effects:

Sift the data sequence of the range [first, last) into the next lexicographically higher permutation. If cmpFun is

provided, the permutation rule is customized.

Parameters:

first- the beginning of the range to be permutated, inclusive

last - the end of the range to be permutated, exclusive

Return Value:

Returns true if such permutation exists.

Otherwise the range is swaped to the lexicographically smallest permutation and return false.

Complexity:

O(n), n is the distance from first to last.

Example:

print all the permutation cases of 1,2,3 in lexicographically-increasing order.

output:

Section 62.2: std::for_each

Effects:

Applies f to the result of dereferencing every iterator in the range [first, last) starting from first and

template< class Iterator >

bool next_permutation(Iterator first, Iterator last);

template< class Iterator, class Compare >

bool next_permutation(Iterator first, Iterator last, Compare cmpFun);

std::vector< int > v { 1, 2, 3 };

do

{

for(int i = 0; i < v.size(); i += 1)

{

std::cout << v[i];

}

std::cout << std::endl;

}while(std::next_permutation(v.begin(), v.end()));

123

132

213

231

312

321

template<class InputIterator, class Function>

Function for_each(InputIterator first, InputIterator last, Function f);

330

proceeding to last - 1.

Parameters:

first, last - the range to apply f to.

f - callable object which is applied to the result of dereferencing every iterator in the range [first, last).

Return value:

f (until C++11) and std::move(f) (since C++11).

Complexity:

Applies f exactly last - first times.

Example:

Version ≥ c++11

Applies the given function for every element of the vector v printing this element to stdout.

Section 62.3: std::accumulate

Defined in header <numeric>

Effects:

std::accumulate performs fold operation using f function on range [first, last) starting with init as accumulator

value.

Effectively it's equivalent of:

In version (1) operator+ is used in place of f, so accumulate over container is equivalent of sum of container

elements.

Parameters:

first, last - the range to apply f to.

init - initial value of accumulator.

f - binary folding function.

Return value:

std::vector<int> v { 1, 2, 4, 8, 16 };

std::for_each(v.begin(), v.end(), [](int elem) { std::cout << elem << " "; });

template<class InputIterator, class T>

T accumulate(InputIterator first, InputIterator last, T init); // (1)

template<class InputIterator, class T, class BinaryOperation>

T accumulate(InputIterator first, InputIterator last, T init, BinaryOperation f); // (2)

T acc = init;

for (auto it = first; first != last; ++it)

acc = f(acc, *it);

return acc;

http://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

331

Accumulated value of f applications.

Complexity:

O(n× k), where n is the distance from first to last, O(k) is complexity of f function.

Example:

Simple sum example:

Output:

Convert digits to number:

Version < c++11

and later

Version ≥ c++11

Output:

Section 62.4: std::find

Effects

Finds the first occurrence of val within the range [first, last)

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range val => The

value to find within the range

const std::vector<int> ds = {1, 2, 3};

int n = std::accumulate(ds.begin(), ds.end(),

0,

[](int a, int d) { return a * 10 + d; });

std::cout << n << std::endl;

class Converter {

public:

int operator()(int a, int d) const { return a * 10 + d; }

};

std::vector<int> v { 2, 3, 4 };

auto sum = std::accumulate(v.begin(), v.end(), 1);

std::cout << sum << std::endl;

10

const int ds[3] = {1, 2, 3};

int n = std::accumulate(ds, ds + 3, 0, Converter());

std::cout << n << std::endl;

123

template <class InputIterator, class T>

InputIterator find (InputIterator first, InputIterator last, const T& val);

332

Return

An iterator that points to the first element within the range that is equal(==) to val, the iterator points to last if val is

not found.

Example

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

int main(int argc, const char * argv[]) {

//create a vector

vector<int> intVec {4, 6, 8, 9, 10, 30, 55,100, 45, 2, 4, 7, 9, 43, 48};

//define iterators

vector<int>::iterator itr_9;

vector<int>::iterator itr_43;

vector<int>::iterator itr_50;

//calling find

itr_9 = find(intVec.begin(), intVec.end(), 9); //occurs twice

itr_43 = find(intVec.begin(), intVec.end(), 43); //occurs once

//a value not in the vector

itr_50 = find(intVec.begin(), intVec.end(), 50); //does not occur

cout << "first occurrence of: " << *itr_9 << endl;

cout << "only occurrence of: " << *itr_43 << Lendl;

/*

let's prove that itr_9 is pointing to the first

occurrence of 9 by looking at the element after 9,

which should be 10 not 43

*/

cout << "element after first 9: " << *(itr_9 + 1) << ends;

/*

to avoid dereferencing intVec.end(), lets look at

the element right before the end

*/

cout << "last element: " << *(itr_50 - 1) << endl;

return 0;

}

Output

first occurrence of: 9 only

occurrence of: 43 element

after first 9: 10

last element: 48

333

Section 62.5: std::min_element

Effects

Finds the minimum element in a range

Parameters

first - iterator pointing to the beginning of the range

last - iterator pointing to the end of the range comp - a function pointer or function object that takes two

arguments and returns true or false indicating whether argument is less than argument 2. This function should not

modify inputs

Return

Iterator to the minimum element in the range

Complexity

Linear in one less than the number of elements compared.

Example

template <class ForwardIterator>

ForwardIterator min_element (ForwardIterator first, ForwardIterator last);

template <class ForwardIterator, class Compare>

ForwardIterator min_element (ForwardIterator first, ForwardIterator last,Compare comp);

#include <iostream>

#include <algorithm>

#include <vector>

#include <utility> //to use make_pair

using namespace std;

//function compare two pairs

bool pairLessThanFunction(const pair<string, int> &p1, const pair<string, int> &p2)

{

return p1.second < p2.second;

}

int main(int argc, const char * argv[]) {

vector<int> intVec {30,200,167,56,75,94,10,73,52,6,39,43};

vector<pair<string, int>> pairVector = {make_pair("y", 25), make_pair("b", 2), make_pair("z",

26), make_pair("e", 5) };

// default using < operator

auto minInt = min_element(intVec.begin(), intVec.end());

//Using pairLessThanFunction

auto minPairFunction = min_element(pairVector.begin(), pairVector.end(), pairLessThanFunction);

//print minimum of intVector

cout << "min int from default: " << *minInt << endl;

334

Output

Section 62.6: std::find_if

Effects

Finds the first element in a range for which the predicate function pred returns true.

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range pred =>

predicate function(returns true or false)

Return

An iterator that points to the first element within the range the predicate function pred returns true for. The

iterator points to last if val is not found

Example

//print minimum of pairVector

cout << "min pair from PairLessThanFunction: " << (*minPairFunction).second << endl;

return 0;

}

min int from default: 6

min pair from PairLessThanFunction: 2

template <class InputIterator, class UnaryPredicate>

InputIterator find_if (InputIterator first, InputIterator last, UnaryPredicate pred);

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

/*

define some functions to use as predicates

*/

//Returns true if x is multiple of 10

bool multOf10(int x) {

return x % 10 == 0;

}

//returns true if item greater than passed in parameter

class Greater {

int _than;

public:

Greater(int th):_than(th){

}

bool operator()(int data) const

335

{

return data > _than;

}

};

int main()

{

vector<int> myvec {2, 5, 6, 10, 56, 7, 48, 89, 850, 7, 456};

//with a lambda function

vector<int>::iterator gt10 = find_if(myvec.begin(), myvec.end(), [](int x){return x>10;}); // >=

C++11

//with a function pointer

vector<int>::iterator pow10 = find_if(myvec.begin(), myvec.end(), multOf10);

//with functor

vector<int>::iterator gt5 = find_if(myvec.begin(), myvec.end(), Greater(5));

//not Found

vector<int>::iterator nf = find_if(myvec.begin(), myvec.end(), Greater(1000)); // nf points to

myvec.end()

//check if pointer points to myvec.end() if(nf

!= myvec.end()) {

cout << "nf points to: " << *nf << endl;

}

else {

cout << "item not found" << endl;

}

cout << "First item > 10: " << *gt10 << endl;

cout << "First Item n * 10: " << *pow10 << endl;

cout << "First Item > 5: " << *gt5 << endl;

return 0;

}

Output

Section 62.7: Using std::nth_element To Find The Median (Or
Other Quantiles)

The std::nth_element algorithm takes three iterators: an iterator to the beginning, nth position, and end. Once the

function returns, the nth element (by order) will be the nth smallest element. (The function has more elaborate

overloads, e.g., some taking comparison functors; see the above link for all the variations.)

Note This function is very efficient - it has linear complexity.

item not found

First item > 10: 56

First Item n * 10: 10

First Item > 5: 6

http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/nth_element
http://en.cppreference.com/w/cpp/algorithm/nth_element

336

For the sake of this example, let's define the median of a sequence of length n as the element that would be in

position ⌈n / 2⌉. For example, the median of a sequence of length 5 is the 3rd smallest element, and so is the median

of a sequence of length 6.

To use this function to find the median, we can use the following. Say we start with

To find the pth quantile, we would change some of the lines above:

and look for the quantile at position pos.

Section 62.8: std::count

Effects

Counts the number of elements that are equal to val

Parameters

first => iterator pointing to the beginning of the range

last => iterator pointing to the end of the range

val => The occurrence of this value in the range will be counted

Return

The number of elements in the range that are equal(==) to val.

Example

std::vector<int> v{5, 1, 2, 3, 4};

std::vector<int>::iterator b = v.begin();

std::vector<int>::iterator e = v.end();

std::vector<int>::iterator med = b;

std::advance(med, v.size() / 2);

// This makes the 2nd position hold the median.

std::nth_element(b, med, e);

// The median is now at v[2].

const std::size_t pos = p * std::distance(b, e);

std::advance(nth, pos);

template <class InputIterator, class T>

typename iterator_traits<InputIterator>::difference_type

count (InputIterator first, InputIterator last, const T& val);

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

int main(int argc, const char * argv[]) {

https://en.wikipedia.org/wiki/Quantile

337

//create vector

vector<int> intVec{4,6,8,9,10,30,55,100,45,2,4,7,9,43,48};

//count occurrences of 9, 55, and 101

size_t count_9 = count(intVec.begin(), intVec.end(), 9); //occurs twice

size_t count_55 = count(intVec.begin(), intVec.end(), 55); //occurs once

size_t count_101 = count(intVec.begin(), intVec.end(), 101); //occurs once

//print result

cout << "There are " << count_9 << " 9s"<< endl;

cout << "There is " << count_55 << " 55"<< endl;

cout << "There is " << count_101 << " 101"<<

ends;

//find the first element == 4 in the vector

vector<int>::iterator itr_4 = find(intVec.begin(), intVec.end(), 4);

//count its occurrences in the vector starting from the first one size_t

count_4 = count(itr_4, intVec.end(), *itr_4); // should be 2

cout << "There are " << count_4 << " " << *itr_4 << endl;

return 0;

}

Output

Section 62.9: std::count_if

Effects

Counts the number of elements in a range for which a specified predicate function is true

Parameters

first => iterator pointing to the beginning of the range last => iterator pointing to the end of the range red =>

predicate function(returns true or false)

Return

The number of elements within the specified range for which the predicate function returned true.

Example

There are 2

9s There is 1

55

There is 0 101

There are 2 4

template <class InputIterator, class UnaryPredicate>

typename iterator_traits<InputIterator>::difference_type

count_if (InputIterator first, InputIterator last, UnaryPredicate red);

#include <iostream>

#include <vector>

#include <algorithm>

using namespace std;

338

/*

Define a few functions to use as predicates

*/

//return true if number is odd

bool isOdd(int i){

return i%2 == 1;

}

//functor that returns true if number is greater than the value of the constructor parameter

provided

class Greater {

int _than;

public:

Greater(int th): _than(th){}

bool operator()(int i){

return i > _than;

}

};

int main(int argc, const char * argv[]) {

//create a vector

vector<int> myvec = {1,5,8,0,7,6,4,5,2,1,5,0,6,9,7};

//using a lambda function to count even numbers

size_t evenCount = count_if(myvec.begin(), myvec.end(), [](int i){return i % 2 == 0;}); // >=

C++11

//using function pointer to count odd number in the first half of the vector size_t

oddCount = count_if(myvec.begin(), myvec.end()- myvec.size()/2, isOdd);

//using a functor to count numbers greater than 5

size_t greaterCount = count_if(myvec.begin(), myvec.end(), Greater(5));

cout << "vector size: " << myvec.size() << endl;

cout << "even numbers: " << evenCount << " found" << endl;

cout << "odd numbers: " << oddCount << " found" << endl;

cout << "numbers > 5: " << greaterCount << " found"<< endl;

return 0;

}

Output

vector size: 15

even numbers: 7 found

odd numbers: 4 found

numbers > 5: 6 found

339

Chapter 63: The ISO C++ Standard
In 1998, the there was a first publication of the standard making C++ an internally standardized language. From

that time, C++ has evolved resulting in different dialects of C++. On this page, you can find an overview of all

different standards and their changes compared to the previous version. The details on how to use these features

is described on more specialized pages.

Section 63.1: Current Working Drafts

All published ISO standards are available for sale from the ISO store (http://www.iso.org). The working drafts of the

C++ standards are publicly available for free though.

The different versions of the standard:

Upcoming (Sometimes referred as C++20 or C++2a): Current working draft (HTML-version)

Proposed (Sometimes referred as C++17 or C++1z): March 2017 working draft N4659.

C++14 (Sometimes referred as C++1y): November 2014 working draft N4296

C++11 (Sometimes referred as C++0x): February 2011 working draft N3242

C++03

C++98

Section 63.2: C++17

The C++17 standard is feature complete and has been proposed for standardization. In compilers with

experimental support for these features, it is usually referred to as C++1z.

Language Extensions

Fold Expressions

declaring non-type template arguments with auto

Guaranteed copy elision

Template parameter deduction for constructors

Structured bindings

Compact nested namespaces

New attributes: [[fallthrough]], [[nodiscard]], [[maybe_unused]]

Default message for static_assert

Initializers in if and switch

Inline variables

if constexpr

Order of expression evaluation guarantees

Dynamic memory allocation for over-aligned data

Library Extensions

std::optional

std::variant

std::string_view

merge() and extract() for associative containers

A file system library with the <filesystem> header.

Parallel versions of most of the standard algorithms (in the <algorithm> header).

Addition of mathematical special functions in the <cmath> header.

Moving nodes between map<>, unordered_map<>, set<>, and unordered_set<>

http://www.iso.org/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://eel.is/c%2B%2Bdraft/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3505.html
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
http://en.cppreference.com/w/cpp/filesystem
https://isocpp.org/files/papers/P0024R2.html
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
http://en.cppreference.com/w/cpp/algorithm
https://isocpp.org/files/papers/P0226R1.pdf
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math
http://en.cppreference.com/w/cpp/numeric/special_math

340

Section 63.3: C++11

The C++11 standard is a major extension to the C++ standard. Below you can find an overview of the changes as

they have been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions

General Features

auto

decltype

Range-for statement

Initializer lists

Uniform initialization syntax and semantics

Rvalue references and move semantics

Lambdas

noexcept to prevent exception propagation

constexpr

nullptr – a null pointer literal Copying

and rethrowing exceptions Inline

namespaces

User-defined literals

Classes

=default and =delete

Control of default move and copy

Delegating constructors

In-class member initializers

Inherited constructors

Override controls: override

Override controls: final

Explicit conversion operators

Other Types

enum class

long long – a longer integer

Extended integer types

Generalized unions

Generalized PODs

Templates

Extern templates

Template aliases

Variadic templates

Local types as template arguments

Concurrency

Concurrency memory model

Dynamic initialization and destruction with concurrency

Thread-local storage

Miscellaneous Language Features

https://isocpp.org/faq
https://isocpp.org/wiki/faq/cpp11-language
https://isocpp.org/wiki/faq/cpp11-language-classes
https://isocpp.org/wiki/faq/cpp11-language-types
https://isocpp.org/wiki/faq/cpp11-language-templates
https://isocpp.org/wiki/faq/cpp11-language-concurrency
https://isocpp.org/wiki/faq/cpp11-language-misc

341

What is the value of cplusplus for C++11?

Suffix return type syntax

Preventing narrowing

Right-angle brackets

static_assert compile-time assertions

Raw string literals

Attributes

Alignment

C99 features

Library Extensions

General

unique_ptr

shared_ptr

weak_ptr

Garbage collection ABI

tuple

Type traits

function and bind

Regular Expressions

Time utilities

Random number generation

Scoped allocators

Containers and Algorithms

Algorithms improvements

Container improvements

unordered_* containers

std::array

forward_list

Concurrency

Threads

Mutual exclusion

Locks

Condition variables

Atomics

Futures and promises

async

Abandoning a process

Section 63.4: C++14

The C++14 standard is often referred to as a bugfix for C++11. It contains only a limited list of changes of which

most are extensions to the new features in C++11. Below you can find an overview of the changes as they have

been grouped on the isocpp FAQ with links to more detailed documentation.

Language Extensions

Binary literals

Generalized return type deduction

https://isocpp.org/wiki/faq/cpp11-library
https://isocpp.org/wiki/faq/cpp11-library-stl
https://isocpp.org/wiki/faq/cpp11-library-concurrency
https://isocpp.org/faq
https://isocpp.org/wiki/faq/cpp14-language

342

decltype(auto)

Generalized lambda captures

Generic lambdas

Variable templates

Extended constexpr

The [[deprecated]] attribute

Digit separators

Library Extensions

Shared locking

User-defined literals for std:: types

std::make_unique

Type transformation _t aliases

Addressing tuples by type (e.g. get<string>(t))

Transparent Operator Functors (e.g. greater<>(x))

std::quoted

Deprecated / Removed

std::gets was deprecated in C++11 and removed from C++14

std::random_shuffle is deprecated

Section 63.5: C++98

C++98 is the first standardized version of C++. As it was developed as an extension to C, many of the features which

set apart C++ from C are added.

Language Extensions (in respect to C89/C90)

Classes, Derived classes, virtual member functions, const member functions

Function overloading, Operator overloading

Single line comments (Has been introduced in the C-languague with C99 standard)

References

new and delete

boolean type (Has been introduced in the C-languague with C99 standard)

templates

namespaces

exceptions

specific casts

Library Extensions

The Standard Template Library

Section 63.6: C++03

The C++03 standard mainly addresses defect reports of the C++98 standard. Apart from these defects, it only adds

one new feature.

Language Extensions

Value initalization

https://isocpp.org/wiki/faq/cpp14-library
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
http://stackoverflow.com/q/29719558/3235496
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3421
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/manip/quoted
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/io/c/gets
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://en.cppreference.com/w/cpp/algorithm/random_shuffle
http://stackoverflow.com/a/620402/2466431

343

Section 63.7: C++20

C++20 is the upcoming standard of C++, currently in development, based upon the C++17 standard. It's progress

can be tracked on the official ISO cpp website.

The following features are simply what has been accepted for the next release of the C++ standard, targeted for

2020.

Language Extensions

No language extensions have been accepted for now.

Library Extensions

No library extensions have been accepted for now.

https://isocpp.org/std/status

344

Chapter 64: Inline variables
An inline variable is allowed to be defined in multiple translation units without violating the One Definition Rule. If it

is multiply defined, the linker will merge all definitions into a single object in the final program.

Section 64.1: Defining a static data member in the class
definition

A static data member of the class may be fully defined within the class definition if it is declared inline. For

example, the following class may be defined in a header. Prior to C++17, it would have been necessary to provide a

.cpp file to contain the definition of Foo::num_instances so that it would be defined only once, but in C++17 the

multiple definitions of the inline variable Foo::num_instances all refer to the same int object.

As a special case, a constexpr static data member is implicitly inline.

// warning: not thread-safe... class

Foo {

public:

Foo() { ++num_instances; }

~Foo() { --num_instances; }

inline static int num_instances = 0;

};

class MyString {

public:

MyString() { /* ... */ }

// ...

static constexpr int max_size = INT_MAX / 2;

};

// in C++14, this definition was required in a single translation unit:

// constexpr int MyString::max_size;

345

Chapter 65: Random number generation

Section 65.1: True random value generator

To generate true random values that can be used for cryptography std::random_device has to be used as

generator.

std::random_device is used in the same way as a pseudo random value generator is used.

However std::random_device may be implemented in terms of an implementation-defined pseudo-random

number engine if a non-deterministic source (e.g. a hardware device) isn't available to the implementation.

Detecting such implementations should be possible via the entropy member function (which return zero when the

generator is completely deterministic), but many popular libraries (both GCC's libstdc++ and LLVM's libc++) always

return zero, even when they're using high-quality external randomness.

Section 65.2: Generating a pseudo-random number

A pseudo-random number generator generates values that can be guessed based on previously generated values.

In other words: it is deterministic. Do not use a pseudo-random number generator in situations where a true

random number is required.

#include <iostream>

#include <random>

int main()

{

std::random_device crypto_random_generator; std::uniform_int_distribution<int>

int_distribution(0,9);

int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};

for(int i = 0; i < 10000; i++) {

int result = int_distribution(crypto_random_generator);

actual_distribution[result]++;

}

for(int i = 0; i < 10; i++) {

std::cout << actual_distribution[i] << " ";

}

return 0;

}

#include <iostream>

#include <random>

int main()

{

std::default_random_engine pseudo_random_generator;

std::uniform_int_distribution<int> int_distribution(0, 9);

int actual_distribution[10] = {0,0,0,0,0,0,0,0,0,0};

for(int i = 0; i < 10000; i++) {

int result = int_distribution(pseudo_random_generator);

actual_distribution[result]++;

http://en.cppreference.com/w/cpp/numeric/random/random_device/entropy
http://en.cppreference.com/w/cpp/numeric/random/random_device/entropy

346

This code creates a random number generator, and a distribution that generates integers in the range [0,9] with

equal likelihood. It then counts how many times each result was generated.

The template parameter of std::uniform_int_distribution<T> specifies the type of integer that should be

generated. Use std::uniform_real_distribution<T> to generate floats or doubles.

Section 65.3: Using the generator for multiple distributions

The random number generator can (and should) be used for multiple distributions.

In this example, only one generator is defined. It is subsequently used to generate a random value in three

different distributions. The rigged_dice distribution will generate a value between 0 and 5, but almost always

generates a 5, because the chance to generate a 5 is 100 / 105.

}

for(int i = 0; i <= 9; i++) {

std::cout << actual_distribution[i] << " ";

}

return 0;

}

#include <iostream>

#include <random>

int main()

{

std::default_random_engine pseudo_random_generator;

std::uniform_int_distribution<int> int_distribution(0, 9);

std::uniform_real_distribution<float> float_distribution(0.0, 1.0); std::discrete_distribution<int>

rigged_dice({1,1,1,1,1,100});

std::cout << int_distribution(pseudo_random_generator) << std::endl;

std::cout << float_distribution(pseudo_random_generator) << std::endl;

std::cout << (rigged_dice(pseudo_random_generator) + 1) << std::endl;

return 0;

}

http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
http://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution

347

Chapter 66: Date and time using <chrono>
header

Section 66.1: Measuring time using <chrono>

The system_clock can be used to measure the time elapsed during some part of a program's execution.

Version = c++11

In this example, sleep_for was used to make the active thread sleep for a time period measured in

std::chrono::seconds, but the code between braces could be any function call that takes some time to execute.

Section 66.2: Find number of days between two dates

This example shows how to find number of days between two dates. A date is specified by year/month/day of

month, and additionally hour/minute/second.

Program calculates number of days in years since 2000.

#include <iostream>

#include <chrono>

#include <thread>

int main() {

auto start = std::chrono::system_clock::now(); // This and "end"'s type is std::chrono::time_point

{ // The code to test

std::this_thread::sleep_for(std::chrono::seconds(2));

}

auto end = std::chrono::system_clock::now();

std::chrono::duration<double> elapsed = end - start;

std::cout << "Elapsed time: " << elapsed.count() << "s";

}

#include <iostream>

#include <string>

#include <chrono>

#include <ctime>

/***

* Creates a std::tm structure from raw date.

*

* \param year (must be 1900 or greater)

* \param month months since January – [1, 12]

* \param day day of the month – [1, 31]

* \param minutes minutes after the hour – [0, 59]

* \param seconds seconds after the minute – [0, 61](until C++11) / [0, 60] (since C++11)

*

* Based on http://en.cppreference.com/w/cpp/chrono/c/tm

*/

std::tm CreateTmStruct(int year, int month, int day, int hour, int minutes, int seconds) {

struct tm tm_ret = {0};

tm_ret.tm_sec = seconds;

tm_ret.tm_min = minutes;

tm_ret.tm_hour = hour;

tm_ret.tm_mday = day;

http://en.cppreference.com/w/cpp/chrono/c/tm

348

tm_ret.tm_mon = month - 1;

tm_ret.tm_year = year - 1900;

return tm_ret;

}

int get_days_in_year(int year) {

using namespace std;

using namespace std::chrono;

// We want results to be in days

typedef duration<int, ratio_multiply<hours::period, ratio<24> >::type> days;

// Create start time span

std::tm tm_start = CreateTmStruct(year, 1, 1, 0, 0, 0);

auto tms = system_clock::from_time_t(std::mktime(&tm_start));

// Create end time span

std::tm tm_end = CreateTmStruct(year + 1, 1, 1, 0, 0,

0); auto tme = system_clock::from_time_t(std::mktime(&tm_end));

// Calculate time duration between those two dates

auto diff_in_days = std::chrono::duration_cast<days>(tme - tms);

return diff_in_days.count();

}

int main()

{

for (int year = 2000; year <= 2016; ++year)

std::cout << "There are " << get_days_in_year(year) << " days in " << year << "\n";

}

349

Chapter 67: Sorting

Section 67.1: Sorting and sequence containers

std::sort, found in the standard library header algorithm, is a standard library algorithm for sorting a range of

values, defined by a pair of iterators. std::sort takes as the last parameter a functor used to compare two values;

this is how it determines the order. Note that std::sort is not stable.

The comparison function must impose a Strict, Weak Ordering on the elements. A simple less-than (or greater-than)

comparison will suffice.

A container with random-access iterators can be sorted using the std::sort algorithm:

Version ≥ C++11

std::sort requires that its iterators are random access iterators. The sequence containers std::list and

std::forward_list (requiring C++11) do not provide random access iterators, so they cannot be used with

std::sort. However, they do have sort member functions which implement a sorting algorithm that works with

their own iterator types.

Version ≥ C++11

Their member sort functions always sort the entire list, so they cannot sort a sub-range of elements. However,

since list and forward_list have fast splicing operations, you could extract the elements to be sorted from the list,

sort them, then stuff them back where they were quite efficiently like this:

Section 67.2: sorting with std::map (ascending and
descending)

This example sorts elements in ascending order of a key using a map. You can use any type, including class,

#include <list>

#include <algorithm>

std::list<int> MyList = {3, 1, 2}

//Default comparison of <

//Whole list only.

MyList.sort();

#include <vector>

#include <algorithm>

std::vector<int> MyVector = {3, 1, 2}

//Default comparison of <

std::sort(MyVector.begin(), MyVector.end());

void sort_sublist(std::list<int>& mylist, std::list<int>::const_iterator start,

std::list<int>::const_iterator end) {

//extract and sort half-open sub range denoted by start and end iterator

std::list<int> tmp;

tmp.splice(tmp.begin(), list, start, end);

tmp.sort();

//re-insert range at the point we extracted it from

list.splice(end, tmp);

}

https://en.wikipedia.org/wiki/Sorting_algorithm#Stability
https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings

350

instead of std::string, in the example below.

Output:

If entries with equal keys are possible, use multimap instead of map (like in the following example).

To sort elements in descending manner, declare the map with a proper comparison functor (std::greater<>):

#include <iostream>

#include <utility>

#include <map>

int main()

{

std::map<double, std::string> sorted_map;

// Sort the names of the planets according to their size

sorted_map.insert(std::make_pair(0.3829, "Mercury"));

sorted_map.insert(std::make_pair(0.9499, "Venus"));

sorted_map.insert(std::make_pair(1, "Earth"));

sorted_map.insert(std::make_pair(0.532, "Mars"));

sorted_map.insert(std::make_pair(10.97, "Jupiter"));

sorted_map.insert(std::make_pair(9.14, "Saturn"));

sorted_map.insert(std::make_pair(3.981, "Uranus"));

sorted_map.insert(std::make_pair(3.865, "Neptune"));

for (auto const& entry: sorted_map)

{

std::cout << entry.second << " (" << entry.first << " of Earth's radius)" << '\n';

}

}

Mercury (0.3829 of Earth's radius)

Mars (0.532 of Earth's radius)

Venus (0.9499 of Earth's radius)

Earth (1 of Earth's radius)

Neptune (3.865 of Earth's radius)

Uranus (3.981 of Earth's radius)

Saturn (9.14 of Earth's radius)

Jupiter (10.97 of Earth's radius)

#include <iostream>

#include <utility>

#include <map>

int main()

{

std::multimap<int, std::string, std::greater<int>> sorted_map;

// Sort the names of animals in descending order of the number of legs

sorted_map.insert(std::make_pair(6, "bug"));

sorted_map.insert(std::make_pair(4, "cat"));

sorted_map.insert(std::make_pair(100, "centipede"));

sorted_map.insert(std::make_pair(2, "chicken"));

sorted_map.insert(std::make_pair(0, "fish"));

sorted_map.insert(std::make_pair(4, "horse"));

sorted_map.insert(std::make_pair(8, "spider"));

for (auto const& entry: sorted_map)

{

std::cout << entry.second << " (has " << entry.first << " legs)" << '\n';

351

Output

Section 67.3: Sorting sequence containers by overloaded less
operator

If no ordering function is passed, std::sort will order the elements by calling operator< on pairs of elements,

which must return a type contextually convertible to bool (or just bool). Basic types (integers, floats, pointers etc)

have already build in comparison operators.

We can overload this operator to make the default sort call work on user-defined types.

}

}

centipede (has 100 legs)

spider (has 8 legs)

bug (has 6 legs)

cat (has 4 legs)

horse (has 4 legs)

chicken (has 2 legs)

fish (has 0 legs)

// Include sequence containers

#include <vector>

#include <deque>

#include <list>

// Insert sorting algorithm

#include <algorithm>

class Base {

public:

// Constructor that set variable to the value of v

Base(int v): variable(v) {

}

// Use variable to provide total order operator less

//`this` always represents the left-hand side of the compare.

bool operator<(const Base &b) const {

return this->variable < b.variable;

}

int variable;

};

int main() {

std::vector <Base> vector;

std::deque <Base> deque;

std::list <Base> list;

// Create 2 elements to sort

Base a(10);

Base b(5);

// Insert them into backs of containers

vector.push_back(a);

vector.push_back(b);

352

Section 67.4: Sorting sequence containers using compare
function

// Include sequence containers

#include <vector>

#include <deque>

#include <list>

// Insert sorting algorithm

#include <algorithm>

class Base {

public:

// Constructor that set variable to the value of v

Base(int v): variable(v) {

}

int variable;

};

bool compare(const Base &a, const Base &b) {

return a.variable < b.variable;

}

int main() {

std::vector <Base> vector;

std::deque <Base> deque;

std::list <Base> list;

// Create 2 elements to sort

Base a(10);

Base b(5);

// Insert them into backs of containers

vector.push_back(a);

vector.push_back(b);

deque.push_back(a);

deque.push_back(b);

list.push_back(a);

list.push_back(b);

// Now sort data using comparing function

deque.push_back(a);

deque.push_back(b);

list.push_back(a);

list.push_back(b);

// Now sort data using operator<(const Base &b) function

std::sort(vector.begin(), vector.end());

std::sort(deque.begin(), deque.end());

// List must be sorted differently due to its design

list.sort();

return 0;

}

353

Section 67.5: Sorting sequence containers using lambda
expressions (C++11)

Version ≥ C++11

// Include sequence containers

#include <vector>

#include <deque>

#include <list>

#include <array>

#include <forward_list>

// Include sorting algorithm #include

<algorithm>

class Base {

public:

// Constructor that set variable to the value of v

Base(int v): variable(v) {

}

int variable;

};

int main() {

// Create 2 elements to sort

Base a(10);

Base b(5);

// We're using C++11, so let's use initializer lists to insert items. std::vector

<Base> vector = {a, b};

std::deque <Base> deque = {a, b};

std::list <Base> list = {a, b};

std::array <Base, 2> array = {a, b};

std::forward_list<Base> flist = {a, b};

// We can sort data using an inline lambda expression

std::sort(std::begin(vector), std::end(vector),

[](const Base &a, const Base &b) { return a.variable < b.variable;});

// We can also pass a lambda object as the comparator

// and reuse the lambda multiple times

auto compare = [](const Base &a, const Base &b) {

return a.variable < b.variable;};

std::sort(std::begin(deque), std::end(deque), compare);

std::sort(std::begin(array), std::end(array), compare);

list.sort(compare);

flist.sort(compare);

return 0;

}

std::sort(vector.begin(), vector.end(), compare);

std::sort(deque.begin(), deque.end(), compare);

list.sort(compare);

return 0;

}

354

Section 67.6: Sorting built-in arrays

The sort algorithm sorts a sequence defined by two iterators. This is enough to sort a built-in (also known as c-

style) array.

Version ≥ C++11

Prior to C++11, end of array had to be "calculated" using the size of the array:

Version < C++11

Section 67.7: Sorting sequence containers with specifed
ordering

If the values in a container have certain operators already overloaded, std::sort can be used with specialized

functors to sort in either ascending or descending order:

Version ≥ C++11

Version ≥ C++14

In C++14, we don't need to provide the template argument for the comparison function objects and instead let the

object deduce based on what it gets passed in:

#include <vector>

#include <algorithm>

#include <functional>

std::vector<int> v = {5,1,2,4,3};

//sort in ascending order (1,2,3,4,5)

std::sort(v.begin(), v.end(), std::less<int>());

// Or just:

std::sort(v.begin(), v.end());

//sort in descending order (5,4,3,2,1)

std::sort(v.begin(), v.end(), std::greater<int>());

//Or just:

std::sort(v.rbegin(), v.rend());

// Use a hard-coded number for array size

sort(arr1, arr1 + 5);

// Alternatively, use an expression

const size_t arr1_size = sizeof(arr1) / sizeof(*arr1);

sort(arr1, arr1 + arr1_size);

int arr1[] = {36, 24, 42, 60, 59};

// sort numbers in ascending order sort(std::begin(arr1),

std::end(arr1));

// sort numbers in descending order

sort(std::begin(arr1), std::end(arr1), std::greater<int>());

std::sort(v.begin(), v.end(), std::less<>()); // ascending order

std::sort(v.begin(), v.end(), std::greater<>()); // descending order

355

Chapter 68: Enumeration

Section 68.1: Iteration over an enum

There is no built-in to iterate over enumeration.

But there are several ways

for enum with only consecutive values:

Version ≥ C++11

with enum class, operator ++ has to be implemented:

using a container as std::vector

and then

enum E {

Begin,

E1 = Begin,

E2,

// ..

En,

End

};

for (E e = E::Begin; e != E::End; ++e) {

// Do job with e

}

E& operator ++ (E& e)

{

if (e == E::End) {

throw std::out_of_range("for E& operator ++ (E&)");

}

e = E(static_cast<std::underlying_type<E>::type>(e) + 1);

return e;

}

enum E {

E1 = 4,

E2 = 8,

// ..

En

};

std::vector<E> build_all_E()

{

const E all[] = {E1, E2, /*..*/ En};

return std::vector<E>(all, all + sizeof(all) / sizeof(E));

}

std::vector<E> all_E = build_all_E();

for (std::vector<E>::const_iterator it = all_E.begin(); it != all_E.end(); ++it) {

356

Version ≥ C++11

or std::initializer_list and a simpler syntax:

and then

Section 68.2: Scoped enums

C++11 introduces what are known as scoped enums. These are enumerations whose members must be qualified

with enumname::membername. Scoped enums are declared using the enum class syntax. For example, to store the

colors in a rainbow:

To access a specific color:

enum classes cannot be implicitly converted to ints without a cast. So int x = rainbow::RED is invalid.

Scoped enums also allow you to specify the underlying type, which is the type used to represent a member. By

default it is int. In a Tic-Tac-Toe game, you may store the piece as

As you may notice, enums can have a trailing comma after the last member.

E e = *it;

// Do job with e;

}

enum E {

E1 = 4,

E2 = 8,

// ..

En

};

constexpr std::initializer_list<E> all_E = {E1, E2, /*..*/ En};

for (auto e : all_E) {

// Do job with e

}

enum class rainbow {

RED,

ORANG

E,

YELLOW

,

GREEN,

BLUE,

INDIGO,

VIOLET

};

rainbow r = rainbow::INDIGO;

enum class piece : char {

EMPTY = '\0',

X = 'X',

O = 'O',

};

357

Section 68.3: Enum forward declaration in C++11

Scoped enumerations:

Unscoped enumerations:

An in-depth multi-file example can be found here: Blind fruit merchant example

Section 68.4: Basic Enumeration Declaration

Standard enumerations allow users to declare a useful name for a set of integers. The names are collectively

referred to as enumerators. An enumeration and its associated enumerators are defined as follows:

An enumeration is a type, one which is distinct from all other types. In this case, the name of this type is myEnum.

Objects of this type are expected to assume the value of an enumerator within the enumeration.

The enumerators declared within the enumeration are constant values of the type of the enumeration. Though the

enumerators are declared within the type, the scope operator :: is not needed to access the name. So the name of

the first enumerator is enumName1.

Version ≥ C++11

The scope operator can be optionally used to access an enumerator within an enumeration. So enumName1 can also

be spelled myEnum::enumName1.

Enumerators are assigned integer values starting from 0 and increasing by 1 for each enumerator in an

enumeration. So in the above case, enumName1 has the value 0, while enumName2 has the value 1.

Enumerators can also be assigned a specific value by the user; this value must be an integral constant expression.

Enumerators who's values are not explicitly provided will have their value set to the value of the previous

enumerator + 1.

...

enum class Status; // Forward declaration Status

doWork(); // Use the forward declaration

...

enum class Status { Invalid, Success, Fail };

Status doWork() // Full declaration required for implementation

{

return Status::Success;

}

...

enum Status: int; // Forward declaration, explicit type required

Status doWork(); // Use the forward declaration

...

enum Status: int{ Invalid=0, Success, Fail }; // Must match forward declare type

static_assert(Success == 1);

enum myEnum

{

enumName1,

enumName2,

};

enum myEnum

http://stackoverflow.com/a/19074269/1873507

358

Section 68.5: Enumeration in switch statements

A common use for enumerators is for switch statements and so they commonly appear in state machines. In fact a

useful feature of switch statements with enumerations is that if no default statement is included for the switch, and

not all values of the enum have been utilized, the compiler will issue a warning.

{

enumName1 = 1, // value will be 1

enumName2 = 2, // value will be 2

enumName3, // value will be 3, previous value + 1

enumName4 = 7, // value will be 7

enumName5, // value will be 8

enumName6 = 5, // value will be 5, legal to go backwards

enumName7 = 3, // value will be 3, legal to reuse numbers

enumName8 = enumName4 + 2, // value will be 9, legal to take prior enums and adjust them

};

enum State {

start,

middle,

end

};

...

switch(myState) {

case start:

...

case middle:

...

} // warning: enumeration value 'end' not handled in switch [-Wswitch]

359

Chapter 69: Iteration

Section 69.1: break

Jumps out of the nearest enclosing loop or switch statement.

Section 69.2: continue

Jumps to the end of the smallest enclosing loop.

Section 69.3: do

Introduces a do-while loop.

Section 69.4: while

Introduces a while loop.

// print the numbers to a file, one per line

for (const int num : num_list) {

errno = 0;

fprintf(file, "%d\n", num);

if (errno == ENOSPC) {

fprintf(stderr, "no space left on device; output will be truncated\n");

break;

}

}

int sum = 0;

for (int i = 0; i < N; i++) {

int x;

std::cin >> x;

if (x < 0) continue;

sum += x;

// equivalent to: if (x >= 0) sum += x;

}

// Gets the next non-whitespace character from standard input

char read_char() {

char c;

do {

c = getchar();

} while (isspace(c));

return c;

}

int i = 0;

// print 10 asterisks

while (i < 10) {

putchar('*');

i++;

}

360

Section 69.5: range-based for loop

Section 69.6: for

Introduces a for loop or, in C++11 and later, a range-based for loop.

std::vector<int> primes = {2, 3, 5, 7, 11, 13};

for(auto prime : primes) {

std::cout << prime << std::endl;

}

// print 10 asterisks

for (int i = 0; i < 10; i++) {

putchar('*');

}

361

Chapter 70: Regular expressions
Signature Description

BidirectionalIterator is any character iterator that

provides increment and decrement operators smatch may
bool regex_match(BidirectionalIterator first,
BidirectionalIterator last, smatch& sm, const
regex& re, regex_constraints::match_flag_type
flags)

bool regex_match(const string& str, smatch&
sm, const regex re&,
regex_constraints::match_flag_type flags)

be cmatch or any other other variant of match_results that

accepts the type of BidirectionalIterator the smatch

argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire

character sequence defined by first and last

string may be either a const char* or an L-Value string,
the functions accepting an R-Value string are explicitly deleted

smatch may be cmatch or any other other variant of
match_results that accepts the type of str the smatch

argument may be ommitted if the results of the regex are
not needed Returns whether re matches the entire

character sequence defined by str

Regular Expressions (sometimes called regexs or regexps) are a textual syntax which represents the patterns which

can be matched in the strings operated upon.

Regular Expressions, introduced in c++11, may optionally support a return array of matched strings or another

textual syntax defining how to replace matched patterns in strings operated upon.

Section 70.1: Basic regex_match and regex_search Examples

const auto input = "Some people, when confronted with a problem, think \"I know, I'll use regular

expressions.\""s;

smatch sm;

cout << input << endl;

// If input ends in a quotation that contains a word that begins with "reg" and another word beginning

with "ex" then capture the preceding portion of input

if (regex_match(input, sm, regex("(.*)\".*\\breg.*\\bex.*\"\\s*$"))) { const

auto capture = sm[1].str();

cout << '\t' << capture << endl; // Outputs: "\tSome people, when confronted with a problem,

think\n"

// Search our capture for "a problem" or "# problems"

if(regex_search(capture, sm, regex("(a|d+)\\s+problems?"))) {

const auto count = sm[1] == "a"s ? 1 : stoi(sm[1]);

cout << '\t' << count << (count > 1 ? " problems\n" : " problem\n"); // Outputs: "\t1

problem\n"

cout << "Now they have " << count + 1 << " problems.\n"; // Outputs: "Now they have 2

problems\n"

}

}

Live Example

Section 70.2: regex_iterator Example

When processing of captures has to be done iteratively a regex_iterator is a good choice. Dereferencing a

regex_iterator returns a match_result. This is great for conditional captures or captures which have

https://en.wikipedia.org/wiki/Regular_expression
https://stackoverflow.com/questions/tagged/c%2b%2b11
http://ideone.com/nSRXEa

362

interdependence. Let's say that we want to tokenize some C++ code. Given:

We can tokenize this string: const auto input = "42/2 + -8\t=\n(2 + 2) * 2 * 2 -3"s with a regex_iterator

like this:

vector<TOKENS> tokens;

const regex re{ "\\s*(\\(?)\\s*(-?\\s*\\d+)\\s*(\\)?)\\s*(?:(\\+)|(-)|(*)|(/)|(=))" };

for_each(sregex_iterator(cbegin(input), cend(input), re), sregex_iterator(), [&](const auto& i) {

if(i[1].length() > 0) {

tokens.push_back(OPEN_PARENTHESIS);

}

tokens.push_back(i[2].str().front() == '-' ? NEGATIVE_NUMBER : NON_NEGATIVE_NUMBER);

if(i[3].length() > 0) {

tokens.push_back(CLOSE_PARENTHESIS);

}

auto it = next(cbegin(i), 4);

for(int result = ADDITION; it != cend(i); ++result, ++it) {

if (it->length() > 0U) {

tokens.push_back(static_cast<TOKENS>(result));

break;

}

}

});

match_results<string::const_reverse_iterator> sm;

if(regex_search(crbegin(input), crend(input), sm, regex{ tokens.back() == SUBTRACTION ?

"^\\s*\\d+\\s*-\\s*(-?)" : "^\\s*\\d+\\s*(-?)" })) {

tokens.push_back(sm[1].length() == 0 ? NON_NEGATIVE_NUMBER : NEGATIVE_NUMBER);

}

Live Example

A notable gotcha with regex iterators is that the regex argument must be an L-value, an R-value will not work: Visual

Studio regex_iterator Bug?

Section 70.3: Anchors

C++ provides only 4 anchors:

^ which asserts the start of the string

$ which asserts the end of the string

\b which asserts a \W character or the beginning or end of the string

enum TOKENS {

NUMBER,

ADDITION,

SUBTRACTION,

MULTIPLICATION

, DIVISION,

EQUALITY,

OPEN_PARENTHESI

S,

CLOSE_PARENTHES

IS

};

http://ideone.com/Rv5WNI
http://stackoverflow.com/q/29895747/2642059
http://stackoverflow.com/q/29895747/2642059

363

\B which asserts a \w character

Let's say for example we want to capture a number with it's sign:

Live Example

An important note here is that the anchor does not consume any characters.

Section 70.4: regex_replace Example

This code takes in various brace styles and converts them to One True Brace Style:

Live Example

Section 70.5: regex_token_iterator Example

A std::regex_token_iterator provides a tremendous tool for extracting elements of a Comma Separated Value

file. Aside from the advantages of iteration, this iterator is also able to capture escaped commas where other

methods struggle:

Live Example

A notable gotcha with regex iterators is, that the regex argument must be an L-value. An R-value will not work.

Section 70.6: Quantifiers

Let's say that we're given const string input as a phone number to be validated. We could start by requiring a

numeric input with a zero or more quantifier: regex_match(input, regex("\\d*")) or a one or more quantifier:

regex_match(input, regex("\\d+")) But both of those really fall short if input contains an invalid

auto input = "+1--12*123/+1234"s;

smatch sm;

if(regex_search(input, sm, regex{ "(?:^|\\b\\W)([+-]?\\d+)" })) {

do {

cout << sm[1] << endl;

input = sm.suffix().str();

} while(regex_search(input, sm, regex{ "(?:^\\W|\\b\\W)([+-]?\\d+)" }));

}

const auto input = "if (KnR)\n\tfoo();\nif (spaces) {\n foo();\n}\nif

(allman)\n{\n\tfoo();\n}\nif (horstmann)\n{\tfoo();\n}\nif (pico)\n{\tfoo(); }\nif

(whitesmiths)\n\t{\n\tfoo();\n\t}\n"s;

cout << input << regex_replace(input, regex("(.+?)\\s*\\{?\\s*(.+?;)\\s*\\}?\\s*"), "$1

{\n\t$2\n}\n") << endl;

const auto input = "please split,this,csv, ,line,\\,\n"s;

const regex re{ "((?:[^\\\\,]|\\\\.)+)(?:,|$)" };

const vector<string> m_vecFields{ sregex_token_iterator(cbegin(input), cend(input), re, 1),

sregex_token_iterator() };

cout << input << endl;

copy(cbegin(m_vecFields), cend(m_vecFields), ostream_iterator<string>(cout, "\n"));

http://ideone.com/uE4dGr
https://en.wikipedia.org/wiki/Indent_style#Variant%3A_1TBS
http://ideone.com/ICR5wM
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://en.cppreference.com/w/cpp/regex/regex_token_iterator
http://stackoverflow.com/a/28880605/2642059
http://stackoverflow.com/a/28880605/2642059
http://ideone.com/lySlTJ
http://stackoverflow.com/q/29895747/2642059

364

numeric string like: "123" Let's use a n or more quantifier to ensure that we're getting at least 7 digits:

This will guarantee that we will get at least a phone number of digits, but input could also contain a numeric string

that's too long like: "123456789012". So lets go with a between n and m quantifier so the input is at least 7 digits

but not more than 11:

This gets us closer, but illegal numeric strings that are in the range of [7, 11] are still accepted, like: "123456789" So

let's make the country code optional with a lazy quantifier:

It's important to note that the lazy quantifier matches as few characters as possible, so the only way this character

will be matched is if there are already 10 characters that have been matched by \d{7,10}. (To match the first

character greedily we would have had to do: \d{0,1}.) The lazy quantifier can be appended to any other

quantifier.

Now, how would we make the area code optional and only accept a country code if the area code was present?

In this final regex, the \d{7} requires 7 digits. These 7 digits are optionally preceded by either 3 or 4 digits.

Note that we did not append the lazy quantifier: \d{3,4}?\d{7}, the \d{3,4}? would have matched either 3 or 4

characters, preferring 3. Instead we're making the non-capturing group match at most once, preferring not to

match. Causing a mismatch if input didn't include the area code like: "1234567".

In conclusion of the quantifier topic, I'd like to mention the other appending quantifier that you can use, the

possessive quantifier. Either the lazy quantifier or the possessive quantifier can be appended to any quantifier.

The possessive quantifier's only function is to assist the regex engine by telling it, greedily take these characters

and don't ever give them up even if it causes the regex to fail. This for example doesn't make much sense:

regex_match(input, regex("\\d{3,4}+\\d{7})) Because an input like: "1234567890" wouldn't be matched as

\d{3,4}+ will always match 4 characters even if matching 3 would have allowed the regex to succeed.

The possessive quantifier is best used when the quantified token limits the number of matchable characters. For

example:

Can be used to match if input contained any of the following:

123 456 7890

123-456-7890

(123)456-7890

(123) 456 - 7890

But when this regex really shines is when input contains an illegal input:

12345 - 67890

regex_match(input, regex("\\d{7,}"))

regex_match(input, regex("\\d{7,11}"));

regex_match(input, regex("\\d?\\d{7,10}"))

regex_match(input, regex("(?:\\d{3,4})?\\d{7}"))

regex_match(input, regex("(?:.*\\d{3,4}+){3}"))

365

Without the possessive quantifier the regex engine has to go back and test every combination of .* and either 3 or

4 characters to see if it can find a matchable combination. With the possessive quantifier the regex starts where

the 2nd possessive quantifier left off, the '0' character, and the regex engine tries to adjust the .* to allow \d{3,4}

to match; when it can't the regex just fails, no back tracking is done to see if earlier .* adjustment could have

allowed a match.

Section 70.7: Splitting a string

std::vector<std::string> split(const std::string &str, std::string regex)

{

std::regex r{ regex };

std::sregex_token_iterator start{ str.begin(), str.end(), r, -1 }, end;

return std::vector<std::string>(start, end);

}

split("Some string\t with whitespace ", "\\s+"); // "Some", "string", "with", "whitespace"

366

Chapter 71: Implementation-defined
behavior

Section 71.1: Size of integral types

The following types are defined as integral types:

char

Signed integer types

Unsigned integer types

char16_t and char32_t

bool

wchar_t

With the exception of sizeof(char) / sizeof(signed char) / sizeof(unsigned char), which is split between §

3.9.1.1 [basic.fundamental/1] and § 5.3.3.1 [expr.sizeof], and sizeof(bool), which is entirely implementation-

defined and has no minimum size, the minimum size requirements of these types are given in section § 3.9.1

[basic.fundamental] of the standard, and shall be detailed below.

Size of char

All versions of the C++ standard specify, in § 5.3.3.1, that sizeof yields 1 for unsigned char, signed char, and char

(it is implementation defined whether the char type is signed or unsigned).

Version ≥ C++14

char is large enough to represent 256 different values, to be suitable for storing UTF-8 code units.

Size of signed and unsigned integer types

The standard specifies, in § 3.9.1.2, that in the list of standard signed integer types, consisting of signed char, short

int, int, long int, and long long int, each type will provide at least as much storage as those preceding it in the

list. Furthermore, as specified in § 3.9.1.3, each of these types has a corresponding standard unsigned integer type,

unsigned char, unsigned short int, unsigned int, unsigned long int, and unsigned long long int, which has the

same size and alignment as its corresponding signed type. Additionally, as specified in § 3.9.1.1, char has the same

size and alignment requirements as both signed char and unsigned char.

Version < C++11

Prior to C++11, long long and unsigned long long were not officially part of the C++ standard. However, after

their introduction to C, in C99, many compilers supported long long as an extended signed integer type, and

unsigned long long as an extended unsigned integer type, with the same rules as the C types.

The standard thus guarantees that:

Version ≥ C++11

Specific minimum sizes for each type are not given by the standard. Instead, each type has a minimum range of

<= sizeof(long long) == sizeof(unsigned long long)

1 == sizeof(char) == sizeof(signed char) == sizeof(unsigned char)

<= sizeof(short) == sizeof(unsigned short)

<= sizeof(int) == sizeof(unsigned int)

<= sizeof(long) == sizeof(unsigned long)

367

values it can support, which is, as specified in § 3.9.1.3, inherited from the C standard, in §5.2.4.2.1. The minimum

size of each type can be roughly inferred from this range, by determining the minimum number of bits required;

note that for any given platform, any type's actual supported range may be larger than the minimum. Note that for

signed types, ranges correspond to one's complement, not the more commonly used two's complement; this is to

allow a wider range of platforms to comply with the standard.

signed long long
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807 (-(263 - 1) to

(263 - 1))

Minimum bits

required

64

unsigned long long 0 to 18,446,744,073,709,551,615 (0 to 264 - 1) 64

As each type is allowed to be greater than its minimum size requirement, types may differ in size between

implementations. The most notable example of this is with the 64-bit data models LP64 and LLP64, where LLP64

systems (such as 64-bit Windows) have 32-bit ints and longs, and LP64 systems (such as 64-bit Linux) have 32-bit

ints and 64-bit longs. Due to this, integer types cannot be assumed to have a fixed width across all platforms.

Version ≥ C++11

If integer types with fixed width are required, use types from the <cstdint> header, but note that the standard

makes it optional for implementations to support the exact-width types int8_t, int16_t, int32_t, int64_t,

intptr_t, uint8_t, uint16_t, uint32_t, uint64_t and uintptr_t.

Version ≥ C++11

Size of char16_t and char32_t

The sizes of char16_t and char32_t are implementation-defined, as specified in § 5.3.3.1, with the stipulations

given in § 3.9.1.5:

char16_t is large enough to represent any UTF-16 code unit, and has the same size, signedness, and

alignment as uint_least16_t; it is thus required to be at least 16 bits in size.

char32_t is large enough to represent any UTF-32 code unit, and has the same size, signedness, and

alignment as uint_least32_t; it is thus required to be at least 32 bits in size.

Size of bool

The size of bool is implementation defined, and may or may not be 1.

Size of wchar_t

wchar_t, as specified in § 3.9.1.5, is a distinct type, whose range of values can represent every distinct code unit of

the largest extended character set among the supported locales. It has the same size, signedness, and alignment as

one of the other integral types, which is known as its underlying type. This type's size is implementation-defined, as

Type Minimum range Minimum bits required

signed char -127 to 127 (-(27 - 1) to (27 - 1)) 8

unsigned char 0 to 255 (0 to 28 - 1) 8

signed short -32,767 to 32,767 (-(215 - 1) to (215 - 1)) 16

unsigned short 0 to 65,535 (0 to 216 - 1) 16

signed int -32,767 to 32,767 (-(215 - 1) to (215 - 1)) 16

unsigned int 0 to 65,535 (0 to 216 - 1) 16

signed long -2,147,483,647 to 2,147,483,647 (-(231 - 1) to (231 - 1)) 32

unsigned long 0 to 4,294,967,295 (0 to 232 - 1) 32

Version ≥ C++11

Type Minimum range

http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint
http://en.cppreference.com/w/cpp/header/cstdint

368

specified in § 5.3.3.1, and may be, for example, at least 8, 16, or 32 bits; if a system supports Unicode, for example,

wchar_t is required to be at least 32 bits (an exception to this rule is Windows, where wchar_t is 16 bits for

compatibility purposes). It is inherited from the C90 standard, ISO 9899:1990 § 4.1.5, with only minor rewording.

Depending on the implementation, the size of wchar_t is often, but not always, 8, 16, or 32 bits. The most common

examples of these are:

In Unix and Unix-like systems, wchar_t is 32-bit, and is usually used for UTF-32.

In Windows, wchar_t is 16-bit, and is used for UTF-16.

On a system which only has 8-bit support, wchar_t is 8 bit.

Version ≥ C++11

If Unicode support is desired, it is recommended to use char for UTF-8, char16_t for UTF-16, or char32_t for

UTF-32, instead of using wchar_t.

Data Models

As mentioned above, the widths of integer types can differ between platforms. The most common models are as

follows, with sizes specified in bits:

nter

Out of these models:

16-bit Windows used LP32.

32-bit *nix systems (Unix, Linux, Mac OSX, and other Unix-like OSes) and Windows use ILP32.

64-bit Windows uses LLP64.

64-bit *nix systems use LP64.

Note, however, that these models aren't specifically mentioned in the standard itself.

Section 71.2: Char might be unsigned or signed

The standard doesn't specify if char should be signed or unsigned. Different compilers implement it differently, or

might allow to change it using a command line switch.

Section 71.3: Ranges of numeric types

The ranges of the integer types are implementation-defined. The header <limits> provides the

std::numeric_limits<T> template which provides the minimum and maximum values of all fundamental types.

The values satisfy guarantees provided by the C standard through the <climits> and (>= C++11) <cinttypes>

headers.

std::numeric_limits<signed char>::min() equals SCHAR_MIN, which is less than or equal to -127.

std::numeric_limits<signed char>::max() equals SCHAR_MAX, which is greater than or equal to 127.

std::numeric_limits<unsigned char>::max() equals UCHAR_MAX, which is greater than or equal to 255.

std::numeric_limits<short>::min() equals SHRT_MIN, which is less than or equal to -32767.

std::numeric_limits<short>::max() equals SHRT_MAX, which is greater than or equal to 32767.

Model int

LP32 (2/4/4) 16

long poi

32 32

ILP32 (4/4/4) 32 32 32

LLP64 (4/4/8) 32 32 64

LP64 (4/8/8) 32 64 64

369

std::numeric_limits<unsigned short>::max() equals USHRT_MAX, which is greater than or equal to 65535.

std::numeric_limits<int>::min() equals INT_MIN, which is less than or equal to -32767.

std::numeric_limits<int>::max() equals INT_MAX, which is greater than or equal to 32767.

std::numeric_limits<unsigned int>::max() equals UINT_MAX, which is greater than or equal to 65535.

std::numeric_limits<long>::min() equals LONG_MIN, which is less than or equal to -2147483647.

std::numeric_limits<long>::max() equals LONG_MAX, which is greater than or equal to 2147483647.

std::numeric_limits<unsigned long>::max() equals ULONG_MAX, which is greater than or equal to

4294967295.

Version ≥ C++11

std::numeric_limits<long long>::min() equals LLONG_MIN, which is less than or equal to

-9223372036854775807.

std::numeric_limits<long long>::max() equals LLONG_MAX, which is greater than or equal to

9223372036854775807.

std::numeric_limits<unsigned long long>::max() equals ULLONG_MAX, which is greater than or equal to

18446744073709551615.

For floating-point types T, max() is the maximum finite value while min() is the minimum positive normalized value.

Additional members are provided for floating-point types, which are also implementation-defined but satisfy

certain guarantees provided by the C standard through the <cfloat> header.

The member digits10 gives the number of decimal digits of precision. std::numeric_limits<float>::digits10

equals FLT_DIG, which is at least 6. std::numeric_limits<double>::digits10 equals DBL_DIG, which

is at least 10. std::numeric_limits<long double>::digits10 equals LDBL_DIG, which is at least 10.

The member min_exponent10 is the minimum negative E such that 10 to the power E is normal.

std::numeric_limits<float>::min_exponent10 equals FLT_MIN_10_EXP, which is at most -37.

std::numeric_limits<double>::min_exponent10 equals DBL_MIN_10_EXP, which is at most -37.

std::numeric_limits<long double>::min_exponent10 equals LDBL_MIN_10_EXP, which is at most -37.

The member max_exponent10 is the maximum E such that 10 to the power E is finite.

std::numeric_limits<float>::max_exponent10 equals FLT_MIN_10_EXP, which is at least 37.

std::numeric_limits<double>::max_exponent10 equals DBL_MIN_10_EXP, which is at least 37.

std::numeric_limits<long double>::max_exponent10 equals LDBL_MIN_10_EXP, which is at least 37.

If the member is_iec559 is true, the type conforms to IEC 559 / IEEE 754, and its range is therefore

determined by that standard.

Section 71.4: Value representation of floating point types

The standard requires that long double provides at least as much precision as double, which provides at least as

much precision as float; and that a long double can represent any value that a double can represent, while a

double can represent any value that a float can represent. The details of the representation are, however,

implementation-defined.

For a floating point type T, std::numeric_limits<T>::radix specifies the radix used by the representation of T.

If std::numeric_limits<T>::is_iec559 is true, then the representation of T matches one of the formats defined

by IEC 559 / IEEE 754.

Section 71.5: Overflow when converting from integer to
signed integer

When either a signed or unsigned integer is converted to a signed integer type, and its value is not representable in

370

// `uintptr_t` was not in C++03. It's in C99, in <stdint.h>, as an optional type

#include <stdint.h>

uintptr_t uip;

the destination type, the value produced is implementation-defined. Example:

Section 71.6: Underlying type (and hence size) of an enum

If the underlying type is not explicitly specified for an unscoped enumeration type, it is determined in an

implementation-defined manner.

However, the standard does require the underlying type of an enumeration to be no larger than int unless both

int and unsigned int are unable to represent all the values of the enumeration. Therefore, in the above code, T

could be int, unsigned int, or short, but not long long, to give a few examples.

Note that an enum has the same size (as returned by sizeof) as its underlying type.

Section 71.7: Numeric value of a pointer

The result of casting a pointer to an integer using reinterpret_cast is implementation-defined, but "... is intended

to be unsurprising to those who know the addressing structure of the underlying machine."

Likewise, the pointer obtained by conversion from an integer is also implementation-defined.

The right way to store a pointer as an integer is using the uintptr_t or intptr_t types:

Version ≥ C++11

C++11 refers to C99 for the definition uintptr_t (C99 standard, 6.3.2.3):

an unsigned integer type with the property that any valid pointer to void can be converted to this type,

then converted back to pointer to void, and the result will compare equal to the original pointer.

// There is an optional `std::uintptr_t` in C++11 #include

<cstdint>

std::uintptr_t uip;

// Suppose that on this implementation, the range of signed char is -128 to +127 and

// the range of unsigned char is 0 to 255

int x = 12345;

signed char sc = x; // sc has an implementation-defined value

unsigned char uc = x; // uc is initialized to 57 (i.e., 12345 modulo 256)

enum E {

RED,

GREE

N,

BLUE,

};

using T = std::underlying_type<E>::type; // implementation-defined

int x = 42;

int* p = &x;

long addr = reinterpret_cast<long>(p);

std::cout << addr << "\n"; // prints some numeric address,

// probably in the architecture's native address format

371

While, for the majority of modern platforms, you can assume a flat address space and that arithmetic on uintptr_t

is equivalent to arithmetic on char *, it's entirely possible for an implementation to perform any transformation

when casting void * to uintptr_t as long the transformation can be reversed when casting back from uintptr_t

to void *.

Technicalities

On XSI-conformant (X/Open System Interfaces) systems, intptr_t and uintptr_t types are required,

otherwise they are optional.

Within the meaning of the C standard, functions aren't objects; it isn't guaranteed by the C standard that

uintptr_t can hold a function pointer. Anyway POSIX (2.12.3) conformance requires that:

All function pointer types shall have the same representation as the type pointer to void.

Conversion of a function pointer to void * shall not alter the representation. A void * value

resulting from such a conversion can be converted back to the original function pointer type, using

an explicit cast, without loss of information.

C99 § 7.18.1:

When typedef names differing only in the absence or presence of the initial u are defined, they

shall denote corresponding signed and unsigned types as described in 6.2.5; an implementation

providing one of these corresponding types shall also provide the other.

uintptr_t might make sense if you want to do things to the bits of the pointer that you can't do as sensibly

with a signed integer.

Section 71.8: Number of bits in a byte

In C++, a byte is the space occupied by a char object. The number of bits in a byte is given by CHAR_BIT, which is

defined in climits and required to be at least 8. While most modern systems have 8-bit bytes, and POSIX requires

CHAR_BIT to be exactly 8, there are some systems where CHAR_BIT is greater than 8 i.e a single byte may be

comprised of 8, 16, 32 or 64 bits.

372

Chapter 72: Exceptions

Section 72.1: Catching exceptions

A try/catch block is used to catch exceptions. The code in the try section is the code that may throw an exception,

and the code in the catch clause(s) handles the exception.

Multiple catch clauses may be used to handle multiple exception types. If multiple catch clauses are present, the

exception handling mechanism tries to match them in order of their appearance in the code:

Exception classes which are derived from a common base class can be caught with a single catch clause for the

common base class. The above example can replace the two catch clauses for std::length_error and

std::out_of_range with a single clause for std:exception:

Because the catch clauses are tried in order, be sure to write more specific catch clauses first, otherwise your

exception handling code might never get called:

#include <iostream>

#include <string>

#include <stdexcept>

int main() {

std::string str("foo");

try {

str.at(10); // access element, may throw std::out_of_range

} catch (const std::out_of_range& e) {

// what() is inherited from std::exception and contains an explanatory message

std::cout << e.what();

}

}

std::string str("foo");

try {

str.reserve(2); // reserve extra capacity, may throw std::length_error

str.at(10); // access element, may throw std::out_of_range

} catch (const std::length_error& e) {

std::cout << e.what();

} catch (const std::out_of_range& e) {

std::cout << e.what();

}

std::string str("foo");

try {

str.reserve(2); // reserve extra capacity, may throw std::length_error

str.at(10); // access element, may throw std::out_of_range

} catch (const std::exception& e) {

std::cout << e.what();

}

try {

/* Code throwing exceptions omitted. */

} catch (const std::exception& e) {

/* Handle all exceptions of type std::exception. */

} catch (const std::runtime_error& e) {

373

Another possibility is the catch-all handler, which will catch any thrown object:

Section 72.2: Rethrow (propagate) exception

Sometimes you want to do something with the exception you catch (like write to log or print a warning) and let it

bubble up to the upper scope to be handled. To do so, you can rethrow any exception you catch:

Using throw; without arguments will re-throw the currently caught exception.

Version ≥ C++11

To rethrow a managed std::exception_ptr, the C++ Standard Library has the rethrow_exception function that

can be used by including the <exception> header in your program.

/* This block of code will never execute, because std::runtime_error

inherits from std::exception, and all exceptions of type std::exception

were already

caught by the previous catch clause. */ }

try {

throw 10;

} catch (...) {

std::cout << "caught an exception";

}

try {

... // some code here

} catch (const SomeException& e) {

std::cout << "caught an exception";

throw;

}

#include <iostream>

#include <string>

#include <exception>

#include <stdexcept>

void handle_eptr(std::exception_ptr eptr) // passing by value is ok

{

try {

if (eptr) {

std::rethrow_exception(eptr);

}

} catch(const std::exception& e) {

std::cout << "Caught exception \"" << e.what() << "\"\n";

}

}

int main()

{

std::exception_ptr eptr;

try {

std::string().at(1); // this generates an std::out_of_range

} catch(...) {

eptr = std::current_exception(); // capture

}

handle_eptr(eptr);

} // destructor for std::out_of_range called here, when the eptr is destructed

374

Section 72.3: Best practice: throw by value, catch by const
reference

In general, it is considered good practice to throw by value (rather than by pointer), but catch by (const) reference.

One reason why catching by reference is a good practice is that it eliminates the need to reconstruct the object

when being passed to the catch block (or when propagating through to other catch blocks). Catching by reference

also allows the exceptions to be handled polymorphically and avoids object sli cing. However, if you are rethrowing

an exception (like throw e;, see example below), you can still get object slicing because the throw e; statement

makes a copy of the exception as whatever type is declared:

If you are sure that you are not going to do anything to change the exception (like add information or modify the

message), catching by const reference allows the compiler to make optimizations and can improve performance.

But this can still cause object splicing (as seen in the example above).

Warning: Beware of throwing unintended exceptions in catch blocks, especially related to allocating extra memory

or resources. For example, constructing logic_error, runtime_error or their subclasses might throw bad_alloc

try {

// throw new std::runtime_error("Error!"); // Don't do this!

// This creates an exception object

// on the heap and would require you to catch the

// pointer and manage the memory yourself. This can

// cause memory leaks!

throw std::runtime_error("Error!");

} catch (const std::runtime_error& e) {

std::cout << e.what() << std::endl;

}

#include <iostream>

struct BaseException {

virtual const char* what() const { return "BaseException"; }

};

struct DerivedException : BaseException {

// "virtual" keyword is optional here

virtual const char* what() const { return "DerivedException"; }

};

int main(int argc, char** argv) {

try {

try {

throw DerivedException();

} catch (const BaseException& e) {

std::cout << "First catch block: " << e.what() << std::endl;

// Output ==> First catch block: DerivedException

throw e; // This changes the exception to BaseException

// instead of the original DerivedException!

}

} catch (const BaseException& e) {

std::cout << "Second catch block: " << e.what() << std::endl;

// Output ==> Second catch block: BaseException

}

return 0;

}

375

due to memory running out when copying the exception string, I/O streams might throw during logging with

respective exception masks set, etc.

Section 72.4: Custom exception

You shouldn't throw raw values as exceptions, instead use one of the standard exception classes or make your

own.

Having your own exception class inherited from std::exception is a good way to go about it. Here's a custom

exception class which directly inherits from std::exception:

#include <exception>

class Except: virtual public std::exception {

protected:

int error_number; ///< Error number

int error_offset; ///< Error offset

std::string error_message; ///< Error message

public:

/** Constructor (C++ STL string, int, int).

* @param msg The error message

* @param err_num Error number

* @param err_off Error offset

*/

explicit

Except(const std::string& msg, int err_num, int err_off):

error_number(err_num),

error_offset(err_off),

error_message(msg)

{}

/** Destructor.

* Virtual to allow for subclassing.

*/

virtual ~Except() throw () {}

/** Returns a pointer to the (constant) error description.

* @return A pointer to a const char*. The underlying memory

* is in possession of the Except object. Callers must

* not attempt to free the memory.

*/

virtual const char* what() const throw () {

return error_message.c_str();

}

/** Returns error number.

* @return #error_number

*/

virtual int getErrorNumber() const throw() {

return error_number;

}

/**Returns error offset.

* @return #error_offset

*/

virtual int getErrorOffset() const throw() {

376

An example throw catch:

As you are not only just throwing a dumb error message, also some other values representing what the error

exactly was, your error handling becomes much more efficient and meaningful.

There's an exception class that let's you handle error messages nicely :std::runtime_error

You can inherit from this class too:

#include <stdexcept>

class Except: virtual public std::runtime_error {

protected:

int error_number; ///< Error number

int error_offset; ///< Error offset

public:

/** Constructor (C++ STL string, int, int).

* @param msg The error message

* @param err_num Error number

* @param err_off Error offset

*/

explicit

Except(const std::string& msg, int err_num, int err_off):

std::runtime_error(msg)

{

error_number = err_num;

error_offset = err_off;

}

/** Destructor.

* Virtual to allow for subclassing.

*/

virtual ~Except() throw () {}

/** Returns error number.

* @return #error_number

*/

virtual int getErrorNumber() const throw() {

return error_number;

}

/**Returns error offset.

return error_offset;

}

};

try {

throw(Except("Couldn't do what you were expecting", -12, -34));

} catch (const Except& e) {

std::cout<<e.what()

<<"\nError number: "<<e.getErrorNumber()

<<"\nError offset: "<<e.getErrorOffset();

}

377

Note that I haven't overridden the what() function from the base class (std::runtime_error) i.e we will be using

the base class's version of what(). You can override it if you have further agenda.

Section 72.5: std::uncaught_exceptions

Version ≥ c++17

C++17 introduces int std::uncaught_exceptions() (to replace the limited bool std::uncaught_exception()) to

know how many exceptions are currently uncaught. That allows for a class to determine if it is destroyed during a

stack unwinding or not.

#include <exception>

#include <string>

#include <iostream>

// Apply change on destruction:

// Rollback in case of exception (failure)

// Else Commit (success)

class Transaction

{

public:

Transaction(const std::string& s) : message(s) {}

Transaction(const Transaction&) = delete;

Transaction& operator =(const Transaction&) = delete;

void Commit() { std::cout << message << ": Commit\n"; }

void RollBack() noexcept(true) { std::cout << message << ": Rollback\n"; }

// ...

~Transaction() {

if (uncaughtExceptionCount == std::uncaught_exceptions()) {

Commit(); // May throw.

} else { // current stack unwinding

RollBack();

}

}

private:

std::string message;

int uncaughtExceptionCount = std::uncaught_exceptions();

};

class Foo

{

public:

~Foo() {

try {

Transaction transaction("In ~Foo"); // Commit,

// even if there is an uncaught exception

//...

} catch (const std::exception& e) {

std::cerr << "exception/~Foo:" << e.what() << std::endl;

* @return #error_offset

*/

virtual int getErrorOffset() const throw() {

return error_offset;

}

};

378

Output:

Section 72.6: Function Try Block for regular function

Which is equivalent to

Note that for constructors and destructors, the behavior is different as the catch block re-throws an exception

anyway (the caught one if there is no other throw in the catch block body).

The function main is allowed to have a function try block like any other function, but main's function try block will

not catch exceptions that occur during the construction of a non-local static variable or the destruction of any static

variable. Instead, std::terminate is called.

Section 72.7: Nested exception

Version ≥ C++11

}

}

};

int main()

{

try {

Transaction transaction("In main"); // RollBack Foo

foo; // ~Foo commit its transaction.

//...

throw std::runtime_error("Error");

} catch (const std::exception& e) {

std::cerr << "exception/main:" << e.what() << std::endl;

}

}

In ~Foo: Commit

In main: Rollback

exception/main:Error

void function_with_try_block()

try

{

// try block body

}

catch (...)

{

// catch block body

}

void function_with_try_block()

{

try

{

// try block body

}

catch (...)

{

// catch block body

}

}

379

During exception handling there is a common use case when you catch a generic exception from a low-level

function (such as a filesystem error or data transfer error) and throw a more specific high-level exception which

indicates that some high-level operation could not be performed (such as being unable to publish a photo on Web).

This allows exception handling to react to specific problems with high level operations and also allows, having only

error an message, the programmer to find a place in the application where an exception occurred. Downside of this

solution is that exception callstack is truncated and original exception is lost. This forces developers to manually

include text of original exception into a newly created one.

Nested exceptions aim to solve the problem by attaching low-level exception, which describes the cause, to a high

level exception, which describes what it means in this particular case.

std::nested_exception allows to nest exceptions thanks to std::throw_with_nested:

#include <stdexcept>

#include <exception>

#include <string>

#include <fstream>

#include <iostream>

struct MyException

{

MyException(const std::string& message) : message(message) {}

std::string message;

};

void print_current_exception(int level)

{

try {

throw;

} catch (const std::exception& e) {

std::cerr << std::string(level, ' ') << "exception: " << e.what() << '\n';

} catch (const MyException& e) {

std::cerr << std::string(level, ' ') << "MyException: " << e.message << '\n';

} catch (...) {

std::cerr << "Unkown exception\n";

}

}

void print_current_exception_with_nested(int level = 0)

{

try {

throw;

} catch (...) {

print_current_exception(level);

}

try {

throw;

} catch (const std::nested_exception& nested) {

try {

nested.rethrow_nested();

} catch (...) {

print_current_exception_with_nested(level + 1); // recursion

}

} catch (...) {

//Empty // End recursion

}

}

// sample function that catches an exception and wraps it in a nested exception void

open_file(const std::string& s)

380

Possible output:

If you work only with exceptions inherited from std::exception, code can even be simplified.

Section 72.8: Function Try Blocks In constructor

The only way to catch exception in initializer list:

{

try {

std::ifstream file(s);

file.exceptions(std::ios_base::failbit);

} catch(...) {

std::throw_with_nested(MyException{"Couldn't open " + s});

}

}

// sample function that catches an exception and wraps it in a nested exception

void run()

{

try {

open_file("nonexistent.file");

} catch(...) {

std::throw_with_nested(std::runtime_error("run() failed"));

}

}

// runs the sample function above and prints the caught exception int

main()

{

try {

run();

} catch(...) {

print_current_exception_with_nested();

}

}

exception: run() failed

MyException: Couldn't open nonexistent.file

exception: basic_ios::clear

struct A : public B

{

A() try : B(), foo(1), bar(2)

{

// constructor body

}

catch (...)

{

// exceptions from the initializer list and constructor are caught here

// if no exception is thrown here

// then the caught exception is re-thrown.

}

private:

Foo foo;

Bar bar;

};

381

Section 72.9: Function Try Blocks In destructor

Note that, although this is possible, one needs to be very careful with throwing from destructor, as if a destructor

called during stack unwinding throws an exception, std::terminate is called.

struct A

{

~A() noexcept(false) try

{

// destructor body

}

catch (...)

{

// exceptions of destructor body are caught here

// if no exception is thrown here

// then the caught exception is re-thrown.

}

};

382

Chapter 73: Lambdas
Parameter Details

Specifies how all non-listed variables are captured. Can be = (capture by value) or & (capture by

default-capture

capture-list

reference). If omitted, non-listed variables are inaccessible within the lambda-body. The default-

capture must precede the capture-list.

Specifies how local variables are made accessible within the lambda-body. Variables without

prefix are captured by value. Variables prefixed with & are captured by reference. Within a class

method, this can be used to make all its members accessible by reference. Non-listed variables
are inaccessible, unless the list is preceded by a default-capture.

argument-list Specifies the arguments of the lambda function.

(optional) Normally variables captured by value are const. Specifying mutable makes them non-

const. Changes to those variables are retained between calls.

(optional) Specifies the exception throwing behavior of the lambda function. For example:

noexcept or throw(std::exception).

(optional) Any attributes for the lambda function. For example, if the lambda-body always throws

an exception then [[noreturn]] can be used.

(optional) Specifies the return type of the lambda function. Required when the return type

cannot be determined by the compiler.

lambda-body A code block containing the implementation of the lambda function.

Section 73.1: What is a lambda expression?

A lambda expression provides a concise way to create simple function objects. A lambda expression is a prvalue

whose result object is called closure object, which behaves like a function object.

The name 'lambda expression' originates from lambda calculus, which is a mathematical formalism invented in the

1930s by Alonzo Church to investigate questions about logic and computability. Lambda calculus formed the basis

of LISP, a functional programming language. Compared to lambda calculus and LISP, C++ lambda expressions share

the properties of being unnamed, and to capture variables from the surrounding context, but they lack the ability to

operate on and return functions.

A lambda expression is often used as an argument to functions that take a callable object. That can be simpler than

creating a named function, which would be only used when passed as the argument. In such cases, lambda

expressions are generally preferred because they allow defining the function objects inline.

A lambda consists typically of three parts: a capture list [], an optional parameter list () and a body {}, all of which

can be empty:

Capture list

[] is the capture list. By default, variables of the enclosing scope cannot be accessed by a lambda. Capturing a

variable makes it accessible inside the lambda, either as a copy or as a reference. Captured variables become a part

of the lambda; in contrast to function arguments, they do not have to be passed when calling the lambda.

mutable

attributes

-> return-type

throw-specification

[](){} // An empty lambda, which does and returns nothing

int a = 0; // Define an integer variable auto

f = []() { return a*9; }; // Error: 'a' cannot be accessed

auto f = [a]() { return a*9; }; // OK, 'a' is "captured" by value

auto f = [&a]() { return a++; }; // OK, 'a' is "captured" by reference

// Note: It is the responsibility of the programmer

// to ensure that a is not destroyed before the

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)

383

Parameter list

() is the parameter list, which is almost the same as in regular functions. If the lambda takes no arguments, these

parentheses can be omitted (except if you need to declare the lambda mutable). These two lambdas are equivalent:

Version ≥ C++14

The parameter list can use the placeholder type auto instead of actual types. By doing so, this argument behaves

like a template parameter of a function template. Following lambdas are equivalent when you want to sort a vector

in generic code:

Function body

{} is the body, which is the same as in regular functions.

Calling a lambda

A lambda expression's result object is a closure, which can be called using the operator() (as with other function

objects):

Return Type

By default, the return type of a lambda expression is deduced.

In this case the return type is bool.

You can also manually specify the return type using the following syntax:

Mutable Lambda

Objects captured by value in the lambda are by default immutable. This is because the operator() of the generated

closure object is const by default.

// lambda is called.

auto b = f();

not passed here.

// Call the lambda function. a is taken from the capture list and

auto call_foo = [x](){ x.foo(); };

auto call_foo2 = [x]{ x.foo(); };

auto sort_cpp11 = [](std::vector<T>::const_reference lhs, std::vector<T>::const_reference rhs) {

return lhs < rhs; };

auto sort_cpp14 = [](const auto &lhs, const auto &rhs) { return lhs < rhs; };

int multiplier = 5;

auto timesFive = [multiplier](int a) { return a * multiplier; };

std::out << timesFive(2); // Prints 10

multiplier = 15;

std::out << timesFive(2); // Still prints 2*5 == 10

[](){ return true; };

[]() -> bool { return true; };

auto func = [c = 0](){++c; std::cout << c;}; // fails to compile because ++c

// tries to mutate the state of

https://en.wikipedia.org/wiki/Closure_(computer_programming)

384

Modifying can be allowed by using the keyword mutable, which make the closer object's operator() non-const:

If used together with the return type, mutable comes before it.

An example to illustrate the usefulness of lambdas

Before C++11:

Version < C++11

Since C++11:

Version ≥ C++11

Section 73.2: Specifying the return type

For lambdas with a single return statement, or multiple return statements whose expressions are of the same type,

the compiler can deduce the return type:

For lambdas with multiple return statements of different types, the compiler can't deduce the return type:

// Declare a vector

std::vector<int> vec{ 1, 2, 3, 4, 5 };

// Find a number that's less than a given input (assume this would have been function input)

int threshold = 10;

auto it = std::find_if(vec.begin(), vec.end(), [threshold](int value) { return value < threshold;

});

// Generic functor used for comparison

struct islessthan

{

islessthan(int threshold) : _threshold(threshold) {}

bool operator()(int value) const

{

return value < _threshold;

}

private:

int _threshold;

};

// Declare a vector

const int arr[] = { 1, 2, 3, 4, 5 };

std::vector<int> vec(arr, arr+5);

// Find a number that's less than a given input (assume this would have been function input)

int threshold = 10;

std::vector<int>::iterator it = std::find_if(vec.begin(), vec.end(), islessthan(threshold));

// the lambda.

auto func = [c = 0]() mutable {++c; std::cout << c;};

auto func = [c = 0]() mutable -> int {++c; std::cout << c; return c;};

// Returns bool, because "value > 10" is a comparison which yields a Boolean result

auto l = [](int value) {

return value > 10;

}

385

In this case you have to specify the return type explicitly:

The rules for this match the rules for auto type deduction. Lambdas without explicitly specified return types never

return references, so if a reference type is desired it must be explicitly specified as well:

Section 73.3: Capture by value

If you specify the variable's name in the capture list, the lambda will capture it by value. This means that the

generated closure type for the lambda stores a copy of the variable. This also requires that the variable's type be

copy-constructible:

Version < C++14

From C++14 on, it is possible to initialize variables on the spot. This allows move only types to be captured in the

lambda.

Version ≥ C++14

Even though a lambda captures variables by value when they are given by their name, such variables cannot be

modified within the lambda body by default. This is because the closure type puts the lambda body in a declaration

of operator() const.

auto p = std::make_unique<T>(...);

[p = std::move(p)]() {

return p->createWidget();

};

auto p = std::unique_ptr<T>(...);

[p]() { // Compile error; `unique_ptr` is not copy-constructible

return p->createWidget();

};

// error: return types must match if lambda has unspecified return type

auto l = [](int value) {

if (value < 10) {

return 1;

} else {

return 1.5;

}

};

// The return type is specified explicitly as 'double' auto

l = [](int value) -> double {

if (value < 10) {

return 1;

} else {

return 1.5;

}

};

auto copy = [](X& x) { return x;
};

// 'copy' returns an X, so copies its input

auto ref = [](X& x) -> X& { return x; }; // 'ref' returns an X&, no copy

int a = 0;

[a]() {

return a; // Ok, 'a' is captured by value

};

386

The const applies to accesses to member variables of the closure type, and captured variables that are members of

the closure (all appearances to the contrary):

To remove the const, you have to specify the keyword mutable on the lambda:

Because a was captured by value, any modifications done by calling the lambda will not affect a. The value of a was

copied into the lambda when it was constructed, so the lambda's copy of a is separate from the external a variable.

Section 73.4: Recursive lambdas

Let's say we wish to write Euclid's gcd() as a lambda. As a function, it is:

But a lambda cannot be recursive, it has no way to invoke itself. A lambda has no name and using this within the

body of a lambda refers to a captured this (assuming the lambda is created in the body of a member function,

otherwise it is an error). So how do we solve this problem?

Use std::function

We can have a lambda capture a reference to a not-yet constructed std::function:

This works, but should be used sparingly. It's slow (we're using type erasure now instead of a direct function call),

it's fragile (copying gcd or returning gcd will break since the lambda refers to the original object), and it won't work

with generic lambdas.

int a = 0;

[a]() {

a =

2;
// Illegal, 'a' is accessed via `const`

decltype(a) a1 = 1;

a1 = 2; // valid: variable 'a1' is not const

};

int a = 0;

[a]() mutable {

a = 2; // OK, 'a' can be modified

return a;

};

int a = 5 ;

auto plus5Val = [a] (void) { return a + 5 ; }

; auto plus5Ref = [&a] (void) {return a + 5 ; }

;

a = 7 ;

std::cout << a << ", value " << plus5Val() << ", reference " << plus5Ref() ;

// The result will be "7, value 10, reference 12"

int gcd(int a, int b) {

return b == 0 ? a : gcd(b, a%b);

}

std::function<int(int, int)> gcd = [&](int a, int b){

return b == 0 ? a : gcd(b, a%b);

};

387

Using two smart pointers:

This adds a lot of indirection (which is overhead), but it can be copied/returned, and all copies share state. It does

let you return the lambda, and is otherwise less fragile than the above solution.

Use a Y-combinator

With the help of a short utility struct, we can solve all of these problems:

we can implement our gcd as:

The y_combinator is a concept from the lambda calculus that lets you have recursion without being able to name

yourself until you are defined. This is exactly the problem lambdas have.

You create a lambda that takes "recurse" as its first argument. When you want to recurse, you pass the arguments

to recurse.

The y_combinator then returns a function object that calls that function with its arguments, but with a suitable

"recurse" object (namely the y_combinator itself) as its first argument. It forwards the rest of the arguments you call

the y_combinator with to the lambda as well.

In short:

auto gcd_self = std::make_shared<std::unique_ptr< std::function<int(int, int)> >>();

*gcd_self = std::make_unique<std::function<int(int, int)>>(

[gcd_self](int a, int b){

return b == 0 ? a : (**gcd_self)(b, a%b);

};

};

template <class F>

struct y_combinator {

F f; // the lambda will be stored here

// a forwarding operator():

template <class... Args>

decltype(auto) operator()(Args&&... args) const {

// we pass ourselves to f, then the arguments.

// the lambda should take the first argument as `auto&& recurse` or similar.

return f(*this, std::forward<Args>(args)...);

}

};

// helper function that deduces the type of the lambda:

template <class F>

y_combinator<std::decay_t<F>> make_y_combinator(F&& f) {

return {std::forward<F>(f)};

}

// (Be aware that in C++17 we can do better than a `make_` function)

auto gcd = make_y_combinator(

[](auto&& gcd, int a, int b){

return b == 0 ? a : gcd(b, a%b);

}

);

auto foo = make_y_combinator([&](auto&& recurse, some arguments) {

// write body that processes some arguments

// when you want to recurse, call recurse(some other arguments)

388

and you have recursion in a lambda with no serious restrictions or significant overhead.

Section 73.5: Default capture

By default, local variables that are not explicitly specified in the capture list, cannot be accessed from within the

lambda body. However, it is possible to implicitly capture variables named by the lambda body:

Explicit capturing can still be done alongside implicit default capturing. The explicit capture definition will override

the default capture:

Section 73.6: Class lambdas and capture of this

A lambda expression evaluated in a class' member function is implicitly a friend of that class:

Such a lambda is not only a friend of that class, it has the same access as the class it is declared within has.

Lambdas can capture the this pointer which represents the object instance the outer function was called on. This

});

int a = 1;

int b = 2;

// Default capture by value

[=]() { return a + b; }; // OK; a and b are captured by value

// Default capture by reference

[&]() { return a + b; }; // OK; a and b are captured by reference

int a = 0;

int b = 1;

[=, &b]() {

a = 2; // Illegal; 'a' is capture by value, and lambda is not 'mutable'

b = 2; // OK; 'b' is captured by reference

};

class Foo

{

private:

int i;

public:

Foo(int val) : i(val) {}

// definition of a member function

void Test()

{

auto lamb = [](Foo &foo, int val)

{

// modification of a private member variable

foo.i = val;

};

// lamb is allowed to access a private member, because it is a friend of Foo

lamb(*this, 30);

}

};

389

is done by adding this to the capture list:

When this is captured, the lambda can use member names of its containing class as though it were in its

containing class. So an implicit this-> is applied to such members.

Be aware that this is captured by value, but not the value of the type. It is captured by the value of this, which is a

pointer. As such, the lambda does not own this. If the lambda out lives the lifetime of the object that created it, the

lambda can become invalid.

This also means that the lambda can modify this without being declared mutable. It is the pointer which is const,

not the object being pointed to. That is, unless the outer member function was itself a const function.

Also, be aware that the default capture clauses, both [=] and [&], will also capture this implicitly. And they both

capture it by the value of the pointer. Indeed, it is an error to specify this in the capture list when a default is given.

Version ≥ C++17

Lambdas can capture a copy of the this object, created at the time the lambda is created. This is done by adding

*this to the capture list:

class Foo

{

private:

int i;

public:

Foo(int val) : i(val) {}

void Test()

{

// capture the this pointer by value auto

lamb = [this](int val)

{

i = val;

};

lamb(30);

}

};

class Foo

{

private:

int i;

public:

Foo(int val) : i(val) {}

void Test()

{

// capture a copy of the object given by the this pointer

auto lamb = [*this](int val) mutable

{

i = val;

};

lamb(30); // does not change this->i

}

};

390

Section 73.7: Capture by reference

If you precede a local variable's name with an &, then the variable will be captured by reference. Conceptually, this

means that the lambda's closure type will have a reference variable, initialized as a reference to the corresponding

variable from outside of the lambda's scope. Any use of the variable in the lambda body will refer to the original

variable:

The keyword mutable is not needed, because a itself is not const.

Of course, capturing by reference means that the lambda must not escape the scope of the variables it captures.

So you could call functions that take a function, but you must not call a function that will store the lambda beyond

the scope of your references. And you must not return the lambda.

Section 73.8: Generic lambdas

Version ≥ c++14

Lambda functions can take arguments of arbitrary types. This allows a lambda to be more generic:

This is implemented in C++ by making the closure type's operator() overload a template function. The following

type has equivalent behavior to the above lambda closure:

Not all parameters in a generic lambda need be generic:

Here, x is deduced based on the first function argument, while y will always be int.

Generic lambdas can take arguments by reference as well, using the usual rules for auto and &. If a generic

parameter is taken as auto&&, this is a forwarding reference to the passed in argument and not an rvalue reference:

// Declare variable 'a'

int a = 0;

// Declare a lambda which captures 'a' by reference

auto set = [&a]() {

a = 1;

};

set(); assert(a

== 1);

auto twice = [](auto x){ return x+x; };

int i = twice(2); // i == 4

std::string s = twice("hello"); // s == "hellohello"

struct _unique_lambda_type

{

template<typename T>

auto operator() (T x) const {return x + x;}

};

[](auto x, int y) {return x + y;}

auto lamb1 = [](int &&x) {return x + 5;};

auto lamb2 = [](auto &&x) {return x + 5;};

int x = 10;

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4164.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4164.pdf
http://en.cppreference.com/w/cpp/language/reference
http://en.cppreference.com/w/cpp/language/reference

391

Lambda functions can be variadic and perfectly forward their arguments:

or:

which only works "properly" with variables of type auto&&.

A strong reason to use generic lambdas is for visiting syntax.

Here we are visiting in a polymorphic manner; but in other contexts, the names of the type we are passing isn't

interesting:

Repeating the type of std::ostream& is noise here; it would be like having to mention the type of a variable every

time you use it. Here we are creating a visitor, but no a polymorphic one; auto is used for the same reason you

might use auto in a for(:) loop.

Section 73.9: Using lambdas for inline parameter pack
unpacking

Version ≥ C++14

Parameter pack unpacking traditionally requires writing a helper function for each time you want to do it.

In this toy example:

The print_indexes_upto wants to create and unpack a parameter pack of indexes. In order to do so, it must call a

helper function. Every time you want to unpack a parameter pack you created, you end up having to create a

lamb1(x); // Illegal; must use `std::move(x)` for `int&&` parameters.

lamb2(x); // Legal; the type of `x` is deduced as `int&`.

auto lam = [](auto&&... args){return f(std::forward<decltype(args)>(args)...);};

auto lam = [](auto&&... args){return f(decltype(args)(args)...);};

boost::variant<int, double> value;

apply_visitor(value, [&](auto&& e){

std::cout << e;

});

mutex_wrapped<std::ostream&> os = std::cout;

os.write([&](auto&& os){

os << "hello world\n";

});

template<std::size_t...Is>

void print_indexes(std::index_sequence<Is...>) {

using discard=int[];

(void)discard{0,((void)(

std::cout << Is << '\n' // here Is is a compile-time constant.

),0)...};

}

template<std::size_t I>

void print_indexes_upto() {

return print_indexes(std::make_index_sequence<I>{});

}

392

custom helper function to do it.

This can be avoided with lambdas.

You can unpack parameter packs into a set of invocations of a lambda, like this:

Version ≥ C++17

With fold expressions, index_over() can be simplified to:

Once you have done that, you can use this to replace having to manually unpack parameter packs with a second

overload in other code, letting you unpack parameter packs "inline":

The auto i passed to the lambda by the index_over is a std::integral_constant<std::size_t, ???>. This has a

constexpr conversion to std::size_t that does not depend on the state of this, so we can use it as a compile-time

constant, such as when we pass it to std::get<i> above.

To go back to the toy example at the top, rewrite it as:

template<std::size_t I>

using index_t = std::integral_constant<std::size_t, I>;

template<std::size_t I>

constexpr index_t<I> index{};

template<class=void, std::size_t...Is>

auto index_over(std::index_sequence<Is...>) {

return [](auto&& f){

using discard=int[];

(void)discard{0,(void(

f(index<Is>)

),0)...};

};

}

template<std::size_t N>

auto index_over(index_t<N> = {}) {

return index_over(std::make_index_sequence<N>{});

}

template<class=void, std::size_t...Is>

auto index_over(std::index_sequence<Is...>) {

return [](auto&& f){

((void)(f(index<Is>)), ...);

};

}

template<class Tup, class F>

void for_each_tuple_element(Tup&& tup, F&& f)

{ using T = std::remove_reference_t<Tup>;

using std::tuple_size;

auto from_zero_to_N = index_over< tuple_size<T>{} >();

from_zero_to_N(

[&](auto i){

using std::get;

f(get<i>(std::forward<Tup>(tup)));

}

);

}

393

which is much shorter, and keeps logic in the code that uses it.

Live example to play with.

Section 73.10: Generalized capture

Version ≥ C++14

Lambdas can capture expressions, rather than just variables. This permits lambdas to store move-only types:

This moves the outer p variable into the lambda capture variable, also called p. lamb now owns the memory

allocated by make_unique. Because the closure contains a type that is non-copyable, this means that lamb is itself

non-copyable. But it can be moved:

Now lamb_move owns the memory.

Note that std::function<> requires that the values stored be copyable. You can write your own move-only-

requiring std::function, or you could just stuff the lambda into a shared_ptr wrapper:

takes our move-only lambda and stuffs its state into a shared pointer then returns a lambda that can be copied,

and then stored in a std::function or similar.

Generalized capture uses auto type deduction for the variable's type. It will declare these captures as values by

default, but they can be references as well:

template<std::size_t I>

void print_indexes_upto() {

index_over(index<I>)([](auto i){

std::cout << i << '\n'; // here i is a compile-time constant

});

}

auto p = std::make_unique<T>(...);

auto lamb = [p = std::move(p)]() //Overrides capture-by-value of `p`.

{

p->SomeFunc();

};

auto lamb_copy = lamb; //Illegal

auto lamb_move = std::move(lamb); //legal.

auto shared_lambda = [](auto&& f){

return [spf = std::make_shared<std::decay_t<decltype(f)>>(decltype(f)(f))]

(auto&&...args)->decltype(auto) {

return (*spf)(decltype(args)(args)...);

};

};

auto lamb_shared = shared_lambda(std::move(lamb_move));

int a = 0;

auto lamb = [&v = a](int add) //Note that `a` and `v` have different names

{

v += add; //Modifies `a`

};

http://coliru.stacked-crooked.com/a/32c204301f7163c9

394

Generalize capture does not need to capture an external variable at all. It can capture an arbitrary expression:

This is useful for giving lambdas arbitrary values that they can hold and potentially modify, without having to

declare them externally to the lambda. Of course, that is only useful if you do not intend to access those variables

after the lambda has completed its work.

Section 73.11: Conversion to function pointer

If a lambda's capture list is empty, then the lambda has an implicit conversion to a function pointer that takes the

same arguments and returns the same return type:

Such a conversion may also be enforced using unary plus operator:

Calling this function pointer behaves exactly like invoking operator() on the lambda. This function pointer is in no

way reliant on the source lambda closure's existence. It therefore may outlive the lambda closure.

This feature is mainly useful for using lambdas with APIs that deal in function pointers, rather than C++ function

objects.

Version ≥ C++14

Conversion to a function pointer is also possible for generic lambdas with an empty capture list. If necessary,

template argument deduction will be used to select the correct specialization.

Section 73.12: Porting lambda functions to C++03 using
functors

Lambda functions in C++ are syntactic sugar that provide a very concise syntax for writing functors. As such,

equivalent functionality can be obtained in C++03 (albeit much more verbose) by converting the lambda function

into a functor:

lamb(20); //`a` becomes 20.

auto lamb = [p = std::make_unique<T>(...)]()

{

p->SomeFunc();

}

auto sorter = [](int lhs, int rhs) -> bool {return lhs < rhs;};

using func_ptr = bool(*)(int, int);

func_ptr sorter_func = sorter; // implicit conversion

func_ptr sorter_func2 = +sorter; // enforce implicit conversion

auto sorter = [](auto lhs, auto rhs) { return lhs < rhs; };

using func_ptr = bool(*)(int, int);

func_ptr sorter_func = sorter; // deduces int, int

// note however that the following is ambiguous

// func_ptr sorter_func2 = +sorter;

// Some dummy types:

struct T1 {int dummy;};

struct T2 {int dummy;};

struct R {int dummy;};

395

// Code using a lambda function (requires C++11)

R use_lambda(T1 val, T2 ref) {

// Use auto because the type of the lambda is unknown.

auto lambda = [val, &ref](int arg1, int arg2) -> R {

/* lambda-body */

return R();

};

return lambda(12, 27);

}

// The functor class (valid C++03)

// Similar to what the compiler generates for the lambda function.

class Functor {

// Capture list.

T1 val;

T2& ref;

public:

// Constructor

inline Functor(T1 val, T2& ref) : val(val), ref(ref) {}

// Functor body

R operator()(int arg1, int arg2) const {

/* lambda-body */

return R();

}

};

// Equivalent to use_lambda, but uses a functor (valid C++03).

R use_functor(T1 val, T2 ref) {

Functor functor(val, ref);

return functor(12, 27);

}

// Make this a self-contained example.

int main() {

T1 t1;

T2 t2;

use_functor(t1,t2);

use_lambda(t1,t2);

return 0;

}

If the lambda function is mutable then make the functor's call-operator non-const, i.e.:

R operator()(int arg1, int arg2) /*non-const*/ {

/* lambda-body */

return R();

}

396

Chapter 74: Value Categories

Section 74.1: Value Category Meanings

Expressions in C++ are assigned a particular value category, based on the result of those expressions. Value

categories for expressions can affect C++ function overload resolution.

Value categories determines two important-but-separate properties about an expression. One property is whether

the expression has identity. An expression has identity if it refers to an object that has a variable name. The variable

name may not be involved in the expression, but the object can still have one.

The other property is whether it is legal to implicitly move from the expression's value. Or more specifically,

whether the expression, when used as a function parameter, will bind to r-value parameter types or not.

C++ defines 3 value categories which represent the useful combination of these properties: lvalue (expressions with

identity but not movable from), xvalue (expressions with identity that are moveable from), and prvalue (expressions

without identity that are moveable from). C++ does not have expressions which have no identity and cannot be

moved from.

C++ defines two other value categories, each based solely on one of these properties: glvalue (expressions with

identity) and rvalue (expressions that can be moved from). These act as useful groupings of the prior categories.

This graph serves as an illustration:

Section 74.2: rvalue

An rvalue expression is any expression which can be implicitly moved from, regardless of whether it has identity.

More precisely, rvalue expressions may be used as the argument to a function that takes a parameter of type T &&

(where T is the type of expr). Only rvalue expressions may be given as arguments to such function parameters; if a

non-rvalue expression is used, then overload resolution will pick any function that does not use an rvalue reference

parameter. And if none exist, then you get an error.

The category of rvalue expressions includes all xvalue and prvalue expressions, and only those expressions.

The standard library function std::move exists to explicitly transform a non-rvalue expression into an rvalue. More

specifically, it turns the expression into an xvalue, since even if it was an identity -less prvalue expression before, by

passing it as a parameter to std::move, it gains identity (the function's parameter name) and becomes an xvalue.

397

Consider the following:

std::string has a constructor which takes a single parameter of type std::string&&, commonly called a "move

constructor". However, the value category of the expression str is not an rvalue (specifically it is an lvalue), so it

cannot call that constructor overload. Instead, it calls the const std::string& overload, the copy constructor.

Line 3 changes things. The return value of std::move is a T&&, where T is the base type of the parameter passed in.

So std::move(str) returns std::string&&. A function call who's return value is an rvalue reference is an rvalue

expression (specifically an xvalue), so it may call the move constructor of std::string. After line 3, str has been

moved from (who's contents are now undefined).

Line 4 passes a temporary to the assignment operator of std::string. This has an overload which takes a

std::string&&. The expression std::string("new value") is an rvalue expression (specifically a prvalue), so it

may call that overload. Thus, the temporary is moved into str, replacing the undefined contents with specific

contents.

Line 5 creates a named rvalue reference called str_ref that refers to str. This is where value categories get

confusing.

See, while str_ref is an rvalue reference to std::string, the value category of the expression str_ref is not an

rvalue. It is an lvalue expression. Yes, really. Because of this, one cannot call the move constructor of std::string

with the expression str_ref. Line 6 therefore copies the value of str into test3.

To move it, we would have to employ std::move again.

Section 74.3: xvalue

An xvalue (eXpiring value) expression is an expression which has identity and represents an object which can be

implicitly moved from. The general idea with xvalue expressions is that the object they represent is going to be

destroyed soon (hence the "eXpiring" part), and therefore implicitly moving from them is fine.

Given:

Section 74.4: prvalue

A prvalue (pure-rvalue) expression is an expression which lacks identity, whose evaluation is typically used to

std::string str("init");

std::string test1(str);

std::string test2(std::move(str));

//1

//2

//3

str = std::string("new value");

std::string &&str_ref = std::move(str);

std::string test3(str_ref);

//4

//5

//6

struct X { int n; };

extern X x;

4; // prvalue: does not have an identity

x; // lvalue

x.n; // lvalue

std::move(x); // xvalue

std::forward<X&>(x); // lvalue

X{4}; // prvalue: does not have an identity

X{4}.n; // xvalue: does have an identity and denotes resources

// that can be reused

398

initialize an object, and which can be implicitly moved from. These include, but are not limited to:

Expressions that represent temporary objects, such as std::string("123").

A function call expression that does not return a reference

A literal (except a string literal - those are lvalues), such has 1, true, 0.5f, or 'a'

A lambda expression

The built-in addressof operator (&) cannot be applied on these expressions.

Section 74.5: lvalue

An lvalue expression is an expression which has identity, but cannot be implicitly moved from. Among these are

expressions that consist of a variable name, function name, expressions that are built-in dereference operator uses

and expressions that refer to lvalue references.

The typical lvalue is simply a name, but lvalues can come in other flavors as well:

Additionally, while most literals (e.g. 4, 'x', etc.) are prvalues, string literals are lvalues.

Section 74.6: glvalue

A glvalue (a "generalized lvalue") expression is any expression which has identity, regardless of whether it can be

moved from or not. This category includes lvalues (expressions that have identity but can't be moved from) and

xvalues (expressions that have identity, and can be moved from), but excludes prvalues (expressions without

identity).

If an expression has a name, it's a glvalue:

struct X { ... };

X x; // x is an lvalue

X* px = &x; // px is an lvalue

*px = X{}; // *px is also an lvalue, X{} is a prvalue

X* foo_ptr(); // foo_ptr() is a prvalue

X& foo_ref(); // foo_ref() is an lvalue

struct X { int n; };

X foo();

X x;

x; // has a name, so it's a glvalue

std::move(x); // has a name (we're moving from "x"), so it's a glvalue

// can be moved from, so it's an xvalue not an lvalue

foo(); // has no name, so is a prvalue, not a glvalue

X{}; // temporary has no name, so is a prvalue, not a glvalue

X{}.n; // HAS a name, so is a glvalue. can be moved from, so it's an xvalue

399

Chapter 75: Preprocessor
The C preprocessor is a simple text parser/replacer that is run before the actual compilation of the code. Used to

extend and ease the use of the C (and later C++) language, it can be used for:

a. Including other files using #include

b. Define a text-replacement macro using #define

c. Conditional Compilation using#if #ifdef

d. Platform/Compiler specific logic (as an extension of conditional compilation)

Section 75.1: Include Guards

A header file may be included by other header files. A source file (compilation unit) that includes multiple headers

may therefore, indirectly, include some headers more than once. If such a header file that is included more than

once contains definitions, the compiler (after preprocessing) detects a violation of the One Definition Rule (e.g. § 3.2

of the 2003 C++ standard) and therefore issues a diagnostic and compilation fails.

Multiple inclusion is prevented using "include guards", which are sometimes also known as header guards or macro

guards. These are implemented using the preprocessor #define, #ifndef, #endif directives.

e.g.

The key advantage of using include guards is that they will work with all standard-compliant compilers and

preprocessors.

However, include guards also cause some problems for developers, as it is necessary to ensure the macros are

unique within all headers used in a project. Specifically, if two (or more) headers use FOO_H_INCLUDED as their

include guard, the first of those headers included in a compilation unit will effectively prevent the others from being

included. Particular challenges are introduced if a project uses a number of third-party libraries with header files

that happen to use include guards in common.

It is also necessary to ensure that the macros used in include guards do not conflict with any other macros defined

in header files.

Most C++ implementations also support the #pragma once directive which ensures the file is only included once

within a single compilation. This is a de facto standard directive, but it is not part of any ISO C++ standard. For

example:

// Foo.h

#ifndef

FOO_H_INCLUDED

#define

FOO_H_INCLUDED class Foo

{

};

// a class definition

#endif

// Foo.h

#pragma once

class Foo

https://en.wikipedia.org/wiki/Pragma_once#Portability
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard

400

While #pragma once avoids some problems associated with include guards, a #pragma - by definition in the

standards - is inherently a compiler-specific hook, and will be silently ignored by compilers that don't support it.

Projects which use #pragma once are more difficult to port to compilers that don't support it.

A number of coding guidelines and assurance standards for C++ specifically discourage any use of the preprocessor

other than to #include header files or for the purposes of placing include guards in headers.

Section 75.2: Conditional logic and cross-platform handling

In a nutshell, conditional pre-processing logic is about making code-logic available or unavailable for compilation

using macro definitions.

Three prominent use-cases are:

different app profiles (e.g. debug, release, testing, optimised) that can be candidates of the same app (e.g.

with extra logging).

cross-platform compiles - single code-base, multiple compilation platforms.

utilising a common code-base for multiple application versions (e.g. Basic, Premium and Pro versions of a

software) - with slightly different features.

Example a: A cross-platform approach for removing files (illustrative):

Macros like _WIN32, APPLE or unix are normally predefined by corresponding implementations.

Example b: Enabling additional logging for a debug build:

{

};

#ifdef _WIN32

#include <windows.h> // and other windows system files

#endif

#include <cstdio>

bool remove_file(const std::string &path)

{

#ifdef _WIN32

return DeleteFile(path.c_str());

#elif defined(_POSIX_VERSION) || defined(unix)

return (0 == remove(path.c_str()));

#elif defined(APPLE)

//TODO: check if NSAPI has a more specific function with permission dialog

return (0 == remove(path.c_str()));

#else

#error "This platform is not supported"

#endif

}

void s_PrintAppStateOnUserPrompt()

{

std::cout << "--------BEGIN-DUMP ------------------------ \n"

<< AppState::Instance()->Settings().ToString() << "\n"

#if (1 == TESTING_MODE) //privacy: we want user details only when testing

<< ListToString(AppState::UndoStack()->GetActionNames())

<< AppState::Instance()->CrntDocument().Name()

<< AppState::Instance()->CrntDocument().SignatureSHA() << "\n"

#endif

401

Example c: Enable a premium feature in a separate product build (note: this is illustrative. it is often a better idea to

allow a feature to be unlocked without the need to reinstall an application)

Some common tricks:

Defining symbols at invocation time:

The preprocessor can be called with predefined symbols (with optional initialisation). For example this command

(gcc -E runs only the preprocessor)

processes Sample.cpp in the same way as it would if #define OPTIMISE_FOR_OS_X and #define TESTING_MODE 1

were added to the top of Sample.cpp.

Ensuring a macro is defined:

If a macro isn't defined and its value is compared or checked, the preprocessor almost always silently assumes the

value to be 0. There are a few ways to work with this. One approach is to assume that the default settings are

represented as 0, and any changes (e.g. to the app build profile) needs to be explicitly done (e.g.

ENABLE_EXTRA_DEBUGGING=0 by default, set -DENABLE_EXTRA_DEBUGGING=1 to override). Another approach is

make all definitions and defaults explicit. This can be achieved using a combination of #ifndef and #error

directives:

Section 75.3: X-macros

An idiomatic technique for generating repeating code structures at compile time.

An X-macro consists of two parts: the list, and the execution of the list.

Example:

<< "--------END-DUMP ------------------------- \n"

}

void MainWindow::OnProcessButtonClick()

{

#ifndef _PREMIUM

CreatePurchaseDialog("Buy App Premium", "This feature is available for our App Premium users.

Click the Buy button to purchase the Premium version at our website");

return;

#endif

//...actual feature logic here

}

gcc -E -DOPTIMISE_FOR_OS_X -DTESTING_MODE=1 Sample.cpp

#ifndef (ENABLE_EXTRA_DEBUGGING)

// please include DefaultDefines.h if not already included. #

 error "ENABLE_EXTRA_DEBUGGING is not defined"

#else

if (1 == ENABLE_EXTRA_DEBUGGING)

//code

endif

#endif

#define LIST \

X(dog) \

402

which is expanded by the preprocessor into the following:

As lists become bigger (let's say, more than 100 elements), this technique helps to avoid excessive copy-pasting.

Source: https://en.wikipedia.org/wiki/X_Macro

See also: X-macros

If defining a seamingly irrelevant X before using LIST is not to your liking, you can pass a macro name as an

argument as well:

Now, you explicitly specify which macro should be used when expanding the list, e.g.

If each invocation of the MACRO should take additional parameters - constant with respect to the list, variadic

macros can be used

X(cat) \

X(racoon)

// class Animal {

// public:

// void say();

// };

#define X(name) Animal name;

LIST

#undef X

int main() {

#define X(name) name.say();

LIST

#undef X

return 0;

}

Animal dog;

Animal cat;

Animal racoon;

int main() {

dog.say();

cat.say();

racoon.say();

return 0;

}

#define LIST(MACRO)

\ MACRO(dog) \

MACRO(cat) \

MACRO(racoon)

#define FORWARD_DECLARE_ANIMAL(name) Animal name;

LIST(FORWARD_DECLARE_ANIMAL)

//a walkaround for Visual studio

#define EXPAND(x) x

https://en.wikipedia.org/wiki/X_Macro

403

The first argument is supplied by the LIST, while the rest is provided by the user in the LIST invocation. For

example:

will expand to

Section 75.4: Macros

Macros are categorized into two main groups: object-like macros and function-like macros. Macros are treated as a

token substitution early in the compilation process. This means that large (or repeating) sections of code can be

abstracted into a preprocessor macro.

The Qt library makes use of this technique to create a meta-object system by having the user declare the Q_OBJECT

macro at the head of the user-defined class extending QObject.

Macro names are usually written in all caps, to make them easier to differentiate from normal code. This isn't a

requirement, but is merely considered good style by many programmers.

When an object-like macro is encountered, it's expanded as a simple copy-paste operation, with the macro's name

being replaced with its definition. When a function-like macro is encountered, both its name and its parameters are

expanded.

#define LIST(MACRO, ...) \

EXPAND(MACRO(dog, VA_ARGS)) \

EXPAND(MACRO(cat, VA_ARGS)) \

EXPAND(MACRO(racoon,

 VA_ARGS))

#define FORWARD_DECLARE(name, type, prefix) type prefix##name;

LIST(FORWARD_DECLARE,Animal,anim_)

LIST(FORWARD_DECLARE,Object,obj_)

Animal anim_dog;

Animal anim_cat;

Animal anim_racoon;

Object obj_dog;

Object obj_cat;

Object obj_racoon;

// This is an object-like macro #define

 PI 3.14159265358979

// This is a function-like macro.

// Note that we can use previously defined macros

// in other macro definitions (object-like or function-like)

// But watch out, its quite useful if you know what you're doing, but the

// Compiler doesn't know which type to handle, so using inline functions instead

// is quite recommended (But e.g. for Minimum/Maximum functions it is quite useful)

#define AREA(r) (PI*(r)*(r))

// They can be used like this:

double pi_macro = PI;

double area_macro = AREA(4.6);

double pi_squared = PI * PI;

// Compiler sees:

double pi_squared = 3.14159265358979 * 3.14159265358979;

double area = AREA(5);

404

Due to this, function-like macro parameters are often enclosed within parentheses, as in AREA() above. This is to

prevent any bugs that can occur during macro expansion, specifically bugs caused by a single macro parameter

being composed of multiple actual values.

Also note that due to this simple expansion, care must be taken with the parameters passed to macros, to prevent

unexpected side effects. If the parameter is modified during evaluation, it will be modified each time it is used in

the expanded macro, which usually isn't what we want. This is true even if the macro encloses the parameters in

parentheses to prevent expansion from breaking anything.

Additionally, macros provide no type-safety, leading to hard-to-understand errors about type mismatch.

As programmers normally terminate lines with a semicolon, macros that are intended to be used as standalone

lines are often designed to "swallow" a semicolon; this prevents any unintended bugs from being caused by an

extra semicolon.

In this example, the inadvertent double semicolon breaks the if...else block, preventing the compiler from

matching the else to the if. To prevent this, the semicolon is omitted from the macro definition, which will cause it

to "swallow" the semicolon immediately following any usage of it.

Leaving off the trailing semicolon also allows the macro to be used without ending the current statement, which

can be beneficial.

// Compiler sees:

double area = (3.14159265358979*(5)*(5))

#define BAD_AREA(r) PI * r * r

double bad_area = BAD_AREA(5 + 1.6);

// Compiler sees:

double bad_area = 3.14159265358979 * 5 + 1.6 * 5 + 1.6;

double good_area = AREA(5 + 1.6);

// Compiler sees:

double good_area = (3.14159265358979*(5 + 1.6)*(5 + 1.6));

int oops = 5;

double incremental_damage = AREA(oops++);

// Compiler sees:

double incremental_damage = (3.14159265358979*(oops++)*(oops++));

#define IF_BREAKER(Func) Func();

if (some_condition)

// Oops.

IF_BREAKER(some_func)

;

else

std::cout << "I am accidentally an orphan." << std::endl;

#define IF_FIXER(Func) Func()

if (some_condition)

IF_FIXER(some_func);

else

std::cout << "Hooray! I work again!" << std::endl;

#define DO_SOMETHING(Func, Param) Func(Param, 2)

405

Normally, a macro definition ends at the end of the line. If a macro needs to cover multiple lines, however, a

backslash can be used at the end of a line to indicate this. This backslash must be the last character in the line,

which indicates to the preprocessor that the following line should be concatenated onto the current line, treating

them as a single line. This can be used multiple times in a row.

This is especially useful in complex function-like macros, which may need to cover multiple lines.

In the case of more complex function-like macros, it can be useful to give them their own scope to prevent possible

name collisions or to cause objects to be destroyed at the end of the macro, similar to an actual function. A

common idiom for this is do while 0, where the macro is enclosed in a do-while block. This block is generally not

followed with a semicolon, allowing it to swallow a semicolon.

There are also variadic macros; similarly to variadic functions, these take a variable number of arguments, and then

expand them all in place of a special "Varargs" parameter, VA_ARGS .

// ...

some_function(DO_SOMETHING(some_func, 3), DO_SOMETHING(some_func, 42));

#define TEXT "I \

am \

many \

lines."

// ...

std::cout << TEXT << std::endl; // Output: I am many lines.

#define CREATE_OUTPUT_AND_DELETE(Str) \

std::string* tmp = new std::string(Str); \

std::cout << *tmp << std::endl; \

delete tmp;

// ...

CREATE_OUTPUT_AND_DELETE("There's no real need for this to use 'new'.")

#define DO_STUFF(Type, Param, ReturnVar) do {

\ Type temp(some_setup_values); \

ReturnVar = temp.process(Param); \

} while (0)

int x;

DO_STUFF(MyClass, 41153.7, x);

// Compiler sees:

int x;

do {

MyClass temp(some_setup_values);

x = temp.process(41153.7);

} while (0);

#define VARIADIC(Param, ...) Param(VA_ARGS)

VARIADIC(printf, "%d", 8);

// Compiler sees:

406

Note that during expansion, VA_ARGS can be placed anywhere in the definition, and will be expanded correctly.

In the case of a zero-argument variadic parameter, different compilers will handle the trailing comma differently.

Some compilers, such as Visual Studio, will silently swallow the comma without any special syntax. Other compilers,

such as GCC, require you to place ## immediately before VA_ARGS . Due to this, it is wise to conditionally define

variadic macros when portability is a concern.

Section 75.5: Predefined macros

Predefined macros are those that the compiler defines (in contrast to those user defines in the source file). Those

macros must not be re-defined or undefined by user.

The following macros are predefined by the C++ standard:

 LINE contains the line number of the line this macro is used on, and can be changed by the #line

directive.

 FILE contains the filename of the file this macro is used in, and can be changed by the #line directive.

 DATE contains date (in "Mmm dd yyyy" format) of the file compilation, where Mmm is formatted as if

obtained by a call to std::asctime().

 TIME contains time (in "hh:mm:ss" format) of the file compilation.

 cplusplus is defined by (conformant) C++ compilers while compiling C++ files. Its value is the standard

version the compiler is fully conformant with, i.e. 199711L for C++98 and C++03, 201103L for C++11 and

201402L for C++14 standard.

Version ≥ c++11

 STDC_HOSTED is defined to 1 if the implementation is hosted, or 0 if it is freestanding.

Version ≥ c++17

 STDCPP_DEFAULT_NEW_ALIGNMENT contains a size_t literal, which is the alignment used for a call

to alignment-unaware operator new.

Additionally, the following macros are allowed to be predefined by implementations, and may or may not be

present:

 STDC has implementation-dependent meaning, and is usually defined only when compiling a file as C, to

signify full C standard compliance. (Or never, if the compiler decides not to support this macro.)

Version ≥ c++11

printf("%d", 8);

#define VARIADIC2(POne, PTwo, PThree, ...) POne(PThree, VA_ARGS , PTwo)

VARIADIC2(some_func, 3, 8, 6, 9);

// Compiler sees:

some_func(8, 6, 9,

3);

// In this example, COMPILER is a user-defined macro specifying the compiler being used.

#if COMPILER == "VS"

#define VARIADIC3(Name, Param, ...) Name(Param, VA_ARGS)

#elif COMPILER == "GCC"

#define VARIADIC3(Name, Param, ...) Name(Param, ## VA_ARGS)

#endif /* COMPILER */

407

 STDC_VERSION has implementation-dependent meaning, and its value is usually the C version, similarly

to how cplusplus is the C++ version. (Or is not even defined, if the compiler decides not to support this

macro.)

 STDC_MB_MIGHT_NEQ_WC is defined to 1, if values of the narrow encoding of the basic character set might

not be equal to the values of their wide counterparts (e.g. if (uintmax_t)'x' != (uintmax_t)L'x')

 STDC_ISO_10646 is defined if wchar_t is encoded as Unicode, and expands to an integer constant in the

form yyyymmL, indicating the latest Unicode revision supported.

 STDCPP_STRICT_POINTER_SAFETY is defined to 1, if the implementation has strict pointer safety

(otherwise it has relaxed pointer safety)

 STDCPP_THREADS is defined to 1, if the program can have more than one thread of execution (applicable

to freestanding implementation — hosted implementations can always have more than one thread)

It is also worth mentioning func , which is not an macro, but a predefined function-local variable. It contains the

name of the function it is used in, as a static character array in an implementation-defined format.

On top of those standard predefined macros, compilers can have their own set of predefined macros. One must

refer to the compiler documentation to learn those. E.g.:

gcc

Microsoft Visual C++

clang

Intel C++ Compiler

Some of the macros are just to query support of some feature:

Others are very useful for debugging:

Version ≥ c++11

And others for trivial version control:

bool success = doSomething(/*some arguments*/);

if(!success){

std::cerr << "ERROR: doSomething() failed on line " << LINE - 2

<< " in function " << func << "()"

<< " in file " << FILE

<< std::endl;

}

#ifdef cplusplus // if compiled by C++ compiler

extern "C"{ // C code has to be decorated

// C library header declarations here

}

#endif

int main(int argc, char *argv[]){

if(argc == 2 && std::string(argv[1]) == "-v"){

std::cout << "Hello World program\n"

<< "v 1.1\n" // I have to remember to update this manually

<< "compiled: " << DATE << ' ' << TIME // this updates automagically

<< std::endl;

}

else{

std::cout << "Hello World!\n";

}

}

https://gcc.gnu.org/onlinedocs/cpp/Predefined-Macros.html
https://msdn.microsoft.com/en-us/library/b0084kay.aspx#Anchor_2
http://clang.llvm.org/docs/LanguageExtensions.html#builtin-macros
https://software.intel.com/en-us/node/514528

408

Section 75.6: Preprocessor Operators

operator or stringizing operator is used to convert a Macro parameter to a string literal. It can only be used with

the Macros having arguments.

Compiler concatenate two strings and the final printf() argument will be a string literal with newline character at

its end.

Preprocessor will ignore the spaces before or after the macro argument. So below print statement will give us the

same result.

If the parameter of the string literal requires an escape sequence like before a double quote() it will automatically

be inserted by the preprocessor.

operator or Token pasting operator is used to concatenate two parameters or tokens of a Macro.

and the final output will be

Section 75.7: #pragma once

Most, but not all, C++ implementations support the #pragma once directive which ensures the file is only included

once within a single compilation. It is not part of any ISO C++ standard. For example:

While #pragma once avoids some problems associated with include guards, a #pragma - by definition in the

standards - is inherently a compiler-specific hook, and will be silently ignored by compilers that don't support it.

// preprocessor will convert the parameter x to the string literal x #define

PRINT(x) printf(#x "\n")

PRINT(This line will be converted to string by preprocessor);

// Compiler sees

printf("This line will be converted to string by preprocessor""\n");

PRINT(This line will be converted to string by preprocessor);

PRINT(This "line" will be converted to "string" by preprocessor);

// Compiler sees

printf("This \"line\" will be converted to \"string\" by preprocessor""\n");

// preprocessor will combine the variable and the x

#define PRINT(x) printf("variable" #x " = %d", variable##x)

int variableY = 15;

PRINT(Y);

//compiler sees

printf("variable""Y"" = %d", variableY);

variableY = 15

// Foo.h

#pragma once

class Foo

{

};

https://en.wikipedia.org/wiki/Pragma_once#Portability

409

Projects which use #pragma once must be modified to be standard-compliant.

With some compilers - particularly those that employ precompiled headers - #pragma once can result in a

considerable speedup of the compilation process. Similarly, some preprocessors achieve speedup of compilation

by tracking which headers have employed include guards. The net benefit, when both #pragma once and include

guards are employed, depends on the implementation and can be either an increase or decrease of compilation

times.

#pragma once combined with include guards was the recommended layout for header files when writing MFC

based applications on windows, and was generated by Visual Studio’s add class, add dialog, add windows wizards.

Hence it is very common to find them combined in C++ Windows Applicants.

Section 75.8: Preprocessor error messages

Compile errors can be generated using the preprocessor. This is useful for a number of reasons some of which

include, notifying a user if they are on an unsupported platform or an unsupported compiler.

e.g. Return Error if gcc version is 3.0.0 or earlier.

e.g. Return Error if compiling on an Apple computer.

#if GNUC < 3

#error "This code requires gcc > 3.0.0"

#endif

#ifdef APPLE

#error "Apple products are not supported in this release"

#endif

https://en.wikipedia.org/wiki/Precompiled_header

410

Chapter 76: Data Structures in C++

Section 76.1: Linked List implementation in C++

Creating a List Node

Creating List class

Insert a new node at the beginning of the list

Insert a new node at the end of the list

Insert at a particular position in list

class listNode

{

public:

int data;

listNode *next;

listNode(int val):data(val),next(NULL){}

};

class List

{

public:

listNode *head;

List():head(NULL){}

void insertAtBegin(int val);

void insertAtEnd(int val);

void insertAtPos(int val);

void remove(int val);

void print();

~List();

};

void List::insertAtBegin(int val)//inserting at front of list

{

listNode *newnode = new listNode(val);

newnode->next=this->head;

this->head=newnode;

}

void List::insertAtEnd(int val) //inserting at end of list

{

if(head==NULL)

{

insertAtBegin(val);

return;

}

listNode *newnode = new listNode(val);

listNode *ptr=this->head;

while(ptr->next!=NULL)

{

ptr=ptr->next;

}

ptr->next=newnode;

}

411

Removing a node from the list

Print the list

Destructor for the list

void List::insertAtPos(int pos,int val)

{

listNode *newnode=new listNode(val);

if(pos==1)

{

//as head

newnode->next=this->head;

this->head=newnode;

return;

}

pos--;

listNode *ptr=this->head;

while(ptr!=NULL && --pos)

{

ptr=ptr->next;

}

if(ptr==NULL)

return;//not enough elements

newnode->next=ptr->next; ptr-

>next=newnode;

}

void List::remove(int toBeRemoved)//removing an element

{

if(this->head==NULL)

return; //empty

if(this->head->data==toBeRemoved)

{

//first node to be removed

listNode *temp=this->head;

this->head=this->head->next;

delete(temp);

return;

}

listNode *ptr=this->head;

while(ptr->next!=NULL && ptr->next->data!=toBeRemoved)

ptr=ptr->next;

if(ptr->next==NULL)

return;//not found listNode

*temp=ptr->next; ptr-

>next=ptr->next->next;

delete(temp);

}

void List::print()//printing the list

{

listNode *ptr=this->head;

while(ptr!=NULL)

{

cout<<ptr->data<<" " ;

ptr=ptr->next;

}

cout<<endl;

}

412

List::~List()

{

listNode *ptr=this->head,*next=NULL;

while(ptr!=NULL)

{

next=ptr->next;

delete(ptr);

ptr=next;

}

}

413

Chapter 77: Templates
Classes, functions, and (since C++14) variables can be templated. A template is a piece of code with some free

parameters that will become a concrete class, function, or variable when all parameters are specified. Parameters

can be types, values, or themselves templates. A well-known template is std::vector, which becomes a concrete

container type when the element type is specified, e.g., std::vector<int>.

Section 77.1: Basic Class Template

The basic idea of a class template is that the template parameter gets substituted by a type at compile time. The

result is that the same class can be reused for multiple types. The user specifies which type will be used when a

variable of the class is declared. Three examples of this are shown in main():

Section 77.2: Function Templates

Templating can also be applied to functions (as well as the more traditional structures) with the same effect.

#include <iostream>

using std::cout;

template <typename T>

class Number {

public:

void setNum(T n);

T plus1() const;

private:

T num;

};

// A simple class to hold one number of any type

// Sets the class field to the given number

// returns class field's "follower"

// Class field

template <typename T> // Set the class field to the given number

void Number<T>::setNum(T n) {

num = n;

}

template <typename T> // returns class field's "follower" T

Number<T>::plus1() const {

return num + 1;

}

int main() {

Number<int> anInt;

anInt.setNum(1);

// Test with an integer (int replaces T in the class)

cout << "My integer + 1 is " << anInt.plus1() << "\n"; // Prints 2

Number<double> aDouble; // Test with a double

aDouble.setNum(3.1415926535897);

cout << "My double + 1 is " << aDouble.plus1() << "\n"; // Prints 4.14159

Number<float> aFloat;

aFloat.setNum(1.4);

// Test with a float

cout << "My float + 1 is " << aFloat.plus1() << "\n"; // Prints 2.4

return 0; // Successful completion

}

// 'T' stands for the unknown type

// Both of our arguments will be of the same type.

414

This can then be used in the same way as structure templates.

In both these case the template argument is used to replace the types of the parameters; the result works just like

a normal C++ function (if the parameters don't match the template type the compiler applies the standard

conversions).

One additional property of template functions (unlike template classes) is that the compiler can infer the template

parameters based on the parameters passed to the function.

This feature allows us to simplify code when we combine template structures and functions. There is a common

pattern in the standard library that allows us to make template structure X using a helper function make_X().

How does this help?

Note: This is not designed to shorten the code. This is designed to make the code more robust. It allows the types

to be changed by changing the code in a single place rather than in multiple locations.

template<typename T>

void printSum(T add1, T add2)

{

std::cout << (add1 + add2) << std::endl;

}

printSum<int>(4, 5);

printSum<float>(4.5f, 8.9f);

printSum(4, 5); // Both parameters are int.

// This allows the compiler deduce that the type

// T is also int.

printSum(5.0, 4); // In this case the parameters are two different types.

// The compiler is unable to deduce the type of T

// because there are contradictions. As a result

// this is a compile time error.

// The make_X pattern looks like this.

// 1) A template structure with 1 or more template types.

template<typename T1, typename T2>

struct MyPair

{

T1 first;

T2 second;

};

// 2) A make function that has a parameter type for

// each template parameter in the template structure.

template<typename T1, typename T2>

MyPair<T1, T2> make_MyPair(T1 t1, T2 t2)

{

return MyPair<T1, T2>{t1, t2};

}

auto val1 = MyPair<int, float>{5, 8.7};

auto val2 = make_MyPair(5, 8.7);

// Create object explicitly defining the types

// Create object using the types of the parameters.

// In this code both val1 and val2 are the same

// type.

415

Section 77.3: Variadic template data structures

Version ≥ C++14

It is often useful to define classes or structures that have a variable number and type of data members which are

defined at compile time. The canonical example is std::tuple, but sometimes is it is necessary to define your own

custom structures. Here is an example that defines the structure using compounding (rather than inheritance as

with std::tuple. Start with the general (empty) definition, which also serves as the base-case for recrusion

termination in the later specialisation:

This already allows us to define an empty structure, DataStructure<> data, albeit that isn't very useful yet.

Next comes the recursive case specialisation:

This is now sufficient for us to create arbitrary data structures, like DataStructure<int, float, std::string>

data(1, 2.1, "hello").

So what's going on? First, note that this is a specialisation whose requirement is that at least one variadic template

parameter (namely T above) exists, whilst not caring about the specific makeup of the pack Rest. Knowing that T

exists allows the definition of its data member, first. The rest of the data is recursively packaged as

DataStructure<Rest ... > rest. The constructor initiates both of those members, including a recursive

constructor call to the rest member.

To understand this better, we can work through an example: suppose you have a declaration DataStructure<int,

float> data. The declaration first matches against the specialisation, yielding a structure with int first and

DataStructure<float> rest data members. The rest definition again matches this specialisation, creating its own

float first and DataStructure<> rest members. Finally this last rest matches against the base-case defintion,

producing an empty structure.

You can visualise this as follows:

Now we have the data structure, but its not terribly useful yet as we cannot easily access the individual data

elements (for example to access the last member of DataStructure<int, float, std::string> data we would

have to use data.rest.rest.first, which is not exactly user-friendly). So we add a get method to it (only needed

template<typename ... T>

struct DataStructure {};

template<typename T, typename ... Rest>

struct DataStructure<T, Rest ...>

{

DataStructure(const T& first, const Rest& ... rest)

: first(first)

, rest(rest...)

{}

T first;

DataStructure<Rest ... > rest;

};

DataStructure<int, float>

-> int first

-> DataStructure<float> rest

-> float first

-> DataStructure<> rest

-> (empty)

416

in the specialisation as the base-case structure has no data to get):

As you can see this get member function is itself templated - this time on the index of the member that is needed

(so usage can be things like data.get<1>(), similar to std::tuple). The actual work is done by a static function in a

helper class, GetHelper. The reason we can't define the required functionality directly in DataStructure's get is

because (as we will shortly see) we would need to specialise on idx - but it isn't possible to specialise a template

member function without specialising the containing class template. Note also the use of a C++14-style auto here

makes our lives significantly simpler as otherwise we would need quite a complicated expression for the return

type.

So on to the helper class. This time we will need an empty forward declaration and two specialisations. First the

declaration:

Now the base-case (when idx==0). In this case we just return the first member:

In the recursive case, we decrement idx and invoke the GetHelper for the rest member:

To work through an example, suppose we have DataStructure<int, float> data and we need data.get<1>(). This

invokes GetHelper<1, DataStructure<int, float>>::get(data) (the 2nd specialisation), which in turn invokes

GetHelper<0, DataStructure<float>>::get(data.rest), which finally returns (by the 1st specialisation as now idx

is 0) data.rest.first.

So that's it! Here is the whole functioning code, with some example use in the main function:

template<typename T, typename ... Rest>

struct DataStructure<T, Rest ...>

{

...

template<size_t idx>

auto get()

{

return GetHelper<idx, DataStructure<T,Rest...>>::get(*this);

}

...

};

template<size_t idx, typename T>

struct GetHelper;

template<typename T, typename ... Rest>

struct GetHelper<0, DataStructure<T, Rest ... >>

{

static T get(DataStructure<T, Rest...>& data)

{

return data.first;

}

};

template<size_t idx, typename T, typename ... Rest>

struct GetHelper<idx, DataStructure<T, Rest ... >>

{

static auto get(DataStructure<T, Rest...>& data)

{

return GetHelper<idx-1, DataStructure<Rest ...>>::get(data.rest);

}

};

417

#include <iostream>

template<size_t idx, typename T>

struct GetHelper;

template<typename ... T>

struct DataStructure

{

};

template<typename T, typename ... Rest>

struct DataStructure<T, Rest ...>

{

DataStructure(const T& first, const Rest& ... rest)

: first(first)

, rest(rest...)

{}

T first;

DataStructure<Rest ... > rest;

template<size_t idx>

auto get()

{

return GetHelper<idx, DataStructure<T,Rest...>>::get(*this);

}

};

template<typename T, typename ... Rest>

struct GetHelper<0, DataStructure<T, Rest ... >>

{

static T get(DataStructure<T, Rest...>& data)

{

return data.first;

}

};

template<size_t idx, typename T, typename ... Rest>

struct GetHelper<idx, DataStructure<T, Rest ... >>

{

static auto get(DataStructure<T, Rest...>& data)

{

return GetHelper<idx-1, DataStructure<Rest ...>>::get(data.rest);

}

};

int main()

{

DataStructure<int, float, std::string> data(1, 2.1, "Hello");

std::cout << data.get<0>() << std::endl;

std::cout << data.get<1>() << std::endl;

std::cout << data.get<2>() <<

std::endl;

return 0;

}

Section 77.4: Argument forwarding

Template may accept both lvalue and rvalue references using forwarding reference:

418

In this case, the real type of t will be deduced depending on the context:

In the first case, the type T is deduced as reference to X (X&), and the type of t is lvalue reference to X, while in the

second case the type of T is deduced as X and the type of t as rvalue reference to X (X&&).

Note: It is worth noticing that in the first case, decltype(t) is the same as T, but not in the second.

In order to perfectly forward t to another function ,whether it is an lvalue or rvalue reference, one must use

std::forward:

Forwarding references may be used with variadic templates:

Note: Forwarding references can only be used for template parameters, for instance, in the following code, v is a

rvalue reference, not a forwarding reference:

Section 77.5: Partial template specialization

In contrast of a full template specialization partial template specialization allows to introduce template with some of

the arguments of existing template fixed. Partial template specialization is only available for template class/structs:

template <typename T>

void f(T &&t);

struct X { };

X x;

f(x); // calls f<X&>(x)

f(X()); // calls f<X>(x)

template <typename T>

void f(T &&t) {

g(std::forward<T>(t));

}

template <typename... Args>

void f(Args&&... args) {

g(std::forward<Args>(args)...);

}

#include <vector>

template <typename T>

void f(std::vector<T> &&v);

// Common case:

template<typename T, typename U>

struct S {

T t_val;

U

u_val;

};

// Special case when the first template argument is fixed to int

template<typename V>

struct S<int, V> {

double another_value;

int foo(double arg) {// Do something}

419

As shown above, partial template specializations may introduce completely different sets of data and function

members.

When a partially specialized template is instantiated, the most suitable specialization is selected. For example, let's

define a template and two partial specializations:

Now the following calls:

will print

Function templates may only be fully specialized:

};

template<typename T, typename U, typename V>

struct S {

static void foo() {

std::cout << "General case\n";

}

};

template<typename U, typename V>

struct S<int, U, V> {

static void foo() {

std::cout << "T = int\n";

}

};

template<typename V>

struct S<int, double, V>

{

static void foo() {

std::cout << "T = int, U = double\n";

}

};

S<std::string, int, double>::foo();

S<int, float, std::string>::foo();

S<int, double, std::string>::foo();

General

case T = int

T = int, U = double

template<typename T, typename U>

void foo(T t, U u) {

std::cout << "General case: " << t << " " << u << std::endl;

}

// OK.

template<>

void foo<int, int>(int a1, int a2) {

std::cout << "Two ints: " << a1 << " " << a2 << std::endl;

}

void invoke_foo() {

foo(1, 2.1); // Prints "General case: 1 2.1"

foo(1,2); // Prints "Two ints: 1 2"

}

420

Section 77.6: Template Specialization

You can define implementation for specific instantiations of a template class/method.

For example if you have:

You can then write:

Then a user that writes sqrt(4.0) will get the generic implementation whereas sqrt(4) will get the specialized

implementation.

Section 77.7: Alias template

Version ≥ C++11

Basic example:

This definition makes pointer<T> an alias of T*. For example:

Alias templates cannot be specialized. However, that functionality can be obtained indirectly by having them refer

to a nested type in a struct:

Section 77.8: Explicit instantiation

An explicit instantiation definition creates and declares a concrete class, function, or variable from a template,

without using it just yet. An explicit instantiation can be referenced from other translation units. This can be used to

avoid defining a template in a header file, if it will only be instantiated with a finite set of arguments. For example:

// Compilation error: partial function specialization is not allowed.

template<typename U>

void foo<std::string, U>(std::string t, U u) {

std::cout << "General case: " << t << " " << u << std::endl;

}

template <typename T>

T sqrt(T t) { /* Some generic implementation */ }

template<>

int sqrt<int>(int i) { /* Highly optimized integer implementation */ }

template<typename T> using pointer = T*;

pointer<int> p = new int; // equivalent to: int* p = new int;

template<typename T>

struct nonconst_pointer_helper { typedef T* type; };

template<typename T>

struct nonconst_pointer_helper<T const> { typedef T* type; };

template<typename T> using nonconst_pointer = nonconst_pointer_helper<T>::type;

// print_string.h

template <class T>

void print_string(const T* str);

421

Because print_string<char> and print_string<wchar_t> are explicitly instantiated in print_string.cpp, the

linker will be able to find them even though the print_string template is not defined in the header. If these explicit

instantiation declarations were not present, a linker error would likely occur. See Why can templates only be

implemented in the header file?

Version ≥ C++11

If an explicit instantiation definition is preceded by the extern keyword, it becomes an explicit instantiation

declaration instead. The presence of an explicit instantiation declaration for a given specialization prevents the

implicit instantiation of the given specialization within the current translation unit. Instead, a reference to that

specialization that would otherwise cause an implicit instantiation can refer to an explicit instantiation definition in

the same or another TU.

foo.h

foo.cpp

main.cpp

Section 77.9: Non-type template parameter

Apart from types as a template parameter we are allowed to declare values of constant expressions meeting one of

the following criteria:

integral or enumeration type,

pointer to object or pointer to function,

lvalue reference to object or lvalue reference to function,

pointer to member,

std::nullptr_t.

// print_string.cpp

#include "print_string.h"

template void print_string(const char*);

template void print_string(const wchar_t*);

#ifndef FOO_H

#define

FOO_H

template <class T> void foo(T x) {

// complicated implementation

}

#endif

#include "foo.h"

// explicit instantiation definitions for common cases template

void foo(int);

template void foo(double);

#include "foo.h"

// we already know foo.cpp has explicit instantiation definitions for these extern

template void foo(double);

int main() {

foo(42); // instantiates foo<int> here;

// wasteful since foo.cpp provides an explicit instantiation already!

foo(3.14); // does not instantiate foo<double> here;

// uses instantiation of foo<double> in foo.cpp instead

}

http://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file
http://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file

422

Like all template parameters, non-type template parameters can be explicitly specified, defaulted, or derived

implicitly via Template Argument Deduction.

Example of non-type template parameter usage:

Example of explicitly specifying both type and non-type template parameters:

Non-type template parameters are one of the ways to achieve template recurrence and enables to do

Metaprogramming.

Section 77.10: Declaring non-type template arguments with
auto

Prior to C++17, when writing a template non-type parameter, you had to specify its type first. So a common pattern

became writing something like:

But for complicated expressions, using something like this involves having to write decltype(expr), expr when

instantiating templates. The solution is to simplify this idiom and simply allow auto:

Version ≥ C++17

template <auto N>

struct integral_constant {

using type = decltype(N);

static constexpr type value = N;

};

#include <iostream>

template<typename T, std::size_t size>

std::size_t size_of(T (&anArray)[size]) // Pass array by reference. Requires.

{ // an exact size. We allow all sizes

return size; // by using a template "size".

}

int main()

{

char anArrayOfChar[15];

std::cout << "anArrayOfChar: " << size_of(anArrayOfChar) << "\n";

int anArrayOfData[] = {1,2,3,4,5,6,7,8,9};

std::cout << "anArrayOfData: " << size_of(anArrayOfData) << "\n";

}

#include <array>

int main ()

{

std::array<int, 5> foo; // int is a type parameter, 5 is non-type

}

template <class T, T N>

struct integral_constant {

using type = T;

static constexpr T value = N;

};

using five = integral_constant<int, 5>;

423

Empty custom deleter for unique_ptr

A nice motivating example can come from trying to combine the empty base optimization with a custom deleter for

unique_ptr. Different C API deleters have different return types, but we don't care - we just want something to

work for any function:

And now you can simply use any function pointer that can take an argument of type T as a template non-type

parameter, regardless of return type, and get a no-size overhead unique_ptr out of it:

Section 77.11: Template template parameters

Sometimes we would like to pass into the template a template type without fixing its values. This is what template

template parameters are created for. Very simple template template parameter examples:

Version ≥ C++11

#include <vector>

#include <iostream>

template <class T, template <class...> class C, class U>

C<T> cast_all(const C<U> &c) {

C<T> result(c.begin(), c.end());

return result;

}

int main() {

std::vector<float> vf = {1.2, 2.6, 3.7};

auto vi = cast_all<int>(vf);

for(auto &&i: vi) {

std::cout << i << std::endl;

}

using five = integral_constant<5>;

template <auto DeleteFn>

struct FunctionDeleter {

template <class T>

void operator()(T* ptr) const {

DeleteFn(ptr);

}

};

template <T, auto DeleteFn>

using unique_ptr_deleter = std::unique_ptr<T, FunctionDeleter<DeleteFn>>;

unique_ptr_deleter<std::FILE, std::fclose> p;

template <class T>

struct Tag1 { };

template <class T>

struct Tag2 { };

template <template <class> class Tag>

struct IntTag {

typedef Tag<int> type;

};

int main() {

IntTag<Tag1>::type t;

}

424

Section 77.12: Default template parameter value

Just like in case of the function arguments, template parameters can have their default values. All template

parameters with a default value have to be declared at the end of the template parameter list. The basic idea is that

the template parameters with default value can be omitted while template instantiation.

Simple example of default template parameter value usage:

}

template <class T, size_t N = 10>

struct my_array {

T arr[N];

};

int main() {

/* Default parameter is ignored, N = 5 */

my_array<int, 5> a;

/* Print the length of a.arr: 5 */

std::cout << sizeof(a.arr) / sizeof(int) << std::endl;

/* Last parameter is omitted, N = 10 */

my_array<int> b;

/* Print the length of a.arr: 10 */

std::cout << sizeof(b.arr) / sizeof(int) << std::endl;

}

425

Chapter 78: Expression templates

Section 78.1: A basic example illustrating expression
templates

An expression template is a compile-time optimization technique used mostly in scientific computing. It's main

purpose is to avoid unnecessary temporaries and optimize loop calculations using a single pass (typically when

performing operations on numerical aggregates). Expression templates were initially devised in order to circumvent

the inefficiencies of naïve operator overloading when implementing numerical Array or Matrix types. An equivalent

terminology for expression templates has been introduced by Bjarne Stroustrup, who calls them "fused operations"

in the latest version of his book, "The C++ Programming Language".

Before actually diving into expression templates, you should understand why you need them in the first place. To

illustrate this, consider the very simple Matrix class given below:

Given the previous class definition, you can now write Matrix expressions such as:

template <typename T, std::size_t COL, std::size_t ROW>

class Matrix {

public:

using value_type = T;

Matrix() : values(COL * ROW) {}

static size_t cols() { return COL; }

static size_t rows() { return ROW; }

const T& operator()(size_t x, size_t y) const { return values[y * COL + x]; }

T& operator()(size_t x, size_t y) { return values[y * COL + x]; }

private:

std::vector<T> values;

};

template <typename T, std::size_t COL, std::size_t ROW>

Matrix<T, COL, ROW>

operator+(const Matrix<T, COL, ROW>& lhs, const Matrix<T, COL, ROW>& rhs)

{

Matrix<T, COL, ROW> result;

for (size_t y = 0; y != lhs.rows(); ++y) {

for (size_t x = 0; x != lhs.cols(); ++x)

{

result(x, y) = lhs(x, y) + rhs(x, y);

}

}

return result;

}

const std::size_t cols = 2000;

const std::size_t rows = 1000;

Matrix<double, cols, rows> a, b, c;

// initialize a, b & c

for (std::size_t y = 0; y != rows; ++y) {

for (std::size_t x = 0; x != cols; ++x)

{

a(x, y) = 1.0;

b(x, y) = 2.0;

426

As illustrated above, being able to overload operator+() provides you with a notation which mimics the natural

mathematical notation for matrices.

Unfortunately, the previous implementation is also highly inefficient compared to an equivalent "hand-crafted"

version.

To understand why, you have to consider what happens when you write an expression such as Matrix d = a + b

+ c. This in fact expands to ((a + b) + c) or operator+(operator+(a, b), c). In other words, the loop inside

operator+() is executed twice, whereas it could have been easily performed in a single pass. This also results in 2

temporaries being created, which further degrades performance. In essence, by adding the flexibility to use a

notation close to its mathematical counterpart, you have also made the Matrix class highly inefficient.

For example, without operator overloading, you could implement a far more efficient Matrix summation using a

single pass:

The previous example however has its own disadvantages because it creates a far more convoluted interface for

the Matrix class (you would have to consider methods such as Matrix::add2(), Matrix::AddMultiply() and so on).

Instead let us take a step back and see how we can adapt operator overloading to perform in a more efficient way

The problem stems from the fact that the expression Matrix d = a + b + c is evaluated too "eagerly" before you

have had an opportunity to build the entire expression tree. In other words, what you really want to achieve is to

evaluate a + b + c in one pass and only once you actually need to assign the resulting expressing to d.

This is the core idea behind expression templates: instead of having operator+() evaluate immediately the result

of adding two Matrix instances, it will return an "expression template" for future evaluation once the entire

expression tree has been built.

For example, here is a possible implementation for an expression template corresponding to the summation of 2

types:

c(x, y) = 3.0;

}

}

Matrix<double, cols, rows> d = a + b + c; // d(x, y) = 6

template<typename T, std::size_t COL, std::size_t ROW>

Matrix<T, COL, ROW> add3(const Matrix<T, COL, ROW>&

a,

const Matrix<T, COL, ROW>& b,

const Matrix<T, COL, ROW>& c)

{

Matrix<T, COL, ROW> result;

for (size_t y = 0; y != ROW; ++y) {

for (size_t x = 0; x != COL; ++x)

{

result(x, y) = a(x, y) + b(x, y) + c(x, y);

}

}

return result;

}

template <typename LHS, typename RHS>

class MatrixSum

{

public:

using value_type = typename LHS::value_type;

427

And here is the updated version of operator+()

As you can see, operator+() no longer returns an "eager evaluation" of the result of adding 2 Matrix instances

(which would be another Matrix instance), but instead an expression template representing the addition operation.

The most important point to keep in mind is that the expression has not been evaluated yet. It merely holds

references to its operands.

In fact, nothing stops you from instantiating the MatrixSum<> expression template as follows:

You can however at a later stage, when you actually need the result of the summation, evaluate the expression d =

a + b as follows:

As you can see, another benefit of using an expression template, is that you have basically managed to evaluate the

sum of a and b and assign it to d in a single pass.

Also, nothing stops you from combining multiple expression templates. For example, a + b + c would result in the

following expression template:

And here again you can evaluate the final result using a single pass:

Finally, the last piece of the puzzle is to actually plug your expression template into the Matrix class. This is

essentially achieved by providing an implementation for Matrix::operator=(), which takes the expression

template as an argument and evaluates it in one pass, as you did "manually" before:

MatrixSum(const LHS& lhs, const RHS& rhs) : rhs(rhs), lhs(lhs) {}

value_type operator() (int x, int y) const {

return lhs(x, y) + rhs(x, y);

}

private:

const LHS& lhs;

const RHS& rhs;

};

template <typename LHS, typename RHS>

MatrixSum<LHS, RHS> operator+(const LHS& lhs, const LHS& rhs) {

return MatrixSum<LHS, RHS>(lhs, rhs);

}

MatrixSum<Matrix<double>, Matrix<double> > SumAB(a, b);

for (std::size_t y = 0; y != a.rows(); ++y) {

for (std::size_t x = 0; x != a.cols(); ++x) {

d(x, y) = SumAB(x, y);

}

}

MatrixSum<MatrixSum<Matrix<double>, Matrix<double> >, Matrix<double> > SumABC(SumAB, c);

for (std::size_t y = 0; y != a.rows(); ++y) {

for (std::size_t x = 0; x != a.cols(); ++x) {

d(x, y) = SumABC(x, y);

}

}

template <typename T, std::size_t COL, std::size_t ROW>

428

class Matrix {

public:

using value_type = T;

Matrix() : values(COL * ROW) {}

static size_t cols() { return COL; }

static size_t rows() { return ROW; }

const T& operator()(size_t x, size_t y) const { return values[y * COL + x]; }

T& operator()(size_t x, size_t y) { return values[y * COL + x]; }

template <typename E>

Matrix<T, COL, ROW>& operator=(const E& expression)

{ for (std::size_t y = 0; y != rows(); ++y) {

for (std::size_t x = 0; x != cols(); ++x)

{ values[y * COL + x] = expression(x,

y);

}

}

return *this;

}

private:

std::vector<T> values;

};

429

Chapter 79: Curiously Recurring Template
Pattern (CRTP)
A pattern in which a class inherits from a class template with itself as one of its template parameters. CRTP is

usually used to provide static polymorphism in C++.

Section 79.1: The Curiously Recurring Template Pattern
(CRTP)

CRTP is a powerful, static alternative to virtual functions and traditional inheritance that can be used to give types

properties at compile time. It works by having a base class template which takes, as one of its template parameters,

the derived class. This permits it to legally perform a static_cast of its this pointer to the derived class.

Of course, this also means that a CRTP class must always be used as the base class of some other class. And the

derived class must pass itself to the base class.

Version ≥ C++14

Let's say you have a set of containers that all support the functions begin() and end(). The standard library's

requirements for containers require more functionality. We can design a CRTP base class that provides that

functionality, based solely on begin() and end():

The above class provides the functions front(), back(), size(), and operator[] for any subclass which provides

begin() and end(). An example subclass is a simple dynamically allocated array:

#include <iterator>

template <typename Sub>

class Container {

private:

// self() yields a reference to the derived type

Sub& self() { return *static_cast<Sub*>(this); }

Sub const& self() const { return *static_cast<Sub const*>(this); }

public:

decltype(auto) front() {

return *self().begin();

}

decltype(auto) back() {

return *std::prev(self().end());

}

decltype(auto) size() const {

return std::distance(self().begin(), self().end());

}

decltype(auto) operator[](std::size_t i) { return

*std::next(self().begin(), i);

}

};

#include <memory>

// A dynamically allocated array

template <typename T>

class DynArray : public Container<DynArray<T>> {

public:

430

Users of the DynArray class can use the interfaces provided by the CRTP base class easily as follows:

Usefulness: This pattern particularly avoids virtual function calls at run-time which occur to traverse down the

inheritance hierarchy and simply relies on static casts:

The only static cast inside the function begin() in the base class Container<DynArray<int>> allows the compiler to

drastically optimize the code and no virtual table look up happens at runtime.

Limitations: Because the base class is templated and different for two different DynArrays it is not possible to

store pointers to their base classes in an type-homogenous array as one could generally do with normal inheritance

where the base class is not dependent on the derived type:

Section 79.2: CRTP to avoid code duplication

The example in Visitor Pattern provides a compelling use-case for CRTP:

using Base = Container<DynArray<T>>;

DynArray(std::size_t size)

: size_{size},

data_{std::make_unique<T[]>(size_)}

{ }

T* begin() { return data_.get(); }

const T* begin() const { return data_.get(); }

T* end() { return data_.get() + size_; }

const T* end() const { return data_.get() + size_; }

private:

std::size_t size_;

std::unique_ptr<T[]> data_;

};

DynArray<int> arr(10);

arr.front() = 2;

arr[2] = 5;

assert(arr.size() == 10);

DynArray<int> arr(10);

DynArray<int>::Base & base = arr;

base.begin(); // no virtual calls

class A {};

class B: public A{};

A* a = new B;

struct IShape

{

virtual ~IShape() = default;

virtual void accept(IShapeVisitor&) const = 0;

};

struct Circle : IShape

{

// ...

// Each shape has to implement this method the same way

431

Each child type of IShape needs to implement the same function the same way. That's a lot of extra typing. Instead,

we can introduce a new type in the hierarchy that does this for us:

And now, each shape simply needs to inherit from the acceptor:

No duplicate code necessary.

void accept(IShapeVisitor& visitor) const override { visitor.visit(*this); }

// ...

};

struct Square : IShape

{

// ...

// Each shape has to implement this method the same way

void accept(IShapeVisitor& visitor) const override { visitor.visit(*this); }

// ...

};

template <class Derived>

struct IShapeAcceptor : IShape {

void accept(IShapeVisitor& visitor) const override {

// visit with our exact type

visitor.visit(*static_cast<Derived const*>(this));

}

};

struct Circle : IShapeAcceptor<Circle>

{

Circle(const Point& center, double radius) : center(center), radius(radius) {}

Point center;

double radius;

};

struct Square : IShapeAcceptor<Square>

{

Square(const Point& topLeft, double sideLength) : topLeft(topLeft), sideLength(sideLength) {}

Point topLeft;

double sideLength;

};

432

Chapter 80: Threading
Parameter Details

other Takes ownership of other, other doesn't own the thread anymore

func Function to call in a separate thread

args Arguments for func

Section 80.1: Creating a std::thread

In C++, threads are created using the std::thread class. A thread is a separate flow of execution; it is analogous to

having a helper perform one task while you simultaneously perform another. When all the code in the thread is

executed, it terminates. When creating a thread, you need to pass something to be executed on it. A few things that

you can pass to a thread:

Free functions

Member functions

Functor objects

Lambda expressions

Free function example - executes a function on a separate thread (Live Example):

Member function example - executes a member function on a separate thread (Live Example):

#include <iostream>

#include <thread>

void foo(int a)

{

std::cout << a << '\n';

}

int main()

{

// Create and execute the thread

std::thread thread(foo, 10); // foo is the function to execute, 10 is the

// argument to pass to it

// Keep going; the thread is executed separately

// Wait for the thread to finish; we stay here until it is done thread.join();

return 0;

}

#include <iostream>

#include <thread>

class Bar

{

public:

void foo(int a)

{

std::cout << a << '\n';

}

};

http://ideone.com/hX1Ygn
http://ideone.com/4QeG4E

433

Functor object example (Live Example):

Lambda expression example (Live Example):

int main()

{

Bar bar;

// Create and execute the thread

std::thread thread(&Bar::foo, &bar, 10); // Pass 10 to member function

// The member function will be executed in a separate thread

// Wait for the thread to finish, this is a blocking operation

thread.join();

return 0;

}

#include <iostream>

#include <thread>

class Bar

{

public:

void operator()(int a)

{

std::cout << a << '\n';

}

};

int main()

{

Bar bar;

// Create and execute the thread

std::thread thread(bar, 10); // Pass 10 to functor object

// The functor object will be executed in a separate thread

// Wait for the thread to finish, this is a blocking operation

thread.join();

return 0;

}

#include <iostream>

#include <thread>

int main()

{

auto lambda = [](int a) { std::cout << a << '\n'; };

// Create and execute the thread

std::thread thread(lambda, 10); // Pass 10 to the lambda expression

// The lambda expression will be executed in a separate thread

// Wait for the thread to finish, this is a blocking operation

thread.join();

http://ideone.com/h2EepE
http://ideone.com/UacLRf

434

Section 80.2: Passing a reference to a thread

You cannot pass a reference (or const reference) directly to a thread because std::thread will copy/move them.

Instead, use std::reference_wrapper:

Section 80.3: Using std::async instead of std::thread

std::async is also able to make threads. Compared to std::thread it is considered less powerful but easier to use

when you just want to run a function asynchronously.

Asynchronously calling a function

Common Pitfalls

std::async returns a std::future that holds the return value that will be calculated by the function. When

that future gets destroyed it waits until the thread completes, making your code effectively single threaded.

This is easily overlooked when you don't need the return value:

return 0;

}

void foo(int& b)

{

b = 10;

}

int a = 1;

std::thread thread{ foo, std::ref(a) }; //'a' is now really passed as reference

thread.join();

std::cout << a << '\n'; //Outputs 10

void bar(const ComplexObject& co)

{

co.doCalculations();

}

ComplexObject object;

std::thread thread{ bar, std::cref(object) }; //'object' is passed as const&

thread.join();

std::cout << object.getResult() << '\n'; //Outputs the result

#include <future>

#include <iostream>

unsigned int square(unsigned int i){

return i*i;

}

int main() {

auto f = std::async(std::launch::async, square, 8);

std::cout << "square currently running\n"; //do something while square is running

std::cout << "result is " << f.get() << '\n'; //getting the result from square

}

435

std::async works without a launch policy, so std::async(square, 5); compiles. When you do that the

system gets to decide if it wants to create a thread or not. The idea was that the system chooses to make a

thread unless it is already running more threads than it can run efficiently. Unfortunately implementations

commonly just choose not to create a thread in that situation, ever, so you need to override that behavior

with std::launch::async which forces the system to create a thread.

Beware of race conditions.

More on async on Futures and Promises

Section 80.4: Basic Synchronization

Thread synchronization can be accomplished using mutexes, among other synchronization primitives. There are

several mutex types provided by the standard library, but the simplest is std::mutex. To lock a mutex, you

construct a lock on it. The simplest lock type is std::lock_guard:

With std::lock_guard the mutex is locked for the whole lifetime of the lock object. In cases where you need to

manually control the regions for locking, use std::unique_lock instead:

More Thread synchronization structures

Section 80.5: Create a simple thread pool

C++11 threading primitives are still relatively low level. They can be used to write a higher level construct, like a

thread pool:

Version ≥ C++14

struct tasks {

// the mutex, condition variable and deque form a single

// thread-safe triggered queue of tasks:

std::mutex m;

std::condition_variable v;

// note that a packaged_task<void> can store a packaged_task<R>:

std::async(std::launch::async, square, 5);

//thread already completed at this point, because the returning future got destroyed

std::mutex m;

void worker() {

std::lock_guard<std::mutex> guard(m); // Acquires a lock on the mutex

// Synchronized code here

} // the mutex is automatically released when guard goes out of scope

std::mutex m;

void worker() {

// by default, constructing a unique_lock from a mutex will lock the mutex

// by passing the std::defer_lock as a second argument, we

// can construct the guard in an unlocked state instead and

// manually lock later.

std::unique_lock<std::mutex> guard(m, std::defer_lock);

// the mutex is not locked yet!

guard.lock();

// critical section

guard.unlock();

// mutex is again released

}

436

std::deque<std::packaged_task<void()>> work;

// this holds futures representing the worker threads being done:

std::vector<std::future<void>> finished;

// queue(lambda) will enqueue the lambda into the tasks for the threads

// to use. A future of the type the lambda returns is given to let you get

// the result out.

template<class F, class R=std::result_of_t<F&()>>

std::future<R> queue(F&& f) {

// wrap the function object into a packaged task, splitting

// execution from the return value:

std::packaged_task<R()> p(std::forward<F>(f));

auto r=p.get_future(); // get the return value before we hand off the task

{

std::unique_lock<std::mutex> l(m);

work.emplace_back(std::move(p)); // store the task<R()> as a task<void()>

}

v.notify_one(); // wake a thread to work on the task

return r; // return the future result of the task

}

// start N threads in the thread pool.

void start(std::size_t N=1){

for (std::size_t i = 0; i < N; ++i)

{

// each thread is a std::async running this->thread_task():

finished.push_back(

std::async(

std::launch::async,

[this]{ thread_task(); }

)

);

}

}

// abort() cancels all non-started tasks, and tells every working thread

// stop running, and waits for them to finish up. void

abort() {

cancel_pending();

finish();

}

// cancel_pending() merely cancels all non-started tasks: void

cancel_pending() {

std::unique_lock<std::mutex> l(m);

work.clear();

}

// finish enques a "stop the thread" message for every thread, then waits for them: void

finish() {

{

std::unique_lock<std::mutex> l(m);

for(auto&&unused:finished){

work.push_back({});

}

}

v.notify_all();

finished.clear();

}

~tasks() {

finish();

}

437

tasks.queue([]{ return "hello world"s; }) returns a std::future<std::string>, which when the tasks

object gets around to running it is populated with hello world.

You create threads by running tasks.start(10) (which starts 10 threads).

The use of packaged_task<void()> is merely because there is no type-erased std::function equivalent that stores

move-only types. Writing a custom one of those would probably be faster than using packaged_task<void()>.

Live example.

Version = C++11

In C++11, replace result_of_t<blah> with typename result_of<blah>::type.

More on Mutexes.

Section 80.6: Ensuring a thread is always joined

When the destructor for std::thread is invoked, a call to either join() or detach() must have been made. If a

thread has not been joined or detached, then by default std::terminate will be called. Using RAII, this is generally

simple enough to accomplish:

private:

// the work that a worker thread does:

void thread_task() {

while(true){

// pop a task off the queue:

std::packaged_task<void()> f;

{

// usual thread-safe queue code:

std::unique_lock<std::mutex> l(m);

if (work.empty()){

v.wait(l,[&]{return !work.empty();});

}

f = std::move(work.front());

work.pop_front();

}

// if the task is invalid, it means we are asked to abort: if

(!f.valid()) return;

// otherwise, run the task:

f();

}

}

};

class thread_joiner

{

public:

thread_joiner(std::thread t)

: t_(std::move(t))

{ }

~thread_joiner()

{

if(t_.joinable()) {

t_.join();

}

http://coliru.stacked-crooked.com/
http://en.cppreference.com/w/cpp/language/raii

438

This is then used like so:

This also provides exception safety; if we had created our thread normally and the work done in t() performing

other calculations had thrown an exception, join() would never have been called on our thread and our process

would have been terminated.

Section 80.7: Operations on the current thread

std::this_thread is a namespace which has functions to do interesting things on the current thread from function

it is called from.

Function Description

get_id Returns the id of the thread

sleep_for Sleeps for a specified amount of time

sleep_until Sleeps until a specific time

yield Reschedule running threads, giving other threads priority

Getting the current threads id using std::this_thread::get_id:

Sleeping for 3 seconds using std::this_thread::sleep_for:

}

private:

std::thread t_;

}

void perform_work()

{

// Perform some work

}

void t()

{

thread_joiner j{std::thread(perform_work)};

// Do some other calculations while thread is running

} // Thread is automatically joined here

void foo()

{

//Print this threads id

std::cout << std::this_thread::get_id() << '\n';

}

std::thread thread{ foo };

thread.join(); //'threads' id has now been printed, should be something like 12556

foo(); //The id of the main thread is printed, should be something like 2420

void foo()

{

std::this_thread::sleep_for(std::chrono::seconds(3));

}

439

Sleeping until 3 hours in the future using std::this_thread::sleep_until:

Letting other threads take priority using std::this_thread::yield:

Section 80.8: Using Condition Variables

A condition variable is a primitive used in conjunction with a mutex to orchestrate communication between

threads. While it is neither the exclusive or most efficient way to accomplish this, it can be among the simplest to

those familiar with the pattern.

One waits on a std::condition_variable with a std::unique_lock<std::mutex>. This allows the code to safely

examine shared state before deciding whether or not to proceed with acquisition.

Below is a producer-consumer sketch that uses std::thread, std::condition_variable, std::mutex, and a few

others to make things interesting.

std::thread thread{ foo };

foo.join();

std::cout << "Waited for 3 seconds!\n";

void foo()

{

std::this_thread::sleep_until(std::chrono::system_clock::now() + std::chrono::hours(3));

}

std::thread thread{ foo };

thread.join();

std::cout << "We are now located 3 hours after the thread has been called\n";

void foo(int a)

{

for (int i = 0; i < al ++i)

std::this_thread::yield(); //Now other threads take priority, because this thread

//isn't doing anything important

std::cout << "Hello World!\n";

}

std::thread thread{ foo, 10 };

thread.join();

#include <condition_variable>

#include <cstddef>

#include <iostream>

#include <mutex>

#include <queue>

#include <random>

#include <thread>

int main()

{

std::condition_variable cond;

std::mutex mtx;

440

std::queue<int> intq;

bool stopped = false;

std::thread producer{[&]()

{

// Prepare a random number generator.

// Our producer will simply push random numbers to intq.

//

std::default_random_engine gen{};

std::uniform_int_distribution<int> dist{};

std::size_t count = 4006;

while(count--)

{

// Always lock before changing

// state guarded by a mutex and

// condition_variable (a.k.a. "condvar").

std::lock_guard<std::mutex> L{mtx};

// Push a random int into the queue

intq.push(dist(gen));

// Tell the consumer it has an int

cond.notify_one();

}

// All done.

// Acquire the lock, set the stopped flag,

// then inform the consumer.

std::lock_guard<std::mutex> L{mtx};

std::cout << "Producer is done!" << std::endl;

}};

stopped = true;

cond.notify_one();

std::thread consumer{[&]()

{

do{
std::unique_lock<std::mutex> L{mtx};

cond.wait(L,[&]()

{

});

// Acquire the lock only if

// we've stopped or the queue

// isn't empty

return stopped || ! intq.empty();

// We own the mutex here; pop the queue

// until it empties out.

while(! intq.empty())

{

const auto val = intq.front();

intq.pop();

std::cout << "Consumer popped: " << val << std::endl;

}

if(stopped){

// producer has signaled a stop

441

Section 80.9: Thread operations

When you start a thread, it will execute until it is finished.

Often, at some point, you need to (possibly - the thread may already be done) wait for the thread to finish, because

you want to use the result for example.

You can also detach the thread, letting it execute freely:

Section 80.10: Thread-local storage

Thread-local storage can be created using the thread_local keyword. A variable declared with the thread_local

specifier is said to have thread storage duration.

Each thread in a program has its own copy of each thread-local variable.

A thread-local variable with function (local) scope will be initialized the first time control passes through its

definition. Such a variable is implicitly static, unless declared extern.

A thread-local variable with namespace or class (non-local) scope will be initialized as part of thread startup.

Thread-local variables are destroyed upon thread termination.

A member of a class can only be thread-local if it is static. There will therefore be one copy of that variable

per thread, rather than one copy per (thread, instance) pair.

std::cout << "Consumer is done!" << std::endl;

break;

}

}while(true);

}};

consumer.join();

producer.join();

std::cout << "Example Completed!" <<

std::endl; return 0;

}

int n;

std::thread thread{ calculateSomething, std::ref(n) };

//Doing some other stuff

//We need 'n' now!

//Wait for the thread to finish - if it is not already done

thread.join();

//Now 'n' has the result of the calculation done in the separate thread std::cout

<< n << '\n';

std::thread thread{ doSomething };

//Detaching the thread, we don't need it anymore (for whatever reason)

thread.detach();

//The thread will terminate when it is done, or when the main thread returns

442

Example:

Section 80.11: Reassigning thread objects

We can create empty thread objects and assign work to them later.

If we assign a thread object to another active, joinable thread, std::terminate will automatically be called before

the thread is replaced.

void debug_counter() {

thread_local int count = 0;

Logger::log("This function has been called %d times by this thread", ++count);

}

#include <thread>

void foo()

{

std::this_thread::sleep_for(std::chrono::seconds(3));

}

//create 100 thread objects that do nothing

std::thread executors[100];

// Some code

// I want to create some threads now

for (int i = 0;i < 100;i++)

{

// If this object doesn't have a thread assigned if

(!executors[i].joinable())

executors[i] = std::thread(foo);

}

443

Chapter 81: Thread synchronization
structures
Working with threads might need some synchronization techniques if the threads interact. In this topic, you can

find the different structures which are provided by the standard library to solve these issues.

Section 81.1: std::condition_variable_any, std::cv_status

A generalization of std::condition_variable, std::condition_variable_any works with any type of

BasicLockable structure.

std::cv_status as a return status for a condition variable has two possible return codes:

std::cv_status::no_timeout: There was no timeout, condition variable was notified

std::cv_status::no_timeout: Condition variable timed out

Section 81.2: std::shared_lock

A shared_lock can be used in conjunction with a unique lock to allow multiple readers and exclusive writers.

Section 81.3: std::call_once, std::once_flag

std::call_once ensures execution of a function exactly once by competing threads. It throws std::system_error

in case it cannot complete its task.

Used in conjunction with std::once_flag.

#include <unordered_map>

#include <mutex>

#include <shared_mutex>

#include <thread>

#include <string>

#include <iostream>

class PhoneBook {

public:

string getPhoneNo(const std::string & name)

{

shared_lock<shared_timed_mutex> r(_protect);

auto it = _phonebook.find(name);

if (it == _phonebook.end())

return (*it).second;

return "";

}

void addPhoneNo (const std::string & name, const std::string & phone)

{

unique_lock<shared_timed_mutex> w(_protect);

_phonebook[name] = phone;

}

shared_timed_mutex _protect;

unordered_map<string,string> _phonebook;

};

#include <mutex>

444

Section 81.4: Object locking for e cient access

Often you want to lock the entire object while you perform multiple operations on it. For example, if you need to

examine or modify the object using iterators. Whenever you need to call multiple member functions it is generally

more efficient to lock the whole object rather than individual member functions.

For example:

class text_buffer

{

// for readability/maintainability

using mutex_type = std::shared_timed_mutex;

using reading_lock = std::shared_lock<mutex_type>;

using updates_lock = std::unique_lock<mutex_type>;

public:

// This returns a scoped lock that can be shared by multiple

// readers at the same time while excluding any writers

[[nodiscard]]

reading_lock lock_for_reading() const { return reading_lock(mtx); }

// This returns a scoped lock that is exclusing to one

// writer preventing any readers

[[nodiscard]]

updates_lock lock_for_updates() { return updates_lock(mtx); }

char* data() { return buf; }

char const* data() const { return buf; }

char* begin() { return buf; }

char const* begin() const { return buf; }

char* end() { return buf + sizeof(buf); }

char const* end() const { return buf + sizeof(buf); }

std::size_t size() const { return sizeof(buf); }

private:

char buf[1024];

mutable mutex_type mtx; // mutable allows const objects to be locked

};

When calculating a checksum the object is locked for reading, allowing other threads that want to read from the

object at the same time to do so.

#include <iostream>

std::once_flag flag;

void do_something(){

std::call_once(flag, [](){std::cout << "Happens once" << std::endl;});

std::cout << "Happens every time" << std::endl;

}

std::size_t checksum(text_buffer const& buf)

{

std::size_t sum = 0xA44944A4;

// lock the object for reading

445

Clearing the object updates its internal data so it must be done using an exclusing lock.

When obtaining more than one lock care should be taken to always acquire the locks in the same order for all

threads.

note: This is best done using std::deferred::lock and calling std::lock

auto lock = buf.lock_for_reading();

for(auto c: buf)

sum = (sum << 8) | (((unsigned char) ((sum & 0xFF000000) >> 24)) ^
c);

return sum;

}

void clear(text_buffer& buf)

{

auto lock = buf.lock_for_updates(); // exclusive lock

std::fill(std::begin(buf), std::end(buf), '\0');

}

void transfer(text_buffer const& input, text_buffer& output)

{

auto lock1 = input.lock_for_reading();

auto lock2 = output.lock_for_updates();

std::copy(std::begin(input), std::end(input), std::begin(output));

}

http://en.cppreference.com/w/cpp/thread/lock_tag
http://en.cppreference.com/w/cpp/thread/lock

446

Chapter 82: The Rule of Three, Five, And
Zero

Section 82.1: Rule of Zero

Version ≥ C++11

We can combine the principles of the Rule of Five and RAII to get a much leaner interface: the Rule of Zero: any

resource that needs to be managed should be in its own type. That type would have to follow the Rule of Five, but

all users of that resource do not need to write any of the five special member functions and can simply default all

of them.

Using the Person class introduced in the Rule of Three example, we can create a resource-managing object for

cstrings:

And once this is separate, our Person class becomes far simpler:

The special members in Person do not even need to be declared explicitly; the compiler will default or delete them

appropriately, based on the contents of Person. Therefore, the following is also an example of the rule of zero.

If cstring were to be a move-only type, with a deleted copy constructor/assignment operator, then Person would

automatically be move-only as well.

class cstring {

private:

char* p;

public:

~cstring() { delete [] p; }

cstring(cstring const&);

cstring(cstring&&);

cstring& operator=(cstring const&);

cstring& operator=(cstring&&);

/* other members as appropriate */

};

class Person {

cstring name;

int arg;

public:

~Person() = default;

Person(Person const&) = default;

Person(Person&&) = default;

Person& operator=(Person const&) = default;

Person& operator=(Person&&) = default;

/* other members as appropriate */

};

struct Person {

cstring name;

int arg;

};

447

The term rule of zero was introduced by R. Martinho Fernandes

Section 82.2: Rule of Five

Version ≥ C++11

C++11 introduces two new special member functions: the move constructor and the move assignment operator.

For all the same reasons that you want to follow the Rule of Three in C++03, you usually want to follow the Rule of

Five in C++11: If a class requires ONE of five special member functions, and if move semantics are desired, then it

most likely requires ALL FIVE of them.

Note, however, that failing to follow the Rule of Five is usually not considered an error, but a missed optimisation

opportunity, as long as the Rule of Three is still followed. If no move constructor or move assignment operator is

available when the compiler would normally use one, it will instead use copy semantics if possible, resulting in a

less efficient operation due to unnecessary copy operations. If move semantics aren't desired for a class, then it has

no need to declare a move constructor or assignment operator.

Same example as for the Rule of Three:

class Person

{

char* name;

int age;

public:

// Destructor

~Person() { delete [] name; }

// Implement Copy Semantics

Person(Person const& other)

: name(new char[std::strlen(other.name) + 1])

, age(other.age)

{

std::strcpy(name, other.name);

}

Person &operator=(Person const& other)

{

// Use copy and swap idiom to implement assignment.

Person copy(other);

swap(*this, copy);

return *this;

}

// Implement Move Semantics

// Note: It is usually best to mark move operators as noexcept

// This allows certain optimizations in the standard library

// when the class is used in a container.

Person(Person&& that) noexcept

: name(nullptr) // Set the state so we know it is undefined

, age(0)

{

swap(*this, that);

}

Person& operator=(Person&& that) noexcept

{

https://rmf.io/cxx11/rule-of-zero

448

Alternatively, both the copy and move assignment operator can be replaced with a single assignment operator,

which takes an instance by value instead of reference or rvalue reference to facilitate using the copy -and-swap

idiom.

Extending from the Rule of Three to the Rule of Five is important for performance reasons, but is not strictly

necessary in most cases. Adding the copy constructor and assignment operator ensures that moving the type will

not leak memory (move-constructing will simply fall back to copying in that case), but will be performing copies that

the caller probably did not anticipate.

Section 82.3: Rule of Three

Version ≤ c++03

The Rule of Three states that if a type ever needs to have a user-defined copy constructor, copy assignment

operator, or destructor, then it must have all three.

The reason for the rule is that a class which needs any of the three manages some resource (file handles,

dynamically allocated memory, etc), and all three are needed to manage that resource consistently. The copy

functions deal with how the resource gets copied between objects, and the destructor would destroy the resource,

in accord with RAII principles.

Consider a type that manages a string resource:

swap(*this, that);

return *this;

}

friend void swap(Person& lhs, Person& rhs) noexcept

{

std::swap(lhs.name, rhs.name);

std::swap(lhs.age, rhs.age);

}

};

Person& operator=(Person copy)

{

swap(*this, copy);

return *this;

}

class Person

{

char* name;

int age;

public:

Person(char const* new_name, int new_age)

: name(new char[std::strlen(new_name) + 1])

, age(new_age)

{

std::strcpy(name, new_name);

}

~Person() {

delete [] name;

}

};

449

Since name was allocated in the constructor, the destructor deallocates it to avoid leaking memory. But what

happens if such an object is copied?

First, p1 will be constructed. Then p2 will be copied from p1. However, the C++-generated copy constructor will copy

each component of the type as-is. Which means that p1.name and p2.name both point to the same string.

When main ends, destructors will be called. First p2's destructor will be called; it will delete the string. Then p1's

destructor will be called. However, the string is already deleted. Calling delete on memory that was already deleted

yields undefined behavior.

To avoid this, it is necessary to provide a suitable copy constructor. One approach is to implement a reference

counted system, where different Person instances share the same string data. Each time a copy is performed, the

shared reference count is incremented. The destructor then decrements the reference count, only releasing the

memory if the count is zero.

Or we could implement value semantics and deep copying behavior:

Implementation of the copy assignment operator is complicated by the need to release an existing buffer. The copy

and swap technique creates a temporary object which holds a new buffer. Swapping the contents of *this and

copy gives ownership to copy of the original buffer. Destruction of copy, as the function returns, releases the buffer

previously owned by *this.

Section 82.4: Self-assignment Protection

When writing a copy assignment operator, it is very important that it be able to work in the event of self-

assignment. That is, it has to allow this:

Self-assignment usually doesn't happen in such an obvious way. It typically happens via a circuitous route through

various code systems, where the location of the assignment simply has two Person pointers or references and has

no idea that they are the same object.

int main()

{

Person p1("foo", 11);

Person p2 = p1;

}

Person(Person const& other)

: name(new char[std::strlen(other.name) + 1])

, age(other.age)

{

std::strcpy(name, other.name);

}

Person &operator=(Person const& other)

{

// Use copy and swap idiom to implement assignment

Person copy(other);

swap(copy); // assume swap() exchanges contents of *this and copy

return *this;

}

SomeType t =

...; t = t;

450

Any copy assignment operator you write must be able to take this into account.

The typical way to do so is to wrap all of the assignment logic in a condition like this:

Note: It is important to think about self-assignment and ensure that your code behaves correctly when it happens.

However, self-assignment is a very rare occurrence and optimizing to prevent it may actually pessimize the normal

case. Since the normal case is much more common, pessimizing for self -assignment may well reduce your code

efficiency (so be careful using it).

As an example, the normal technique for implementing the assignment operator is the copy and swap idiom. The

normal implementation of this technique does not bother to test for self-assignment (even though self-assignment

is expensive because a copy is made). The reason is that pessimization of the normal case has been shown to be

much more costly (as it happens more often).

Version ≥ c++11

Move assignment operators must also be protected against self-assignment. However, the logic for many such

operators is based on std::swap, which can handle swapping from/to the same memory just fine. So if your move

assignment logic is nothing more than a series of swap operations, then you do not need self-assignment

protection.

If this is not the case, you must take similar measures as above.

SomeType &operator=(const SomeType &other)

{

if(this != &other)

{

//Do assignment logic.

}

return *this;

}

451

Chapter 83: RAII: Resource Acquisition Is
Initialization

Section 83.1: Locking

Bad locking:

That is the wrong way to implement the locking and unlocking of the mutex. To ensure the correct release of the

mutex with unlock() requires the programer to make sure that all the flows resulting in the exiting of the function

result in a call to unlock(). As shown above this is a brittle processes as it requires any maintainers to continue

following the pattern manually.

Using an appropriately crafted class to implement RAII, the problem is trivial:

lock_guard is an extremely simple class template that simply calls lock() on its argument in its constructor, keeps

a reference to the argument, and calls unlock() on the argument in its destructor. That is, when the lock_guard

goes out of scope, the mutex is guaranteed to be unlocked. It doesn't matter if the reason it went out of scope is an

exception or an early return - all cases are handled; regardless of the control flow, we have guaranteed that we will

unlock correctly.

std::mutex mtx;

void bad_lock_example() {

mtx.lock();

try

{

foo();

bar();

if (baz()) {

mtx.unlock();

return;

}

quux();

mtx.unlock();

}

catch(...) {

mtx.unlock();

throw;

}

}

// Have to unlock on each exit point.

// Normal unlock happens here.

// Must also force unlock in the presence of

// exceptions and allow the exception to continue.

std::mutex mtx;

void good_lock_example() {

std::lock_guard<std::mutex> lk(mtx); // constructor locks.

// destructor unlocks. destructor call

// guaranteed by language.

foo();

bar();

if (baz()) {

return;

}

quux();

}

452

Section 83.2: ScopeSuccess (c++17)

Version ≥ C++17

Thanks to int std::uncaught_exceptions(), we can implement action which executes only on success (no thrown

exception in scope). Previously bool std::uncaught_exception() just allows to detect if any stack unwinding is

running.

#include <exception>

#include <iostream>

template <typename F>

class ScopeSuccess

{

private:

F f;

int uncaughtExceptionCount = std::uncaught_exceptions();

public:

explicit ScopeSuccess(const F& f) : f(f) {}

ScopeSuccess(const ScopeSuccess&) = delete;

ScopeSuccess& operator =(const ScopeSuccess&) = delete;

// f() might throw, as it can be caught normally.

~ScopeSuccess() noexcept(noexcept(f())) {

if (uncaughtExceptionCount == std::uncaught_exceptions()) {

f();

}

}

};

struct Foo {

~Foo() {

try {

ScopeSuccess logSuccess{[](){std::cout << "Success 1\n";}};

// Scope succeeds,

// even if Foo is destroyed during stack unwinding

// (so when 0 < std::uncaught_exceptions())

// (or previously std::uncaught_exception() == true)

} catch (...) {

}

try {

ScopeSuccess logSuccess{[](){std::cout << "Success 2\n";}};

throw std::runtime_error("Failed"); // returned value

// of std::uncaught_exceptions increases

} catch (...) { // returned value of std::uncaught_exceptions decreases

}

}

};

int main()

{

try {

Foo foo;

throw std::runtime_error("Failed"); // std::uncaught_exceptions() == 1

} catch (...) { // std::uncaught_exceptions() == 0

}

}

453

Output:

Section 83.3: ScopeFail (c++17)

Version ≥ C++17

Thanks to int std::uncaught_exceptions(), we can implement action which executes only on failure (thrown

exception in scope). Previously bool std::uncaught_exception() just allows to detect if any stack unwinding is

running.

#include <exception>

#include <iostream>

template <typename F>

class ScopeFail

{

private:

F f;

int uncaughtExceptionCount = std::uncaught_exceptions();

public:

explicit ScopeFail(const F& f) : f(f) {}

ScopeFail(const ScopeFail&) = delete;

ScopeFail& operator =(const ScopeFail&) = delete;

// f() should not throw, else std::terminate is called.

~ScopeFail() {

if (uncaughtExceptionCount != std::uncaught_exceptions()) {

f();

}

}

};

struct Foo {

~Foo() {

try {

ScopeFail logFailure{[](){std::cout << "Fail 1\n";}};

// Scope succeeds,

// even if Foo is destroyed during stack unwinding

// (so when 0 < std::uncaught_exceptions())

// (or previously std::uncaught_exception() == true)

} catch (...) {

}

try {

ScopeFail logFailure{[](){std::cout << "Failure 2\n";}};

throw std::runtime_error("Failed"); // returned value

// of std::uncaught_exceptions increases

} catch (...) { // returned value of std::uncaught_exceptions decreases

}

}

};

int main()

{

try {

Foo foo;

Success 1

454

Output:

Section 83.4: Finally/ScopeExit

For cases when we don't want to write special classes to handle some resource, we may write a generic class:

And its example usage

Note (1): Some discussion about destructor definition has to be considered to handle exception:

~Finally() noexcept { f(); }: std::terminate is called in case of exception

~Finally() noexcept(noexcept(f())) { f(); }: terminate() is called only in case of exception during stack

unwinding.

~Finally() noexcept { try { f(); } catch (...) { /* ignore exception (might log it) */} } No

std::terminate called, but we cannot handle error (even for non stack unwinding).

throw std::runtime_error("Failed"); // std::uncaught_exceptions() == 1

} catch (...) { // std::uncaught_exceptions() == 0

}

}

Failure 2

template<typename Function>

class Finally final

{

public:

explicit Finally(Function f) : f(std::move(f)) {}

~Finally() { f(); } // (1) See below

Finally(const Finally&) = delete;

Finally(Finally&&) = default;

Finally& operator =(const Finally&) = delete;

Finally& operator =(Finally&&) = delete;

private:

Function f;

};

// Execute the function f when the returned object goes out of scope.

template<typename Function>

auto onExit(Function &&f) { return Finally<std::decay_t<Function>>{std::forward<Function>(f)}; }

void foo(std::vector<int>& v, int i)

{

// ...

v[i] += 42;

auto autoRollBackChange = onExit([&](){ v[i] -= 42; });

// ... code as recursive call `foo(v, i + 1)`

}

455

Chapter 84: RTTI: Run-Time Type
Information

Section 84.1: dynamic_cast

Use dynamic_cast<>() as a function, which helps you to cast down through an inheritance hierarchy (main

description).

If you must do some non-polymorphic work on some derived classes B and C, but received the base class A, then

write like this:

Section 84.2: The typeid keyword

The typeid keyword is a unary operator that yields run-time type information about its operand if the operand's

type is a polymorphic class type. It returns an lvalue of type const std::type_info. Top-level cv-qualification are

ignored.

typeid can also be applied to a type directly. In this case, first top-level references are stripped, then top-level cv-

qualification is ignored. Thus, the above example could have been written with typeid(Derived) instead of

typeid(Derived{}):

If typeid is applied to any expression that is not of polymorphic class type, the operand is not evaluated, and the

type info returned is for the static type.

class A { public: virtual ~A(){} };

class B: public A

{ public: void work4B(){} };

class C: public A

{ public: void work4C(){} };

void non_polymorphic_work(A* ap)

{

if (B* bp =dynamic_cast<B*>(ap))

bp->work4B();

if (C* cp =dynamic_cast<C*>(ap))

cp->work4C();

}

struct Base {

virtual ~Base() = default;

};

struct Derived : Base {};

Base* b = new Derived;

assert(typeid(*b) == typeid(Derived{})); // OK

assert(typeid(*b) == typeid(Derived{})); // OK

struct Base {

// note: no virtual destructor

};

struct Derived : Base {};

Derived d;

Base& b = d;

456

Section 84.3: Name of a type

You can retrieve the implementation defined name of a type in runtime by using the .name() member function of

the std::type_info object returned by typeid.

Output (implementation-defined):

Section 84.4: When to use which cast in c++

Use dynamic_cast for converting pointers/references within an inheritance hierarchy.

Use static_cast for ordinary type conversions.

Use reinterpret_cast for low-level reinterpreting of bit patterns. Use with extreme caution.

Use const_cast for casting away const/volatile. Avoid this unless you are stuck using a const-incorrect API.

assert(typeid(b) == typeid(Base)); // not Derived assert(typeid(std::declval<Base>())

== typeid(Base)); // OK because unevaluated

#include <iostream>

#include <typeinfo>

int main()

{

int speed = 110;

std::cout << typeid(speed).name() << '\n';

}

int

457

Chapter 85: Mutexes

Section 85.1: Mutex Types

C++1x offers a selection of mutex classes:

std::mutex - offers simple locking functionality.

std::timed_mutex - offers try_to_lock functionality

std::recursive_mutex - allows recursive locking by the same thread.

std::shared_mutex, std::shared_timed_mutex - offers shared and unique lock functionality.

Section 85.2: std::lock

std::lock uses deadlock avoidance algorithms to lock one or more mutexes. If an exception is thrown during a call

to lock multiple objects, std::lock unlocks the successfully locked objects before re-throwing the exception.

Section 85.3: std::unique_lock, std::shared_lock,
std::lock_guard

Used for the RAII style acquiring of try locks, timed try locks and recursive locks.

std::unique_lock allows for exclusive ownership of mutexes.

std::shared_lock allows for shared ownership of mutexes. Several threads can hold std::shared_locks on a

std::shared_mutex. Available from C++ 14.

std::lock_guard is a lightweight alternative to std::unique_lock and std::shared_lock.

std::lock(_mutex1, _mutex2);

#include <unordered_map>

#include <mutex>

#include <shared_mutex>

#include <thread>

#include <string>

#include <iostream>

class PhoneBook {

public:

std::string getPhoneNo(const std::string & name)

{

std::shared_lock<std::shared_timed_mutex> l(_protect);

auto it = _phonebook.find(name);

if (it != _phonebook.end())

return (*it).second;

return "";

}

void addPhoneNo (const std::string & name, const std::string & phone)

{

std::unique_lock<std::shared_timed_mutex> l(_protect);

_phonebook[name] = phone;

}

std::shared_timed_mutex _protect;

std::unordered_map<std::string,std::string> _phonebook;

458

Section 85.4: Strategies for lock classes: std::try_to_lock,
std::adopt_lock, std::defer_lock

When creating a std::unique_lock, there are three different locking strategies to choose from: std::try_to_lock,

std::defer_lock and std::adopt_lock

1. std::try_to_lock allows for trying a lock without blocking:

2. std::defer_lock allows for creating a lock structure without acquiring the lock. When locking more than one

mutex, there is a window of opportunity for a deadlock if two function callers try to acquire the locks at the

same time:

With the following code, whatever happens in the function, the locks are acquired and released in appropriate

order:

{

std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);

std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);

lock1.lock()

lock2.lock(); // deadlock here std::cout

<< "Locked! << std::endl;

//...

}

};

{

std::atomic_int temp {0};

std::mutex _mutex;

std::thread t([&](){

while(temp!= -1){

std::this_thread::sleep_for(std::chrono::seconds(5));

std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);

if(lock.owns_lock()){

//do something temp=0;

}

}

});

while (true)

{

std::this_thread::sleep_for(std::chrono::seconds(1));

std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);

if(lock.owns_lock()){

if (temp < INT_MAX){

++temp;

}

std::cout << temp << std::endl;

}

}

}

{

std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);

std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);

459

3. std::adopt_lock does not attempt to lock a second time if the calling thread currently owns the lock.

Something to keep in mind is that std::adopt_lock is not a substitute for recursive mutex usage. When the lock goes

out of scope the mutex is released.

Section 85.5: std::mutex

std::mutex is a simple, non-recursive synchronization structure that is used to protect data which is accessed by

multiple threads.

Section 85.6: std::scoped_lock (C++ 17)

std::scoped_lock provides RAII style semantics for owning one more mutexes, combined with the lock avoidance

algorithms used by std::lock. When std::scoped_lock is destroyed, mutexes are released in the reverse order

from which they where acquired.

std::lock(lock1,lock2); // no deadlock possible

std::cout << "Locked! << std::endl;

//...

}

{

std::unique_lock<std::mutex> lock1(_mutex1, std::adopt_lock);

std::unique_lock<std::mutex> lock2(_mutex2, std::adopt_lock);

std::cout << "Locked! << std::endl;

//...

}

std::atomic_int temp{0};

std::mutex _mutex;

std::thread t([&](){

while(temp!= -1){

std::this_thread::sleep_for(std::chrono::seconds(5));

std::unique_lock<std::mutex> lock(_mutex);

temp=0;

}

});

while (true)

{

std::this_thread::sleep_for(std::chrono::milliseconds(1));

std::unique_lock<std::mutex> lock(_mutex, std::try_to_lock);

if (temp < INT_MAX)

temp++;

cout << temp << endl;

}

{

std::scoped_lock lock{_mutex1,_mutex2};

//do something

}

460

Chapter 86: Recursive Mutex

Section 86.1: std::recursive_mutex

Recursive mutex allows the same thread to recursively lock a resource - up to an unspecified limit.

There are very few real-word justifications for this. Certain complex implementations might need to call an

overloaded copy of a function without releasing the lock.

std::atomic_int temp{0};

std::recursive_mutex _mutex;

//launch_deferred launches asynchronous tasks on the same thread id auto

future1 = std::async(

std::launch::deferred,

[&]()

{

std::cout << std::this_thread::get_id() << std::endl;

std::this_thread::sleep_for(std::chrono::seconds(3));

std::unique_lock<std::recursive_mutex> lock(_mutex);

temp=0;

});

auto future2 = std::async(

std::launch::deferred,

[&]()

{

std::cout << std::this_thread::get_id() << std::endl;

while (true)

{

std::this_thread::sleep_for(std::chrono::milliseconds(1));

std::unique_lock<std::recursive_mutex> lock(_mutex, std::try_to_lock);

if (temp < INT_MAX)

temp++;

cout << temp << endl;

}

});

future1.get();

future2.get();

461

Chapter 87: Semaphore
Semaphores are not available in C++ as of now, but can easily be implemented with a mutex and a condition

variable.

This example was taken from:

C++0x has no semaphores? How to synchronize threads?

Section 87.1: Semaphore C++ 11

Section 87.2: Semaphore class in action

The following function adds four threads. Three threads compete for the semaphore, which is set to a count of one.

A slower thread calls notify_one(), allowing one of the waiting threads to proceed.

The result is that s1 immediately starts spinning, causing the Semaphore's usage count to remain below 1. The

other threads wait in turn on the condition variable until notify() is called.

#include <mutex>

#include <condition_variable>

class Semaphore {

public:

Semaphore (int count_ = 0)

: count(count_)

{

}

inline void notify(int tid) {

std::unique_lock<std::mutex> lock(mtx);

count++;

cout << "thread " << tid << " notify" << endl;

//notify the waiting thread

cv.notify_one();

}

inline void wait(int tid) {

std::unique_lock<std::mutex> lock(mtx);

while(count == 0) {

cout << "thread " << tid << " wait" << endl;

//wait on the mutex until notify is called

cv.wait(lock);

cout << "thread " << tid << " run" << endl;

}

count--;

}

private:

std::mutex mtx;

std::condition_variable cv;

int count;

};

int main()

{

Semaphore sem(1);

thread s1([&]() {

http://stackoverflow.com/questions/4792449/c0x-has-no-semaphores-how-to-synchronize-threads

462

while(true) {

this_thread::sleep_for(std::chrono::seconds(5));

sem.wait(1);

}

});

thread s2([&]() {

while(true){

sem.wait(2);

}

});

thread s3([&]() {

while(true) {

this_thread::sleep_for(std::chrono::milliseconds(600));

sem.wait(3);

}

});

thread s4([&]() {

while(true) {

this_thread::sleep_for(std::chrono::seconds(5));

sem.notify(4);

}

});

s1.join();

s2.join();

s3.join();

s4.join();

...

}

463

Chapter 88: Futures and Promises
Promises and Futures are used to ferry a single object from one thread to another.

A std::promise object is set by the thread which generates the result.

A std::future object can be used to retrieve a value, to test to see if a value is available, or to halt execution until

the value is available.

Section 88.1: Async operation classes

std::async: performs an asynchronous operation.

std::future: provides access to the result of an asynchronous operation.

std::promise: packages the result of an asynchronous operation.

std::packaged_task: bundles a function and the associated promise for its return type.

Section 88.2: std::future and std::promise

The following example sets a promise to be consumed by another thread:

Section 88.3: Deferred async example

This code implements a version of std::async, but it behaves as if async were always called with the deferred

launch policy. This function also does not have async's special future behavior; the returned future can be

destroyed without ever acquiring its value.

{

auto promise = std::promise<std::string>();

auto producer = std::thread([&]

{

promise.set_value("Hello World");

});

auto future = promise.get_future(); auto

consumer = std::thread([&]

{

std::cout << future.get();

});

producer.join();

consumer.join();

}

template<typename F>

auto async_deferred(F&& func) -> std::future<decltype(func())>

{

using result_type = decltype(func());

auto promise = std::promise<result_type>();

auto future = promise.get_future();

std::thread(std::bind([=](std::promise<result_type>& promise)

{

try

464

Section 88.4: std::packaged_task and std::future

std::packaged_task bundles a function and the associated promise for its return type:

The thread starts running immediately. We can either detach it, or have join it at the end of the scope. When the

function call to std::thread finishes, the result is ready.

Note that this is slightly different from std::async where the returned std::future when destructed will actually

block until the thread is finished.

Section 88.5: std::future_error and std::future_errc

If constraints for std::promise and std::future are not met an exception of type std::future_error is thrown.

The error code member in the exception is of type std::future_errc and values are as below, along with some test

cases:

Inactive promise:

{

promise.set_value(func());

// Note: Will not work with std::promise<void>. Needs some meta-template programming

which is out of scope for this example.

}

catch(...)

{

promise.set_exception(std::current_exception());

}

}, std::move(promise))).detach();

return future;

}

template<typename F>

auto async_deferred(F&& func) -> std::future<decltype(func())>

{

auto task = std::packaged_task<decltype(func())()>(std::forward<F>(func));

auto future = task.get_future();

std::thread(std::move(task)).detach();

return std::move(future);

}

enum class future_errc {

broken_promise = /* the task is no longer shared */,

future_already_retrieved = /* the answer was already retrieved */,

promise_already_satisfied = /* the answer was stored already */,

no_state = /* access to a promise in non-shared state

*/

};

int test()

{

std::promise<int> pr;

return 0; // returns ok

}

465

Active promise, unused:

Double retrieval:

Setting std::promise value twice:

Section 88.6: std::future and std::async

In the following naive parallel merge sort example, std::async is used to launch multiple parallel merge_sort tasks.

std::future is used to wait for the results and synchronize them:

int test()

{

std::promise<int> pr;

auto fut = pr.get_future(); //blocks indefinitely!

return 0;

}

int test()

{

std::promise<int> pr;

auto fut1 = pr.get_future();

try{

auto fut2 = pr.get_future();

return 0;

}

catch(const std::future_error& e)

{

cout << e.what() << endl;

promise or packaged_task."

return -1;

}

return fut2.get();

}

// second attempt to get future

// Error: "The future has already been retrieved from the

int test()

{

std::promise<int> pr;

auto fut = pr.get_future();

try{

std::promise<int> pr2(std::move(pr));

pr2.set_value(10);

pr2.set_value(10); // second attempt to set promise throws exception

}

catch(const std::future_error& e)

{

cout << e.what() << endl; // Error: "The state of the promise has already been

set."

return -1;

}

return fut.get();

}

#include <iostream>

using namespace std;

void merge(int low,int mid,int high, vector<int>&num)

466

{

vector<int> copy(num.size());

int h,i,j,k;

h=low;

i=low;

j=mid+1;

while((h<=mid)&&(j<=high))

{

if(num[h]<=num[j])

{

}

else

{

}

copy[i]=num[h];

h++;

copy[i]=num[j];

j++;

i++;

}

if(h>mid)

{

for(k=j;k<=high;k++)

{

copy[i]=num[k];

i++;

}

}

else

{

for(k=h;k<=mid;k++)

{

copy[i]=num[k];

i++;

}

}

for(k=low;k<=high;k++)

swap(num[k],copy[k]);

}

void merge_sort(int low,int high,vector<int>& num)

{

int mid;

if(low<high)

{

mid = low + (high-low)/2;

auto future1 = std::async(std::launch::deferred,[&]()

{

merge_sort(low,mid,num);

});

auto future2 = std::async(std::launch::deferred, [&]()

{

merge_sort(mid+1,high,num) ;

});

future1.get();

future2.get();

merge(low,mid,high,num);

}

}

467

Note: In the example std::async is launched with policy std::launch_deferred. This is to avoid a new thread

being created in every call. In the case of our example, the calls to std::async are made out of order, the they

synchronize at the calls for std::future::get().

std::launch_async forces a new thread to be created in every call.

The default policy is std::launch::deferred| std::launch::async, meaning the implementation determines the

policy for creating new threads.

468

Chapter 89: Atomic Types

Section 89.1: Multi-threaded Access

An atomic type can be used to safely read and write to a memory location shared between two threads.

A Bad example that is likely to cause a data race:

The above example may cause a corrupted read and can lead to undefined behavior.

An example with thread safety:

#include <thread>

#include <iostream>

//function will add all values including and between 'a' and 'b' to 'result' void

add(int a, int b, int * result) {

for (int i = a; i <= b; i++) {

*result += i;

}

}

int main() {

//a primitive data type has no thread safety int

shared = 0;

//create a thread that may run parallel to the 'main' thread

//the thread will run the function 'add' defined above with parameters a = 1, b = 100, result =

&shared

//analogous to 'add(1,100, &shared);' std::thread

addingThread(add, 1, 100, &shared);

//attempt to print the value of 'shared' to console

//main will keep repeating this until the addingThread becomes joinable while

(!addingThread.joinable()) {

//this may cause undefined behavior or print a corrupted value

//if the addingThread tries to write to 'shared' while the main thread is reading it std::cout

<< shared << std::endl;

}

//rejoin the thread at the end of execution for cleaning purposes

addingThread.join();

return 0;

}

#include <atomic>

#include <thread>

#include <iostream>

//function will add all values including and between 'a' and 'b' to 'result'

void add(int a, int b, std::atomic<int> * result) {

for (int i = a; i <= b; i++) {

//atomically add 'i' to result

result->fetch_add(i);

}

469

}

int main() {

//atomic template used to store non-atomic objects

std::atomic<int> shared = 0;

//create a thread that may run parallel to the 'main' thread

//the thread will run the function 'add' defined above with parameters a = 1, b = 100, result =

&shared

//analogous to 'add(1,100, &shared);'

std::thread addingThread(add, 1, 10000, &shared);

//print the value of 'shared' to console

//main will keep repeating this until the addingThread becomes joinable

while (!addingThread.joinable()) {

//safe way to read the value of shared atomically for thread safe read

std::cout << shared.load() << std::endl;

}

//rejoin the thread at the end of execution for cleaning purposes

addingThread.join();

return 0;

}

The above example is safe because all store() and load() operations of the atomic data type protect the

encapsulated int from simultaneous access.

470

Chapter 90: Type Erasure
Type erasure is a set of techniques for creating a type that can provide a uniform interface to various underlying

types, while hiding the underlying type information from the client. std::function<R(A...)>, which has the ability

to hold callable objects of various types, is perhaps the best known example of type erasure in C++.

Section 90.1: A move-only `std::function`

std::function type erases down to a few operations. One of the things it requires is that the stored value be

copyable.

This causes problems in a few contexts, like lambdas storing unique ptrs. If you are using the std::function in a

context where copying doesn't matter, like a thread pool where you dispatch tasks to threads, this requirement can

add overhead.

In particular, std::packaged_task<Sig> is a callable object that is move-only. You can store a

std::packaged_task<R(Args...)> in a std::packaged_task<void(Args...)>, but that is a pretty heavy-weight and

obscure way to create a move-only callable type-erasure class.

Thus the task. This demonstrates how you could write a simple std::function type. I omitted the copy constructor

(which would involve adding a clone method to details::task_pimpl<...> as well).

template<class Sig>

struct task;

// putting it in a namespace allows us to specialize it nicely for void return value:

namespace details {

template<class R, class...Args>

struct task_pimpl {

virtual R invoke(Args&&...args) const = 0;

virtual ~task_pimpl() {};

virtual const std::type_info& target_type() const = 0;

};

// store an F. invoke(Args&&...) calls the f

template<class F, class R, class...Args>

struct task_pimpl_impl:task_pimpl<R,Args...> {

F f;

template<class Fin>

task_pimpl_impl(Fin&& fin):f(std::forward<Fin>(fin)) {}

virtual R invoke(Args&&...args) const final override {

return f(std::forward<Args>(args)...);

}

virtual const std::type_info& target_type() const final override {

return typeid(F);

}

};

// the void version discards the return value of f:

template<class F, class...Args>

struct task_pimpl_impl<F,void,Args...>:task_pimpl<void,Args...> {

F f;

template<class Fin>

task_pimpl_impl(Fin&& fin):f(std::forward<Fin>(fin)) {}

virtual void invoke(Args&&...args) const final override {

f(std::forward<Args>(args)...);

}

471

virtual const std::type_info& target_type() const final override {

return typeid(F);

}

};

};

template<class R, class...Args>

struct task<R(Args...)> {

// semi-regular:

task()=default;

task(task&&)=default;

// no copy

private:

// aliases to make some SFINAE code below less ugly:

template<class F>

using call_r = std::result_of_t<F const&(Args...)>;

template<class F>

using is_task = std::is_same<std::decay_t<F>, task>;

public:

// can be constructed from a callable F

template<class F,

// that can be invoked with Args... and converted-to-R:

class= decltype((R)(std::declval<call_r<F>>())),

// and is not this same type:

std::enable_if_t<!is_task<F>{}, int>* = nullptr

>

task(F&& f):

m_pImpl(make_pimpl(std::forward<F>(f)))

{}

// the meat: the call operator

R operator()(Args... args)const {

return m_pImpl->invoke(std::forward<Args>(args)...);

}

explicit operator bool() const {

return (bool)m_pImpl;

}

void swap(task& o) {

std::swap(m_pImpl, o.m_pImpl);

}

template<class F>

void assign(F&& f) {

m_pImpl = make_pimpl(std::forward<F>(f));

}

// Part of the std::function interface: const

std::type_info& target_type() const {

if (!*this) return typeid(void);

return m_pImpl->target_type();

}

template< class T >

T* target() {

return target_impl<T>();

}

template< class T >

const T* target() const {

return target_impl<T>();

}

// compare with nullptr :

friend bool operator==(std::nullptr_t, task const& self) { return !self; }

friend bool operator==(task const& self, std::nullptr_t) { return !self; }

friend bool operator!=(std::nullptr_t, task const& self) { return !!self; }

472

emplace_move_to(void*) =

To make this library-worthy, you'd want to add in a small buffer optimization, so it does not store every callable on

the heap.

Adding SBO would require a non-default task(task&&), some std::aligned_storage_t within the class, a m_pImpl

unique_ptr with a deleter that can be set to destroy-only (and not return the memory to the heap), and a

0 in the task_pimpl.

live example of the above code (with no SBO).

Section 90.2: Erasing down to a Regular type with manual
vtable

C++ thrives on what is known as a Regular type (or at least Pseudo-Regular).

A Regular type is a type that can be constructed and assigned-to and assigned-from via copy or move, can be

destroyed, and can be compared equal-to. It can also be constructed from no arguments. Finally, it also has

support for a few other operations that are highly useful in various std algorithms and containers.

This is the root paper, but in C++11 would want to add std::hash support.

I will use the manual vtable approach to type erasure here.

friend bool operator!=(task const& self, std::nullptr_t) { return !!self; }

private:

template<class T>

using pimpl_t = details::task_pimpl_impl<T, R, Args...>;

template<class F>

static auto make_pimpl(F&& f) {

using dF=std::decay_t<F>;

using pImpl_t = pimpl_t<dF>;

return std::make_unique<pImpl_t>(std::forward<F>(f));

}

std::unique_ptr<details::task_pimpl<R,Args...>> m_pImpl;

template< class T >

T* target_impl() const {

return dynamic_cast<pimpl_t<T>*>(m_pImpl.get());

}

};

using dtor_unique_ptr = std::unique_ptr<void, void(*)(void*)>;

template<class T, class...Args>

dtor_unique_ptr make_dtor_unique_ptr(Args&&... args) {

return {new T(std::forward<Args>(args)...), [](void* self){ delete static_cast<T*>(self); }};

}

struct regular_vtable {

void(*copy_assign)(void* dest, void const* src); // T&=(T const&)

void(*move_assign)(void* dest, void* src); // T&=(T&&)

bool(*equals)(void const* lhs, void const* rhs); // T const&==T const&

bool(*order)(void const* lhs, void const* rhs); // std::less<T>{}(T const&, T const&)

std::size_t(*hash)(void const* self); // std::hash<T>{}(T const&)

std::type_info const&(*type)(); // typeid(T)

dtor_unique_ptr(*clone)(void const* self); // T(T const&)

};

template<class T>

regular_vtable make_regular_vtable() noexcept {

return {

http://coliru.stacked-crooked.com/a/6e6811e8626a37d1
http://www.stepanovpapers.com/DeSt98.pdf

473

[](void* dest, void const* src){ *static_cast<T*>(dest) = *static_cast<T const*>(src); },

[](void* dest, void* src){ *static_cast<T*>(dest) = std::move(*static_cast<T*>(src)); },

[](void const* lhs, void const* rhs){ return *static_cast<T const*>(lhs) == *static_cast<T

const*>(rhs); },

[](void const* lhs, void const* rhs) { return std::less<T>{}(*static_cast<T

const*>(lhs),*static_cast<T const*>(rhs)); },

[](void const* self){ return std::hash<T>{}(*static_cast<T const*>(self)); },

[]()->decltype(auto){ return typeid(T); },

[](void const* self){ return make_dtor_unique_ptr<T>(*static_cast<T const*>(self)); }

};

}

template<class T>

regular_vtable const* get_regular_vtable() noexcept {

static const regular_vtable vtable=make_regular_vtable<T>();

return &vtable;

}

struct regular_type {

using self=regular_type;

regular_vtable const* vtable = 0;

dtor_unique_ptr ptr{nullptr, [](void*){}};

bool empty() const { return !vtable; }

template<class T, class...Args>

void emplace(Args&&... args) {

ptr = make_dtor_unique_ptr<T>(std::forward<Args>(args)...);

if (ptr)

vtable = get_regular_vtable<T>();

else

vtable = nullptr;

}

friend bool operator==(regular_type const& lhs, regular_type const& rhs) { if

(lhs.vtable != rhs.vtable) return false;

return lhs.vtable->equals(lhs.ptr.get(), rhs.ptr.get());

}

bool before(regular_type const& rhs) const {

auto const& lhs = *this;

if (!lhs.vtable || !rhs.vtable)

return std::less<regular_vtable const*>{}(lhs.vtable,rhs.vtable); if

(lhs.vtable != rhs.vtable)

return lhs.vtable->type().before(rhs.vtable->type());

return lhs.vtable->order(lhs.ptr.get(), rhs.ptr.get());

}

// technically friend bool operator< that calls before is also required

std::type_info const* type() const {

if (!vtable) return nullptr;

return &vtable->type();

}

regular_type(regular_type&& o):

vtable(o.vtable),

ptr(std::move(o.ptr))

{

o.vtable = nullptr;

}

friend void swap(regular_type& lhs, regular_type& rhs){

std::swap(lhs.ptr, rhs.ptr);

std::swap(lhs.vtable, rhs.vtable);

}

regular_type& operator=(regular_type&& o) {

if (o.vtable == vtable) {

474

vtable->move_assign(ptr.get(), o.ptr.get());

return *this;

}

auto tmp = std::move(o);

swap(*this, tmp);

return *this;

}

regular_type(regular_type const& o):

vtable(o.vtable),

ptr(o.vtable?o.vtable->clone(o.ptr.get()):dtor_unique_ptr{nullptr, [](void*){}})

{

if (!ptr && vtable) vtable = nullptr;

}

regular_type& operator=(regular_type const& o) {

if (o.vtable == vtable) {

vtable->copy_assign(ptr.get(), o.ptr.get());

return *this;

}

auto tmp = o;

swap(*this, tmp);

return *this;

}

std::size_t hash() const {

if (!vtable) return 0;

return vtable->hash(ptr.get());

}

template<class T,

std::enable_if_t< !std::is_same<std::decay_t<T>, regular_type>{}, int>* =nullptr

>

regular_type(T&& t) {

emplace<std::decay_t<T>>(std::forward<T>(t));

}

};

namespace std {

template<>

struct hash<regular_type> {

std::size_t operator()(regular_type const& r)const {

return r.hash();

}

};

template<>

struct less<regular_type> {

bool operator()(regular_type const& lhs, regular_type const& rhs) const { return

lhs.before(rhs);

}

};

}

live example.

Such a regular type can be used as a key for a std::map or a std::unordered_map that accepts anything regular for a

key, like:

would be basically a map from anothing regular, to anything copyable.

Unlike any, my regular_type does no small object optimization nor does it support getting the original data back.

Getting the original type back isn't hard.

std::map<regular_type, std::any>

http://coliru.stacked-crooked.com/a/28ef6be761012a81

475

Small object optimization requires that we store an aligned storage buffer within the regular_type, and carefully

tweak the deleter of the ptr to only destroy the object and not delete it.

I would start at make_dtor_unique_ptr and teach it how to sometimes store the data in a buffer, and then in the

heap if no room in the buffer. That may be sufficient.

Section 90.3: Basic mechanism

Type erasure is a way to hide the type of an object from code using it, even though it is not derived from a common

base class. In doing so, it provides a bridge between the worlds of static polymorphism (templates; at the place of

use, the exact type must be known at compile time, but it need not be declared to conform to an interface at

definition) and dynamic polymorphism (inheritance and virtual functions; at the place of use, the exact type need

not be known at compile time, but must be declared to conform to an interface at definition).

The following code shows the basic mechanism of type erasure.

At the use site, only the above definition need to be visible, just as with base classes with virtual functions. For

example:

Note that this is not a template, but a normal function that only needs to be declared in a header file, and can be

defined in an implementation file (unlike templates, whose definition must be visible at the place of use).

At the definition of the concrete type, nothing needs to be known about Printable, it just needs to conform to an

#include <ostream>

class Printable

{

public:

template <typename T>

Printable(T value) : pValue(new Value<T>(value)) {}

~Printable() { delete pValue; }

void print(std::ostream &os) const { pValue->print(os); }

private:

Printable(Printable const &) /* in C++1x: =delete */; // not implemented

void operator = (Printable const &) /* in C++1x: =delete */; // not implemented

struct ValueBase

{

virtual ~ValueBase() = default;

virtual void print(std::ostream &) const = 0;

};

template <typename T>

struct Value : ValueBase

{

Value(T const &t) : v(t) {}

virtual void print(std::ostream &os) const { os << v; } T

v;

};

ValueBase *pValue;

};

#include <iostream>

void print_value(Printable const &p)

{

p.print(std::cout);

}

476

interface, as with templates:

We can now pass an object of this class to the function defined above:

Section 90.4: Erasing down to a contiguous bu er of T

Not all type erasure involves virtual inheritance, allocations, placement new, or even function pointers.

What makes type erasure type erasure is that it describes a (set of) behavior(s), and takes any type that supports

that behavior and wraps it up. All information that isn't in that set of behaviors is "forgotten" or "erased".

An array_view takes its incoming range or container type and erases everything except the fact it is a contiguous

buffer of T.

// helper traits for SFINAE:

template<class T>

using data_t = decltype(std::declval<T>().data());

template<class Src, class T>

using compatible_data = std::integral_constant<bool, std::is_same< data_t<Src>, T* >{} ||

std::is_same< data_t<Src>, std::remove_const_t<T>* >{}>;

template<class T>

struct array_view {

// the core of the class:

T* b=nullptr;

T* e=nullptr;

T* begin() const { return b; }

T* end() const { return e; }

// provide the expected methods of a good contiguous range: T*

data() const { return begin(); }

bool empty() const { return begin()==end(); }

std::size_t size() const { return end()-begin(); }

T& operator[](std::size_t i)const{ return begin()[i]; }

T& front()const{ return *begin(); }

T& back()const{ return *(end()-1); }

// useful helpers that let you generate other ranges from this one

// quickly and safely:

array_view without_front(std::size_t i=1) const {

i = (std::min)(i, size());

return {begin()+i, end()};

}

array_view without_back(std::size_t i=1) const {

i = (std::min)(i, size());

return {begin(), end()-i};

}

struct MyType { int i; };

ostream& operator << (ostream &os, MyType const &mc)

{

return os << "MyType {" << mc.i << "}";

}

MyType foo = { 42 };

print_value(foo);

477

// array_view is plain old data, so default copy:

array_view(array_view const&)=default;

// generates a null, empty range:

array_view()=default;

// final constructor:

array_view(T* s, T* f):b(s),e(f) {}

// start and length is useful in my experience:

array_view(T* s, std::size_t length):array_view(s, s+length) {}

// SFINAE constructor that takes any .data() supporting container

// or other range in one fell swoop:

template<class Src,

std::enable_if_t< compatible_data<std::remove_reference_t<Src>&, T >{}, int>* =nullptr,

std::enable_if_t< !std::is_same<std::decay_t<Src>, array_view >{}, int>* =nullptr

>

array_view(Src&& src):

array_view(src.data(), src.size())

{}

// array constructor:

template<std::size_t N>

array_view(T(&arr)[N]):array_view(arr, N) {}

// initializer list, allowing {} based:

template<class U,

std::enable_if_t< std::is_same<const U, T>{}, int>* =nullptr

>

array_view(std::initializer_list<U> il):array_view(il.begin(), il.end()) {}

};

an array_view takes any container that supports .data() returning a pointer to T and a .size() method, or an

array, and erases it down to being a random-access range over contiguous Ts.

It can take a std::vector<T>, a std::string<T> a std::array<T, N> a T[37], an initializer list (including {} based

ones), or something else you make up that supports it (via T* x.data() and size_t x.size()).

In this case, the data we can extract from the thing we are erasing, together with our "view" non-owning state,

means we don't have to allocate memory or write custom type-dependent functions.

Live example.

An improvement would be to use a non-member data and a non-member size in an ADL-enabled context.

Section 90.5: Type erasing type erasure with std::any

This example uses C++14 and boost::any. In C++17 you can swap in std::any instead.

The syntax we end up with is:

which is almost optimal.

const auto print =

make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p << "\n"; });

super_any<decltype(print)> a = 7;

(a->*print)(std::cout);

http://coliru.stacked-crooked.com/a/c9f8e013a309ca66

478

This example is based off of work by @dyp and @cpplearner as well as my own.

First we use a tag to pass around types:

This trait class gets the signature stored with an any_method:

This creates a function pointer type, and a factory for said function pointers, given an any_method:

any_method_function::type is the type of a function pointer we will store alongside the instance.

any_method_function::operator() takes a tag_t<T> and writes a custom instance of the

any_method_function::type that assumes the any& is going to be a T.

We want to be able to type-erase more than one method at a time. So we bundle them up in a tuple, and write a

helper wrapper to stick the tuple into static storage on a per-type basis and maintain a pointer to them.

template<class T>struct tag_t{constexpr tag_t(){};};

template<class T>constexpr tag_t<T> tag{};

template<class any_method>

using any_sig_from_method = typename any_method::signature;

template<class any_method, class Sig=any_sig_from_method<any_method>>

struct any_method_function;

template<class any_method, class R, class...Args>

struct any_method_function<any_method, R(Args...)>

{

template<class T>

using decorate = std::conditional_t< any_method::is_const, T const, T >;

using any = decorate<boost::any>;

using type = R(*)(any&, any_method const*, Args&&...);

template<class T>

type operator()(tag_t<T>)const{

return +[](any& self, any_method const* method, Args&&...args) {

return (*method)(boost::any_cast<decorate<T>&>(self), decltype(args)(args)...);

};

}

};

template<class...any_methods>

using any_method_tuple = std::tuple< typename any_method_function<any_methods>::type... >;

template<class...any_methods, class T>

any_method_tuple<any_methods...> make_vtable(tag_t<T>) {

return std::make_tuple(

any_method_function<any_methods>{}(tag<T>)...

);

}

template<class...methods>

struct any_methods {

private:

any_method_tuple<methods...> const* vtable = 0;

template<class T>

static any_method_tuple<methods...> const* get_vtable(tag_t<T>) {

static const auto table = make_vtable<methods...>(tag<T>);

return &table;

http://coliru.stacked-crooked.com/a/2ab8d7e41d24e616
http://stackoverflow.com/a/38865269/1774667

479

We could specialize this for a cases where the vtable is small (for example, 1 item), and use direct pointers stored

in-class in those cases for efficiency.

Now we start the super_any. I use super_any_t to make the declaration of super_any a bit easier.

This searches the methods that the super any supports for SFINAE and better error messages:

template<class super_any, class method>

struct super_method_applies_helper : std::false_type {};

template<class M0, class...Methods, class method>

struct super_method_applies_helper<super_any_t<M0, Methods...>, method> :

std::integral_constant<bool, std::is_same<M0, method>{} ||

super_method_applies_helper<super_any_t<Methods...>, method>{}>

{};

template<class...methods, class method>

auto super_method_test(super_any_t<methods...> const&, tag_t<method>)

{

return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method

>{} && method::is_const >{};

}

template<class...methods, class method>

auto super_method_test(super_any_t<methods...>&, tag_t<method>)

{

return std::integral_constant<bool, super_method_applies_helper< super_any_t<methods...>, method

>{} >{};

}

template<class super_any, class method>

struct super_method_applies:

decltype(super_method_test(std::declval<super_any>(), tag<method>))

{};

Next we create the any_method type. An any_method is a pseudo-method-pointer. We create it globally and constly

using syntax like:

or in C++17:

}

public:

any_methods() = default;

template<class T>

any_methods(tag_t<T>): vtable(get_vtable(tag<T>)) {}

any_methods& operator=(any_methods const&)=default;

template<class T>

void change_type(tag_t<T> ={}) { vtable = get_vtable(tag<T>); }

template<class any_method>

auto get_invoker(tag_t<any_method> ={}) const {

return std::get<typename any_method_function<any_method>::type>(*vtable);

}

};

template<class...methods>

struct super_any_t;

const auto print=make_any_method([](auto&&self, auto&&os){ os << self; });

480

Note that using a non-lambda can make things hairy, as we use the type for a lookup step. This can be fixed, but

would make this example longer than it already is. So always initialize an any method from a lambda, or from a

type parametarized on a lambda.

template<class Sig, bool const_method, class F>

struct any_method {

using signature=Sig;

enum{is_const=const_method};

private:

F f;

public:

template<class Any,

// SFINAE testing that one of the Anys's matches this type:

std::enable_if_t< super_method_applies< Any&&, any_method >{}, int>* =nullptr

>

friend auto operator->*(Any&& self, any_method const& m) {

// we don't use the value of the any_method, because each any_method has

// a unique type (!) and we check that one of the auto*'s in the super_any

// already has a pointer to us. We then dispatch to the corresponding

// any_method_data...

return [&self, invoke = self.get_invoker(tag<any_method>), m](auto&&...args)->decltype(auto)

{

return invoke(decltype(self)(self), &m, decltype(args)(args)...);

};

}

any_method(F fin):f(std::move(fin)) {}

template<class...Args>

decltype(auto) operator()(Args&&...args)const {

return f(std::forward<Args>(args)...);

}

};

A factory method, not needed in C++17 I believe:

This is the augmented any. It is both an any, and it carries around a bundle of type-erasure function pointers that

change whenever the contained any does:

const any_method print=[](auto&&self, auto&&os){ os << self; };

template<class Sig, bool is_const=false, class F>

any_method<Sig, is_const, std::decay_t<F>>

make_any_method(F&& f) {

return {std::forward<F>(f)};

}

template<class... methods>

struct super_any_t:boost::any, any_methods<methods...> {

using vtable=any_methods<methods...>;

public:

template<class T,

std::enable_if_t< !std::is_base_of<super_any_t, std::decay_t<T>>{}, int> =0

>

super_any_t(T&& t):

boost::any(std::forward<T>(t))

{

using dT=std::decay_t<T>;

481

Because we store the any_methods as const objects, this makes making a super_any a bit easier:

Test code:

live example.

Originally posted here in a SO self question & answer (and people noted above helped with the implementation).

this->change_type(tag<dT>);

}

boost::any& as_any()&{return *this;}

boost::any&& as_any()&&{return std::move(*this);}

boost::any const& as_any()const&{return *this;}

super_any_t()=default;

super_any_t(super_any_t&& o):

boost::any(std::move(o.as_any())),

vtable(o)

{}

super_any_t(super_any_t const& o):

boost::any(o.as_any()),

vtable(o)

{}

template<class S,

std::enable_if_t< std::is_same<std::decay_t<S>, super_any_t>{}, int> =0

>

super_any_t(S&& o):

boost::any(std::forward<S>(o).as_any()),

vtable(o)

{}

super_any_t& operator=(super_any_t&&)=default;

super_any_t& operator=(super_any_t const&)=default;

template<class T,

std::enable_if_t< !std::is_same<std::decay_t<T>, super_any_t>{}, int>* =nullptr

>

super_any_t& operator=(T&& t) {

((boost::any&)*this) = std::forward<T>(t);

using dT=std::decay_t<T>;

this->change_type(tag<dT>);

return *this;

}

};

template<class...Ts>

using super_any = super_any_t< std::remove_cv_t<Ts>... >;

const auto print = make_any_method<void(std::ostream&)>([](auto&& p, std::ostream& t){ t << p <<

"\n"; });

const auto wprint = make_any_method<void(std::wostream&)>([](auto&& p, std::wostream& os){ os << p

<< L"\n"; });

int main()

{

super_any<decltype(print), decltype(wprint)> a = 7;

super_any<decltype(print), decltype(wprint)> a2 = 7;

(a->*print)(std::cout);

(a->*wprint)(std::wcout);

}

http://coliru.stacked-crooked.com/a/fbd10edb3336cce1
http://stackoverflow.com/a/38837687/1774667

482

Chapter 91: Explicit type conversions
An expression can be explicitly converted or cast to type T using dynamic_cast<T>, static_cast<T>,

reinterpret_cast<T>, or const_cast<T>, depending on what type of cast is intended.

C++ also supports function-style cast notation, T(expr), and C-style cast notation, (T)expr.

Section 91.1: C-style casting

C-Style casting can be considered 'Best effort' casting and is named so as it is the only cast which could be used in

C. The syntax for this cast is (NewType)variable.

Whenever this cast is used, it uses one of the following c++ casts (in order):

const_cast<NewType>(variable)

static_cast<NewType>(variable)

const_cast<NewType>(static_cast<const NewType>(variable))

reinterpret_cast<const NewType>(variable)

const_cast<NewType>(reinterpret_cast<const NewType>(variable))

Functional casting is very similar, though as a few restrictions as the result of its syntax: NewType(expression). As a

result, only types without spaces can be cast to.

It's better to use new c++ cast, because s more readable and can be spotted easily anywhere inside a C++ source

code and errors will be detected in compile-time, instead in run-time.

As this cast can result in unintended reinterpret_cast, it is often considered dangerous.

Section 91.2: Casting away constness

A pointer to a const object can be converted to a pointer to non-const object using the const_cast keyword. Here

we use const_cast to call a function that is not const-correct. It only accepts a non-const char* argument even

though it never writes through the pointer:

const_cast to reference type can be used to convert a const-qualified lvalue into a non-const-qualified value.

const_cast is dangerous because it makes it impossible for the C++ type system to prevent you from trying to

modify a const object. Doing so results in undefined behavior.

Section 91.3: Base to derived conversion

A pointer to base class can be converted to a pointer to derived class using static_cast. static_cast does not do

any run-time checking and can lead to undefined behaviour when the pointer does not actually point to the desired

type.

void bad_strlen(char*);

const char* s = "hello, world!";

bad_strlen(s); // compile error

bad_strlen(const_cast<char*>(s)); // OK, but it's better to make bad_strlen accept const char*

const int x = 123;

int& mutable_x = const_cast<int&>(x);

mutable_x = 456; // may compile, but produces *undefined behavior*

483

Likewise, a reference to base class can be converted to a reference to derived class using static_cast.

If the source type is polymorphic, dynamic_cast can be used to perform a base to derived conversion. It performs a

run-time check and failure is recoverable instead of producing undefined behaviour. In the pointer case, a null

pointer is returned upon failure. In the reference case, an exception is thrown upon failure of type std::bad_cast

(or a class derived from std::bad_cast).

Section 91.4: Conversion between pointer and integer

An object pointer (including void*) or function pointer can be converted to an integer type using

reinterpret_cast. This will only compile if the destination type is long enough. The result is implementation-

defined and typically yields the numeric address of the byte in memory that the pointer pointers to.

Typically, long or unsigned long is long enough to hold any pointer value, but this is not guaranteed by the

standard.

Version ≥ C++11

If the types std::intptr_t and std::uintptr_t exist, they are guaranteed to be long enough to hold a void* (and

hence any pointer to object type). However, they are not guaranteed to be long enough to hold a function pointer.

Similarly, reinterpret_cast can be used to convert an integer type into a pointer type. Again the result is

implementation-defined, but a pointer value is guaranteed to be unchanged by a round trip through an integer

type. The standard does not guarantee that the value zero is converted to a null pointer.

struct Base {};

struct Derived : Base {};

Derived d;

Base* p1 = &d;

Derived* p2 = p1; // error; cast required

Derived* p3 = static_cast<Derived*>(p1); // OK; p2 now points to Derived object

Base b;

Base* p4 = &b;

Derived* p5 = static_cast<Derived*>(p4); // undefined behaviour since p4 does not

// point to a Derived object

struct Base {};

struct Derived : Base {};

Derived d;

Base& r1 = d;

Derived& r2 = r1; // error; cast required

Derived& r3 = static_cast<Derived&>(r1); // OK; r3 now refers to Derived object

struct Base { virtual ~Base(); }; // Base is polymorphic

struct Derived : Base {};

Base* b1 = new Derived;

Derived* d1 = dynamic_cast<Derived*>(b1); // OK; d1 points to Derived object

Base* b2 = new Base;

Derived* d2 = dynamic_cast<Derived*>(b2); // d2 is a null pointer

void register_callback(void (*fp)(void*), void* arg); // probably a C API

void my_callback(void* x) {

std::cout << "the value is: " << reinterpret_cast<long>(x); // will probably compile

}

long x;

std::cin >> x;

484

Section 91.5: Conversion by explicit constructor or explicit
conversion function

A conversion that involves calling an explicit constructor or conversion function can't be done implicitly. We can

request that the conversion be done explicitly using static_cast. The meaning is the same as that of a direct

initialization, except that the result is a temporary.

Section 91.6: Implicit conversion

static_cast can perform any implicit conversion. This use of static_cast can occasionally be useful, such as in

the following examples:

When passing arguments to an ellipsis, the "expected" argument type is not statically known, so no implicit

conversion will occur.

Without the explicit type conversion, a double object would be passed to the ellipsis, and undefined

behaviour would occur.

A derived class assignment operator can call a base class assignment operator like so:

Section 91.7: Enum conversions

static_cast can convert from an integer or floating point type to an enumeration type (whether scoped or

register_callback(my_callback,

reinterpret_cast<void*>(x)); // hopefully this doesn't lose information...

class C {

std::unique_ptr<int> p;

public:

explicit C(int* p) : p(p) {}

};

void f(C c);

void g(int* p) {

f(p); // error: C::C(int*) is explicit

f(static_cast<C>(p)); // ok

f(C(p)); // equivalent to previous line

C c(p); f(c); // error: C is not copyable

}

const double x = 3.14;

printf("%d\n", static_cast<int>(x)); // prints 3

// printf("%d\n", x); // undefined behaviour; printf is expecting an int here

// alternative:

// const int y = x; printf("%d\n", y);

struct Base { /* ... */ };

struct Derived : Base {

Derived& operator=(const Derived& other) {

static_cast<Base&>(*this) = other;

// alternative:

// Base& this_base_ref = *this; this_base_ref = other;

}

};

485

unscoped), and vice versa. It can also convert between enumeration types.

The conversion from an unscoped enumeration type to an arithmetic type is an implicit conversion; it is

possible, but not necessary, to use static_cast.

Version ≥ C++11

When a scoped enumeration type is converted to an arithmetic type:

If the enum's value can be represented exactly in the destination type, the result is that value.

Otherwise, if the destination type is an integer type, the result is unspecified.

Otherwise, if the destination type is a floating point type, the result is the same as that of converting to

the underlying type and then to the floating point type.

Example:

When an integer or enumeration type is converted to an enumeration type:

If the original value is within the destination enum's range, the result is that value. Note that this value

might be unequal to all enumerators.

Otherwise, the result is unspecified (<= C++14) or undefined (>= C++17).

Example:

Version ≥ C++11

When a floating point type is converted to an enumeration type, the result is the same as converting to the

enum's underlying type and then to the enum type.

enum class Format {

TEXT = 0,

PDF = 1000,

OTHER = 2000,

};

Format f = Format::PDF;

int a = f;

int b = static_cast<int>(f);

char c = static_cast<char>(f);

// error

// ok; b is 1000

// unspecified, if 1000 doesn't fit into char

double d = static_cast<double>(f); // d is 1000.0... probably

enum Scale {

SINGLE =
1,

DOUBLE =
2,

QUAD = 4

};

Scale s1 = 1;

// error

Scale s2 = static_cast<Scale>(2); // s2 is DOUBLE

Scale s3 = static_cast<Scale>(3); // s3 has value 3, and is not equal to any enumerator

Scale s9 = static_cast<Scale>(9); // unspecified value in C++14; UB in C++17

enum Direction {

UP = 0,

LEFT = 1,

DOWN = 2,

RIGHT = 3,

};

486

int B::*p1 = &B::x;

int C::*p2 = p1;

int B::*p3 = p2;

int B::*p4 = static_cast<int B::*>(p2);

int A::*p5 = static_cast<int A::*>(p2);

// ok; implicit conversion

// error

// ok; p4 is equal to p1

// undefined; p2 points to x, which is a member

// of the unrelated class B

double C::*p6 = &C::z;

double A::*p7 = static_cast<double A::*>(p6); // ok, even though A doesn't contain z

int A::*p8 = static_cast<int A::*>(p6); // error: types don't match

Section 91.8: Derived to base conversion for pointers to
members

A pointer to member of derived class can be converted to a pointer to member of base class using static_cast.

The types pointed to must match.

If the operand is a null pointer to member value, the result is also a null pointer to member value.

Otherwise, the conversion is only valid if the member pointed to by the operand actually exists in the destination

class, or if the destination class is a base or derived class of the class containing the member pointed to by the

operand. static_cast does not check for validity. If the conversion is not valid, the behaviour is undefined.

struct A {};

struct B { int x; };

struct C : A, B { int y; double z; };

Section 91.9: void* to T*

In C++, void* cannot be implicitly converted to T* where T is an object type. Instead, static_cast should be used to

perform the conversion explicitly. If the operand actually points to a T object, the result points to that object.

Otherwise, the result is unspecified.

Version ≥ C++11

Even if the operand does not point to a T object, as long as the operand points to a byte whose address is properly

aligned for the type T, the result of the conversion points to the same byte.

Direction d = static_cast<Direction>(3.14); // d is RIGHT

// allocating an array of 100 ints, the hard way

int* a = malloc(100*sizeof(*a)); // error; malloc returns void*

int* a = static_cast<int*>(malloc(100*sizeof(*a))); // ok

// int* a = new int[100]; // no cast needed

// std::vector<int> a(100); // better

const char c = '!';

const void* p1 = &c;

const char* p2 = p1; // error

const char* p3 = static_cast<const char*>(p1); // ok; p3 points to c

const int* p4 = static_cast<const int*>(p1); // unspecified in C++03;

// possibly unspecified in C++11 if

// alignof(int) > alignof(char) char*

p5 = static_cast<char*>(p1); // error: casting away constness

487

Section 91.10: Type punning conversion

A pointer (resp. reference) to an object type can be converted to a pointer (resp. reference) to any other object type

using reinterpret_cast. This does not call any constructors or conversion functions.

Version ≥ C++11

The result of reinterpret_cast represents the same address as the operand, provided that the address is

appropriately aligned for the destination type. Otherwise, the result is unspecified.

Version < C++11

The result of reinterpret_cast is unspecified, except that a pointer (resp. reference) will survive a round trip from

the source type to the destination type and back, as long as the destination type's alignment requirement is not

stricter than that of the source type.

On most implementations, reinterpret_cast does not change the address, but this requirement was not

standardized until C++11.

reinterpret_cast can also be used to convert from one pointer-to-data-member type to another, or one pointer-

to-member-function type to another.

Use of reinterpret_cast is considered dangerous because reading or writing through a pointer or reference

obtained using reinterpret_cast may trigger undefined behaviour when the source and destination types are

unrelated.

int x = 42;

char* p = static_cast<char*>(&x); // error: static_cast cannot perform this conversion

char* p = reinterpret_cast<char*>(&x); // OK

*p = 'z'; // maybe this modifies x (see below)

int x = 42;

char& r = reinterpret_cast<char&>(x);

const void* px = &x;

const void* pr = &r;

assert(px == pr); // should never fire

int x = 123;

unsigned int& r1 = reinterpret_cast<unsigned int&>(x);

int& r2 = reinterpret_cast<int&>(r1);

r2 = 456; // sets x to 456

488

Chapter 92: Unnamed types

Section 92.1: Unnamed classes

Unlike a named class or struct, unnamed classes and structs must be instantiated where they are defined, and

cannot have constructors or destructors.

Section 92.2: As a type alias

Unnamed class types may also be used when creating type aliases, i.e. via typedef and using:

Version < C++11

Section 92.3: Anonymous members

As a non-standard extension to C++, common compilers allow the use of classes as anonymous members.

using vec2d = struct {

float x;

float y;

};

typedef struct {

float x;

float y;

} vec2d;

vec2d pt;

pt.x = 4.f;

pt.y = 3.f;

struct {

int foo;

double bar;

} foobar;

foobar.foo = 5;

foobar.bar = 4.0;

class {

int baz;

public:

int buzz;

void setBaz(int v) {

baz = v;

}

} barbar;

barbar.setBaz(15);

barbar.buzz = 2;

struct Example {

struct {

int inner_b;

};

int outer_b;

489

Section 92.4: Anonymous Union

Member names of an anonymous union belong to the scope of the union declaration an must be distinct to all

other names of this scope. The example here has the same construction as example Anonymous Members using

"struct" but is standard conform.

//The anonymous struct's members are accessed as if members of the parent struct

Example() : inner_b(2), outer_b(4) {

inner_b = outer_b + 2;

}

};

Example ex;

//The same holds true for external code referencing the struct ex.inner_b

-= ex.outer_b;

struct Sample {

union {

int a;

int b;

};

int c;

};

int main()

{

Sample sa;

sa.a =3;

sa.b =4;

sa.c =5;

}

490

Chapter 93: Type Traits

Section 93.1: Type Properties

Version ≥ C++11

Type properties compare the modifiers that can be placed upon different variables. The usefulness of these type

traits is not always obvious.

Note: The example below would only offer an improvement on a non-optimizing compiler. It is a simple a proof of

concept, rather than complex example.

e.g. Fast divide by four.

Is Constant:

This will evaluate as true when type is constant.

Is Volatile:

This will evaluate as true when the type is volatile.

Is signed:

This will evaluate as true for all signed types.

Is Unsigned:

Will evaluate as true for all unsigned types.

template<typename T>

inline T FastDivideByFour(cont T &var) {

// Will give an error if the inputted type is not an unsigned integral type.

static_assert(std::is_unsigned<T>::value && std::is_integral<T>::value,

"This function is only designed for unsigned integral types.");

return (var >> 2);

}

std::cout << std::is_const<const int>::value << "\n"; // Prints true.

std::cout << std::is_const<int>::value << "\n"; // Prints false.

std::cout << std::is_volatile<static volatile int>::value << "\n"; // Prints true.

std::cout << std::is_const<const int>::value << "\n"; // Prints false.

std::cout << std::is_signed<int>::value << "\n"; // Prints true.

std::cout << std::is_signed<float>::value << "\n"; // Prints true.

std::cout << std::is_signed<unsigned int>::value << "\n"; // Prints false.

std::cout << std::is_signed<uint8_t>::value << "\n"; // Prints false.

std::cout << std::is_unsigned<unsigned int>::value << "\n"; // Prints true.

std::cout << std::is_signed<uint8_t>::value << "\n"; // Prints true.

std::cout << std::is_unsigned<int>::value << "\n"; // Prints false. std::cout

<< std::is_signed<float>::value << "\n"; // Prints false.

491

Section 93.2: Standard type traits

Version ≥ C++11

The type_traits header contains a set of template classes and helpers to transform and check properties of types

at compile-time.

These traits are typically used in templates to check for user errors, support generic programming, and allow for

optimizations.

Most type traits are used to check if a type fulfils some criteria. These have the following form:

If the template class is instantiated with a type which fulfils some criteria foo, then is_foo<T> inherits from

std::integral_constant<bool,true> (a.k.a. std::true_type), otherwise it inherits from

std::integral_constant<bool,false> (a.k.a. std::false_type). This gives the trait the following members:

Constants

static constexpr bool value

true if T fulfils the criteria foo, false otherwise

Functions

operator bool

Returns value

Version ≥ C++14

bool operator()

Returns value

Types

Name Definition

value_type bool

type std::integral_constant<bool,value>

The trait can then be used in constructs such as static_assert or std::enable_if. An example with

std::is_pointer:

template <class T> struct is_foo;

template <typename T>

void i_require_a_pointer (T t) { static_assert(std::is_pointer<T>::value,

"T must be a pointer type");

}

//Overload for when T is not a pointer type

template <typename T>

typename std::enable_if<!std::is_pointer<T>::value>::type

does_something_special_with_pointer (T t) {

//Do something boring

}

//Overload for when T is a pointer type

template <typename T>

492

There are also various traits which transform types, such as std::add_pointer and std::underlying_type. These

traits generally expose a single type member type which contains the transformed type. For example,

std::add_pointer<int>::type is int*.

Section 93.3: Type relations with std::is_same<T, T>

Version ≥ C++11

The std::is_same<T, T> type relation is used to compare two types. It will evaluate as boolean, true if the types

are the same and false if otherwise.

e.g.

The std::is_same type relation will also work regardless of typedefs. This is actually demonstrated in the first

example when comparing int == int32_t however this is not entirely clear.

e.g.

Using std::is_same to warn when improperly using a templated class or function.

When combined with a static assert the std::is_same template can be valuable tool in enforcing proper usage of

templated classes and functions.

e.g. A function that only allows input from an int and a choice of two structs.

typename std::enable_if<std::is_pointer<T>::value>::type

does_something_special_with_pointer (T t) {

//Do something special

}

// Prints true on most x86 and x86_64 compilers.

std::cout << std::is_same<int, int32_t>::value << "\n";

// Prints false on all compilers.

std::cout << std::is_same<float, int>::value << "\n";

// Prints false on all compilers.

std::cout << std::is_same<unsigned int, int>::value << "\n";

// Prints true on all compilers.

typedef int MyType

std::cout << std::is_same<int, MyType>::value << "\n";

#include <type_traits>

struct foo {

int member;

// Other variables

};

struct bar {

char member;

};

template<typename T>

int AddStructMember(T var1, int var2) {

// If type T != foo || T != bar then show error message.

static_assert(std::is_same<T, foo>::value ||

std::is_same<T, bar>::value,

"This function does not support the specified type.");

493

Section 93.4: Fundamental type traits

Version ≥ C++11

There are a number of different type traits that compare more general types.

Is Integral:

Evaluates as true for all integer types int, char, long, unsigned int etc.

Is Floating Point:

Evaluates as true for all floating point types. float,double, long double etc.

Is Enum:

Evaluates as true for all enumerated types, including enum class.

Is Pointer:

Evaluates as true for all pointers.

Is Class:

Evaluates as true for all classes and struct, with the exception of enum class.

return var1.member + var2;

}

std::cout << std::is_integral<int>::value << "\n"; // Prints true.

std::cout << std::is_integral<char>::value << "\n"; // Prints true.

std::cout << std::is_integral<float>::value << "\n"; // Prints false.

std::cout << std::is_floating_point<float>::value << "\n"; // Prints true.

std::cout << std::is_floating_point<double>::value << "\n"; // Prints true.

std::cout << std::is_floating_point<char>::value << "\n"; // Prints false.

enum fruit {apple, pair, banana};

enum class vegetable {carrot, spinach, leek};

std::cout << std::is_enum<fruit>::value << "\n"; // Prints true.

std::cout << std::is_enum<vegetable>::value << "\n"; // Prints true.

std::cout << std::is_enum<int>::value << "\n"; // Prints false.

std::cout << std::is_pointer<int *>::value << "\n"; // Prints true.

typedef int* MyPTR;

std::cout << std::is_pointer<MyPTR>::value << "\n"; // Prints true.

std::cout << std::is_pointer<int>::value << "\n"; // Prints false.

struct FOO {int x, y;};

class BAR {

public:

int x, y;

};

enum class fruit {apple, pair, banana};

std::cout << std::is_class<FOO>::value << "\n"; // Prints true.

std::cout << std::is_class<BAR>::value << "\n"; // Prints true.

std::cout << std::is_class<fruit>::value << "\n"; // Prints false.

494

std::cout << std::is_class<int>::value << "\n"; // Prints false.

495

Chapter 94: Return Type Covariance

Section 94.1: Covariant result version of the base example,
static type checking

// 2. Covariant result version of the base example, static type checking. class

Top

{

public:

virtual Top* clone() const = 0;

virtual ~Top() = default; // Necessary for `delete` via Top*.

};

class D : public Top

{

public:

D* /* ← Covariant return */ clone() const override

{ return new D(*this); }

};

class DD : public D

{

private:

int answer_ = 42;

public:

int answer() const

{ return answer_;}

DD* /* ← Covariant return */ clone() const override

{ return new DD(*this); }

};

#include <iostream>

using namespace std;

int main()

{

DD* p1 = new DD();

DD* p2 = p1->clone();

// Correct dynamic type DD for *p2 is guaranteed by the static type checking.

cout << p2->answer() << endl; // "42"

delete p2;

delete p1;

}

Section 94.2: Covariant smart pointer result (automated
cleanup)

// 3. Covariant smart pointer result (automated cleanup).

#include <memory>

using std::unique_ptr;

template< class Type >

auto up(Type* p) { return unique_ptr<Type>(p); }

496

class Top

{

private:

virtual Top* virtual_clone() const = 0;

public:

unique_ptr<Top> clone() const

{ return up(virtual_clone()); }

virtual ~Top() = default; // Necessary for `delete` via Top*.

};

class D : public Top

{

private:

D* /* ← Covariant return */ virtual_clone() const override

{ return new D(*this); }

public:

unique_ptr<D> /* ← Apparent covariant return */ clone() const

{ return up(virtual_clone()); }

};

class DD : public D

{

private:

int answer_ = 42;

DD* /* ← Covariant return */ virtual_clone() const override

{ return new DD(*this); }

public:

int answer() const

{ return answer_;}

unique_ptr<DD> /* ← Apparent covariant return */ clone() const

{ return up(virtual_clone()); }

};

#include <iostream>

using namespace std;

int main()

{

auto p1 = unique_ptr<DD>(new

DD()); auto p2 = p1->clone();

// Correct dynamic type DD for *p2 is guaranteed by the static type checking.

cout << p2->answer() << endl; // "42"

// Cleanup is automated via unique_ptr.

}

497

class DoubleDerived : Empty_1, Empty_2
{};

class Holder { Empty_1 e; };

// sizeof(DoubleDerived) == 1

// sizeof(Holder) == 1

class DoubleHolder { Empty_1 e1; Empty_2 e2; }; // sizeof(DoubleHolder) == 2

class DerivedHolder : Empty_1 { Empty_1 e; }; // sizeof(DerivedHolder) == 2

Chapter 95: Layout of object types

Section 95.1: Class types

By "class", we mean a type that was defined using the class or struct keyword (but not enum struct or enum class).

Even an empty class still occupies at least one byte of storage; it will therefore consist purely of padding. This

ensures that if p points to an object of an empty class, then p + 1 is a distinct address and points to a distinct

object. However, it is possible for an empty class to have a size of 0 when used as a base class. See empty

base optimisation.

class Empty_1 {}; // sizeof(Empty_1) == 1

class Empty_2 {}; // sizeof(Empty_2) == 1

class Derived : Empty_1 {}; // sizeof(Derived) == 1

The object representation of a class type contains the object representations of the base class and non -static

member types. Therefore, for example, in the following class:

there is a consecutive sequence of sizeof(int) bytes within an S object, called a subobject, that contain the

value of x, and another subobject with sizeof(char*) bytes that contains the value of y. The two cannot be

interleaved.

If a class type has members and/or base classes with types t1, t2,...tN, the size must be at least sizeof(t1)

+ sizeof(t2) + ... + sizeof(tN) given the preceding points. However, depending on the alignment

requirements of the members and base classes, the compiler may be forced to insert padding between

subobjects, or at the beginning or end of the complete object.

If padding is inserted in an object due to alignment requirements, the size will be greater than the sum of the

sizes of the members and base classes. With n-byte alignment, size will typically be the smallest multiple of n

which is larger than the size of all members & base classes. Each member memN will typically be placed at an

address which is a multiple of alignof(memN), and n will typically be the largest alignof out of all members'

struct S {

int x;

char* y;

};

struct AnInt { int i; };

// sizeof(AnInt) == sizeof(int)

// Assuming a typical 32- or 64-bit system, sizeof(AnInt) == 4 (4).

struct TwoInts { int i, j; };

// sizeof(TwoInts) >= 2 * sizeof(int)

// Assuming a typical 32- or 64-bit system, sizeof(TwoInts) == 8 (4 +

4). struct IntAndChar { int i; char c; };

// sizeof(IntAndChar) >= sizeof(int) + sizeof(char)

// Assuming a typical 32- or 64-bit system, sizeof(IntAndChar) == 8 (4 + 1 +

padding). struct AnIntDerived : AnInt { long long l; };

// sizeof(AnIntDerived) >= sizeof(AnInt) + sizeof(long long)

// Assuming a typical 32- or 64-bit system, sizeof(AnIntDerived) == 16 (4 + padding + 8).

http://en.cppreference.com/w/cpp/language/ebo
http://en.cppreference.com/w/cpp/language/ebo

498

alignofs. Due to this, if a member with a smaller alignof is followed by a member with a larger alignof,

there is a possibility that the latter member will not be aligned properly if placed immediately after the

former. In this case, padding (also known as an alignment member) will be placed between the two members,

such that the latter member can have its desired alignment. Conversely, if a member with a larger alignof is

followed by a member with a smaller alignof, no padding will usually be necessary. This process is also

known as "packing".

Due to classes typically sharing the alignof of their member with the largest alignof, classes will typically be

aligned to the alignof of the largest built-in type they directly or indirectly contain.

// Assume sizeof(short) == 2, sizeof(int) == 4, and sizeof(long long) == 8.

// Assume 4-byte alignment is specified to the compiler.

struct Char { char c; };

// sizeof(Char) == 1 (sizeof(char))

struct Int { int i; };

// sizeof(Int) == 4 (sizeof(int))

struct CharInt { char c; int i; };

// sizeof(CharInt) == 8 (1 (char) + 3 (padding) + 4 (int))

struct ShortIntCharInt { short s; int i; char c; int j; };

// sizeof(ShortIntCharInt) == 16 (2 (short) + 2 (padding) + 4 (int) + 1 (char) +

// 3 (padding) + 4 (int))

struct ShortIntCharCharInt { short s; int i; char c; char d; int j; };

// sizeof(ShortIntCharCharInt) == 16 (2 (short) + 2 (padding) + 4 (int) + 1 (char) +

// 1 (char) + 2 (padding) + 4 (int))

struct ShortCharShortInt { short s; char c; short t; int i; };

// sizeof(ShortCharShortInt) == 12 (2 (short) + 1 (char) + 1 (padding) + 2 (short) +

// 2 (padding) + 4 (int))

struct IntLLInt { int i; long long l; int j; };

// sizeof(IntLLInt) == 16 (4 (int) + 8 (long long) + 4 (int))

// If packing isn't explicitly specified, most compilers will pack this as

// 8-byte alignment, such that:

// sizeof(IntLLInt) == 24 (4 (int) + 4 (padding) + 8 (long long) +

// 4 (int) + 4 (padding))

// Assume sizeof(bool) == 1, sizeof(ShortIntCharInt) == 16, and sizeof(IntLLInt) == 24.

// Assume default alignment: alignof(ShortIntCharInt) == 4, alignof(IntLLInt) == 8.

struct ShortChar3ArrShortInt {

short s;

char c3[3];

short t;

int i;

};

// ShortChar3ArrShortInt has 4-byte alignment: alignof(int) >= alignof(char) &&

// alignof(int) >= alignof(short)

// sizeof(ShortChar3ArrShortInt) == 12 (2 (short) + 3 (char[3]) + 1 (padding) +

// 2 (short) + 4 (int))

// Note that t is placed at alignment of 2, not 4. alignof(short) == 2.

struct Large_1 {

ShortIntCharInt sici;

bool b;

ShortIntCharInt tjdj;

};

// Large_1 has 4-byte alignment.

// alignof(ShortIntCharInt) == alignof(int) == 4

// alignof(b) == 1

// Therefore, alignof(Large_1) == 4.

// sizeof(Large_1) == 36 (16 (ShortIntCharInt) + 1 (bool) + 3 (padding) +

// 16 (ShortIntCharInt))

struct Large_2 {

IntLLInt illi;

499

Version ≥ C++11

If strict alignment is forced with alignas, padding will be used to force the type to meet the specified

alignment, even when it would otherwise be smaller. For example, with the definition below, Chars<5> will

have three (or possibly more) padding bytes inserted at the end so that its total size is 8. It is not possible for

a class with an alignment of 4 to have a size of 5 because it would be impossible to make an array of that

class, so the size must be "rounded up" to a multiple of 4 by inserting padding bytes.

If two non-static members of a class have the same access specifier, then the one that comes later in

declaration order is guaranteed to come later in the object representation. But if two non-static members

have different access specifiers, their relative order within the object is unspecified.

It is unspecified what order the base class subobjects appear in within an object, whether they occur

consecutively, and whether they appear before, after, or between member subobjects.

Section 95.2: Arithmetic types

Narrow character types

The unsigned char type uses all bits to represent a binary number. Therefore, for example, if unsigned char is 8

bits long, then the 256 possible bit patterns of a char object represent the 256 different values {0, 1, ..., 255}. The

number 42 is guaranteed to be represented by the bit pattern 00101010.

The signed char type has no padding bits, i.e., if signed char is 8 bits long, then it has 8 bits of capacity to

represent a number.

Note that these guarantees do not apply to types other than narrow character types.

Integer types

The unsigned integer types use a pure binary system, but may contain padding bits. For example, it is possible

(though unlikely) for unsigned int to be 64 bits long but only be capable of storing integers between 0 and 232 - 1,

inclusive. The other 32 bits would be padding bits, which should not be written to directly.

The signed integer types use a binary system with a sign bit and possibly padding bits. Values that belong to the

common range of a signed integer type and the corresponding unsigned integer type have the same

representation. For example, if the bit pattern 0001010010101011 of an unsigned short object represents the value

5291, then it also represents the value 5291 when interpreted as a short object.

float f;

IntLLInt jmmj;

};

// Large_2 has 8-byte alignment.

// alignof(IntLLInt) == alignof(long long) == 8

// alignof(float) == 4

// Therefore, alignof(Large_2) == 8.

// sizeof(Large_2) == 56 (24 (IntLLInt) + 4 (float) + 4 (padding) + 24 (IntLLInt))

// This type shall always be aligned to a multiple of 4. Padding shall be inserted as

// needed.

// Chars<1>..Chars<4> are 4 bytes, Chars<5>..Chars<8> are 8 bytes, etc.

template<size_t SZ>

struct alignas(4) Chars { char arr[SZ]; };

static_assert(sizeof(Chars<1>) == sizeof(Chars<4>), "Alignment is strict.\n");

500

It is implementation-defined whether a two's complement, one's complement, or sign-magnitude representation is

used, since all three systems satisfy the requirement in the previous paragraph.

Floating point types

The value representation of floating point types is implementation-defined. Most commonly, the float and double

types conform to IEEE 754 and are 32 and 64 bits long (so, for example, float would have 23 bits of precision which

would follow 8 exponent bits and 1 sign bit). However, the standard does not guarantee anything. Floating point

types often have "trap representations", which cause errors when they are used in calculations.

Section 95.3: Arrays

An array type has no padding in between its elements. Therefore, an array with element type T is just a sequence of

T objects laid out in memory, in order.

A multidimensional array is an array of arrays, and the above applies recursively. For example, if we have the

declaration

then a is an array of 5 arrays of 3 ints. Therefore, a[0], which consists of the three elements a[0][0], a[0][1],

a[0][2], is laid out in memory before a[1], which consists of a[1][0], a[1][1], and a[1][2]. This is called row

major order.

int a[5][3];

501

auto DoThis = [](int a, int b) { return a + b; };

// Do this is of type (int)(*DoThis)(int, int)

// else we would have to write this long

int(*pDoThis)(int, int)= [](int a, int b) { return a + b; };

// using 'auto' shortens the definition for lambda functions

Chapter 96: Type Inference
This topic discusses about type inferencing that involves the keyword auto type that is available from C++11.

Section 96.1: Data Type: Auto

This example shows the basic type inferences the compiler can perform.

However, the auto keyword does not always perform the expected type inference without additional hints for & or

const or constexpr

Section 96.2: Lambda auto

The data type auto keyword is a convenient way for programmers to declare lambda functions. It helps by

shortening the amount of text programmers need to type to declare a function pointer.

auto c = Dothis(1, 2); // c = int

auto d = pDothis(1, 2); // d = int

By default, if the return type of lambda functions is not defined, it will be automatically inferred from the return

expression types.

These 3 is basically the same thing

Section 96.3: Loops and auto

This example shows how auto can be used to shorten type declaration for for loops

auto a = 1;

auto b = 2u;

auto c = &a;

//

//

//

const auto d = c; //

const auto& e = b; //

a = int

b = unsigned int

c = int*

d = const int*

e = const unsigned int&

auto x = a +
b

// x = int, #compiler warning unsigned and signed

auto v = std::vector<int>; // v = std::vector<int>

//

//

//

y = unsigned int,

note that y does not infer as const unsigned int&

The compiler would have generated a copy instead of a reference value to e or b

auto y = e;

[](int a, int b) -> int { return a + b; };

[](int a, int b) -> auto { return a + b; };

[](int a, int b) { return a + b; };

std::map<int, std::string> Map;

502

for

for

for

(auto pair : Map)

(const auto pair : Map)

(const auto& pair : Map)

//

//

//

pair

pair

pair

=

=

=

std::pair<int, std::string>

const std::pair<int, std::string>

const std::pair<int, std::string>&

for (auto i = 0; i < 1000; ++i) // i = int

for (auto i = 0; i < Map.size(); ++i) // Note that i = int and not size_t

for (auto i = Map.size(); i > 0; --i) // i = size_t

503

Chapter 97: Typedef and type aliases
The typedef and (since C++11) using keywords can be used to give a new name to an existing type.

Section 97.1: Basic typedef syntax

A typedef declaration has the same syntax as a variable or function declaration, but it contains the word typedef.

The presence of typedef causes the declaration to declare a type instead of a variable or function.

Once a type alias has been defined, it can be used interchangeably with the original name of the type.

typedef never creates a distinct type. It only gives another way of referring to an existing type.

Section 97.2: More complex uses of typedef

The rule that typedef declarations have the same syntax as ordinary variable and function declarations can be used

to read and write more complex declarations.

This is especially useful for constructs with confusing syntax, such as pointers to non-static members.

It is hard to remember the syntax of the following function declarations, even for experienced programmers:

typedef can be used to make them easier to read and write:

int T; // T has type int

typedef int T; // T is an alias for int

int A[100]; // A has type "array of 100 ints"

typedef int A[100]; // A is an alias for the type "array of 100 ints"

typedef int A[100];

// S is a struct containing an array of 100 ints

struct S {

A data;

};

struct S {

int f(int);

};

typedef int I;

// ok: defines int S::f(int) I

S::f(I x) { return x; }

void (*f)(int); // f has type "pointer to function of int returning void"

typedef void (*f)(int); // f is an alias for "pointer to function of int returning void"

void (Foo::*pmf)(int); // pmf has type "pointer to member function of Foo taking int

// and returning void"

typedef void (Foo::*pmf)(int); // pmf is an alias for "pointer to member function of Foo

// taking int and returning void"

void (Foo::*Foo::f(const char*))(int);

int (&g())[100];

typedef void (Foo::pmf)(int); // pmf is a pointer to member function type

504

Section 97.3: Declaring multiple types with typedef

The typedef keyword is a specifier, so it applies separately to each declarator. Therefore, each name declared

refers to the type that that name would have in the absence of typedef.

Section 97.4: Alias declaration with "using"

Version ≥ C++11

The syntax of using is very simple: the name to be defined goes on the left hand side, and the definition goes on

the right hand side. No need to scan to see where the name is.

Creating a type alias with using has exactly the same effect as creating a type alias with typedef. It is simply an

alternative syntax for accomplishing the same thing.

Unlike typedef, using can be templated. A "template typedef" created with using is called an alias template.

pmf Foo::f(const char*); // f is a member function of Foo

typedef int (&ra)[100];

ra g();

// ra means "reference to array of 100 ints"

// g returns reference to array of 100 ints

int *x, (*p)(); // x has type int*, and p has type int(*)()

typedef int *x, (*p)(); // x is an alias for int*, while p is an alias for int(*)()

using I = int;

using A = int[100]; // array of 100 ints

using FP = void(*)(int); // pointer to function of int returning void

using MP = void (Foo::*)(int); // pointer to member function of Foo of int returning void

505

Chapter 98: type deduction

Section 98.1: Template parameter deduction for constructors

Prior to C++17, template deduction cannot deduce the class type for you in a constructor. It must be explicitly

specified. Sometimes, however, these types can be very cumbersome or (in the case of lambdas) impossible to

name, so we got a proliferation of type factories (like make_pair(), make_tuple(), back_inserter(), etc.).

Version ≥ C++17

This is no longer necessary:

Constructors are considered to deduce the class template parameters, but in some cases this is insufficient and we

can provide explicit deduction guides:

Section 98.2: Auto Type Deduction

Version ≥ C++11

Type deduction using the auto keyword works almost the same as Template Type Deduction. Below are a few

examples:

The differences are outlined below:

auto x1 = 27; // type is int, value is 27

auto x2(27); // type is int, value is 27

auto x3 = { 27 }; // type is std::initializer_list<int>, value is { 27 }

auto x4{ 27 }; // type is std::initializer_list<int>, value is { 27 }
 // in some compilers type may be deduced as an int with a
 // value of 27. See remarks for more information.

auto x5 = { 1, 2.0 } // error! can't deduce T for std::initializer_list<t>

As you can see if you use braced initializers, auto is forced into creating a variable of type

std::initializer_list<T>. If it can't deduce the of T, the code is rejected.

std::pair p(2, 4.5); // std::pair<int, double>

std::tuple t(4, 3, 2.5); // std::tuple<int, int, double>

std::copy_n(vi1.begin(), 3,

std::back_insert_iterator(vi2)); // constructs a back_insert_iterator<std::vector<int>>

std::lock_guard lk(mtx); // std::lock_guard<decltype(mtx)>

template <class Iter>

vector(Iter, Iter) -> vector<typename iterator_traits<Iter>::value_type>

int array[] = {1, 2, 3};

std::vector v(std::begin(array), std::end(array)); // deduces std::vector<int>

auto x = 27;

const auto cx = x;

const auto& rx = x;

int

// (x is neither a pointer nor a reference), x's type is int

// (cx is neither a pointer nor a reference), cs's type is const int

// (rx is a non-universal reference), rx's type is a reference to a const

auto&& uref1 = x;

auto&& uref2 = cx;

auto&& uref3 = 27;

// x is int and lvalue, so uref1's type is int&

// cx is const int and lvalue, so uref2's type is const int &

// 27 is an int and rvalue, so uref3's type is int&&

506

When auto is used as the return type of a function, it specifies that the function has a trailing return type.

Version ≥ C++14

C++14 allows, in addition to the usages of auto allowed in C++11, the following:

1. When used as the return type of a function without a trailing return type, specifies that the function's return

type should be deduced from the return statements in the function's body, if any.

2. When used in the parameter type of a lambda, defines the lambda to be a generic lambda.

The special form decltype(auto) deduces a type using the type deduction rules of decltype rather than those of

auto.

In C++03 and earlier, the auto keyword had a completely different meaning as a storage class specifier that was

inherited from C.

Section 98.3: Template Type Deduction

Template Generic Syntax

Case 1: ParamType is a Reference or Pointer, but not a Universal or Forward Reference. In this case type deduction

works this way. The compiler ignores the reference part if it exists in expr. The compiler then pattern-matches

expr's type against ParamType to determing T.

auto f() -> int {

return 42;

}

// f returns int:

auto f() { return 42; }

// g returns void:

auto g() { std::cout << "hello, world!\n"; }

auto triple = [](auto x) { return 3*x; };

const auto x = triple(42); // x is a const int with value 126

int* p = new int(42);

auto x = *p; // x has type int

decltype(auto) y = *p; // y is a reference to *p

template<typename T>

void f(ParamType param);

f(expr);

template<typename T>

void f(T& param); //param is a reference

int x = 27;

const int cx = x;

const int& rx = x;

// x is an int

// cx is a const int

// rx is a reference to x as a const int

f(x);

f(cx);

f(rx);

// T is int, param's type is int&

// T is const int, param's type is const int&

// T is const int, param's type is const int&

507

Case 2: ParamType is a Universal Reference or Forward Reference. In this case type deduction is the same as in case

1 if the expr is an rvalue. If expr is an lvalue, both T and ParamType are deduced to be lvalue references.

Case 3: ParamType is Neither a Pointer nor a Reference. If expr is a reference the reference part is ignored. If expr is

const that is ignored as well. If it is volatile that is also ignored when deducing T's type.

template<typename T>

void f(T&& param); // param is a universal reference

int x = 27;

const int cx = x;

const int& rx = x;

// x is an int

// cx is a const int

// rx is a reference to x as a const int

f(x);

f(cx);

f(rx);

f(27);

// x is lvalue, so T is int&, param's type is also int&

// cx is lvalue, so T is const int&, param's type is also const int&

// rx is lvalue, so T is const int&, param's type is also const int&

// 27 is rvalue, so T is int, param's type is therefore int&&

template<typename T>

void f(T param); // param is now passed by value

int x = 27;

const int cx = x;

const int& rx = x;

// x is an int

// cx is a const int

// rx is a reference to x as a const int

f(x);

f(cx);

f(rx);

// T's and param's types are both int

// T's and param's types are again both int

// T's and param's types are still both int

508

Chapter 99: Trailing return type

Section 99.1: Avoid qualifying a nested type name

Defining the member end with a trailing return type:

Defining the member end without a trailing return type:

The trailing return type is looked up in the scope of the class, while a leading return type is looked up in the

enclosing namespace scope and can therefore require "redundant" qualification.

Section 99.2: Lambda expressions

A lambda can only have a trailing return type; the leading return type syntax is not applicable to lambdas. Note that

in many cases it is not necessary to specify a return type for a lambda at all.

class ClassWithAReallyLongName {

public:

class Iterator { /* ... */ };

Iterator end();

};

auto ClassWithAReallyLongName::end() -> Iterator { return Iterator(); }

ClassWithAReallyLongName::Iterator ClassWithAReallyLongName::end() { return Iterator(); }

struct Base {};

struct Derived1 : Base {};

struct Derived2 : Base {};

auto lambda = [](bool b) -> Base* { if (b) return new Derived1; else return new Derived2; };

// ill-formed: auto lambda = Base* [](bool b) { ... };

509

Chapter 100: Alignment
All types in C++ have an alignment. This is a restriction on the memory address that objects of that type can be

created within. A memory address is valid for an object's creation if dividing that address by the object's alignment

is a whole number.

Type alignments are always a power of two (including 1).

Section 100.1: Controlling alignment

Version ≥ C++11

The alignas keyword can be used to force a variable, class data member, declaration or definition of a class, or

declaration or definition of an enum, to have a particular alignment, if supported. It comes in two forms:

alignas(x), where x is a constant expression, gives the entity the alignment x, if supported.

alignas(T), where T is a type, gives the entity an alignment equal to the alignment requirement of T, that is,

alignof(T), if supported.

If multiple alignas specifiers are applied to the same entity, the strictest one applies.

In this example, the buffer buf is guaranteed to be appropriately aligned to hold an int object, even though its

element type is unsigned char, which may have a weaker alignment requirement.

alignas cannot be used to give a type a smaller alignment than the type would have without this declaration:

alignas, when given an integer constant expression, must be given a valid alignment. Valid alignments are always

powers of two, and must be greater than zero. Compilers are required to support all valid alignments up to the

alignment of the type std::max_align_t. They may support larger alignments than this, but support for allocating

memory for such objects is limited. The upper limit on alignments is implementation dependent.

C++17 features direct support in operator new for allocating memory for over-aligned types.

Section 100.2: Querying the alignment of a type

Version ≥ c++11

The alignment requirement of a type can be queried using the alignof keyword as a unary operator. The result is a

constant expression of type std::size_t, i.e., it can be evaluated at compile time.

Possible output

alignas(int) unsigned char buf[sizeof(int)];

new (buf) int(42);

alignas(1) int i; //Il-formed, unless `int` on this platform is aligned to 1 byte. alignas(char)

int j; //Il-formed, unless `int` has the same or smaller alignment than `char`.

#include <iostream>

int main() {

std::cout << "The alignment requirement of int is: " << alignof(int) << '\n';

}

510

The alignment requirement of int is: 4

If applied to an array, it yields the alignment requirement of the element type. If applied to a reference type, it

yields the alignment requirement of the referenced type. (References themselves have no alignment, since they are

not objects.)

511

Chapter 101: Perfect Forwarding

Section 101.1: Factory functions

Suppose we want to write a factory function that accepts an arbitrary list of arguments and passes those

arguments unmodified to another function. An example of such a function is make_unique, which is used to safely

construct a new instance of T and return a unique_ptr<T> that owns the instance.

The language rules regarding variadic templates and rvalue references allows us to write such a function.

The use of ellipses ... indicate a parameter pack, which represents an arbitrary number of types. The compiler will

expand this parameter pack to the correct number of arguments at the call site. These arguments are then passed

to T's constructor using std::forward. This function is required to preserve the ref-qualifiers of the arguments.

template<class T, class... A>

unique_ptr<T> make_unique(A&&... args)

{

return unique_ptr<T>(new T(std::forward<A>(args)...));

}

struct foo

{

foo() {}

foo(const foo&) {}

foo(foo&&) {}

foo(int, int, int) {}

};

// copy constructor

// copy constructor

foo f;

auto p1 = make_unique<foo>(f); // calls foo::foo(const foo&)

auto p2 = make_unique<foo>(std::move(f)); // calls foo::foo(foo&&)

auto p3 = make_unique<foo>(1, 2, 3);

512

Chapter 102: decltype
The keyword decltype can be used to get the type of a variable, function or an expression.

Section 102.1: Basic Example

This example just illustrates how this keyword can be used.

If, for example, someone changes, type of 'a' to:

float a=99.0f;

Then the type of variable b now automatically becomes float.

Section 102.2: Another example

Let's say we have vector:

And we want to declare an iterator for this vector. An obvious idea is to use auto. However, it may be needed just

declare an iterator variable (and not to assign it to anything). We would do:

However, with decltype it becomes easy and less error prone (if type of intVector changes).

Alternatively:

In second example, the return type of begin is used to determine the actual type, which is vector<int>::iterator.

If we need a const_iterator, we just need to use cbegin:

int a = 10;

// Assume that type of variable 'a' is not known here, or it may

// be changed by programmer (from int to long long, for example).

// Hence we declare another variable, 'b' of the same type using

// decltype keyword.

decltype(a) b; // 'decltype(a)' evaluates to 'int'

std::vector<int> intVector;

vector<int>::iterator iter;

decltype(intVector)::iterator iter;

decltype(intVector.begin()) iter;

decltype(intVector.cbegin()) iter; // vector<int>::const_iterator

513

Chapter 103: SFINAE (Substitution Failure Is
Not An Error)

Section 103.1: What is SFINAE

SFINAE stands for Substitution Failure Is Not An Error. Ill-formed code that results from substituting types (or

values) to instantiate a function template or a class template is not a hard compile error, it is only treated as a

deduction failure.

Deduction failures on instantiating function templates or class template specializations remove that candidate from

the set of consideration - as if that failed candidate did not exist to begin with.

Only substitution failures in the immediate context are considered deduction failures, all others are considered

hard errors.

Section 103.2: void_t

Version ≥ C++11

void_t is a meta-function that maps any (number of) types to type void. The primary purpose of void_t is to

facilitate writing of type traits.

std::void_t will be part of C++17, but until then, it is extremely straightforward to implement:

Some compilers require a slightly different implementation:

template <class T>

auto begin(T& c) -> decltype(c.begin()) { return c.begin(); }

template <class T, size_t N>

T* begin(T (&arr)[N]) { return arr; }

int vals[10];

begin(vals); // OK. The first function template substitution fails because

// vals.begin() is ill-formed. This is not an error! That function

// is just removed from consideration as a viable overload candidate,

// leaving us with the array overload.

template <class T>

void add_one(T& val) { val += 1; }

int i = 4;

add_one(i); // ok

std::string msg = "Hello";

add_one(msg); // error. msg += 1 is ill-formed for std::string, but this

// failure is NOT in the immediate context of substituting T

template <class...> using void_t = void;

template <class...>

struct make_void { using type = void; };

template <typename... T>

using void_t = typename make_void<T...>::type;

http://en.cppreference.com/w/cpp/types/void_t
http://en.cppreference.com/w/cpp/types/void_t
http://en.cppreference.com/w/cpp/types/void_t
http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558

514

The primary application of void_t is writing type traits that check validity of a statement. For example, let's check if

a type has a member function foo() that takes no arguments:

How does this work? When I try to instantiate has_foo<T>::value, that will cause the compiler to try to look for the

best specialization for has_foo<T, void>. We have two options: the primary, and this secondary one which involves

having to instantiate that underlying expression:

If T does have a member function foo(), then whatever type that returns gets converted to void, and the

specialization is preferred to the primary based on the template partial ordering rules. So

has_foo<T>::value will be true

If T doesn't have such a member function (or it requires more than one argument), then substitution fails for

the specialization and we only have the primary template to fallback on. Hence, has_foo<T>::value is false.

A simpler case:

this doesn't use std::declval or decltype.

You may notice a common pattern of a void argument. We can factor this out:

which hides the use of std::void_t and makes can_apply act like an indicator whether the type supplied as the

first template argument is well-formed after substituting the other types into it. The previous examples may now be

rewritten using can_apply as:

and:

template <class T, class=void>

struct has_foo : std::false_type {};

template <class T>

struct has_foo<T, void_t<decltype(std::declval<T&>().foo())>> : std::true_type {};

template<class T, class=void>

struct can_reference : std::false_type {};

template<class T>

struct can_reference<T, std::void_t<T&>> : std::true_type {};

struct details {

template<template<class...>class Z, class=void, class...Ts>

struct can_apply:

std::false_type

{};

template<template<class...>class Z, class...Ts>

struct can_apply<Z, std::void_t<Z<Ts...>>,

Ts...>:

std::true_type

{};

};

template<template<class...>class Z, class...Ts>

using can_apply = details::can_apply<Z, void, Ts...>;

template<class T>

using ref_t =

T&;

template<class T>

using can_reference = can_apply<ref_t,

T>;

// Is T& well formed for T?

515

which seems simpler than the original versions.

There are post-C++17 proposals for std traits similar to can_apply.

The utility of void_t was discovered by Walter Brown. He gave a wonderful presentation on it at CppCon 2016.

Section 103.3: enable_if

std::enable_if is a convenient utility to use boolean conditions to trigger SFINAE. It is defined as:

That is, enable_if<true, R>::type is an alias for R, whereas enable_if<false, T>::type is ill-formed as that

specialization of enable_if does not have a type member type.

std::enable_if can be used to constrain templates:

Here, a call to negate(1) would fail due to ambiguity. But the second overload is not intended to be used for

integral types, so we can add:

Now, instantiating negate<int> would result in a substitution failure since !std::is_arithmetic<int>::value is

false. Due to SFINAE, this is not a hard error, this candidate is simply removed from the overload set. As a result,

negate(1) only has one single viable candidate - which is then called.

When to use it

It's worth keeping in mind that std::enable_if is a helper on top of SFINAE, but it's not what makes SFINAE work in

the first place. Let's consider these two alternatives for implementing functionality similar to std::size, i.e. an

overload set size(arg) that produces the size of a container or array:

template<class T>

using dot_foo_r = decltype(std::declval<T&>().foo());

template<class T>

using can_dot_foo = can_apply< dot_foo_r, T

>;
// Is T.foo() well formed for T?

template <bool Cond, typename Result=void>

struct enable_if { };

template <typename Result>

struct enable_if<true, Result> {

using type = Result;

};

int negate(int i) { return -i; }

template <class F>

auto negate(F f) { return -f(); }

int negate(int i) { return -i; }

template <class F, class = typename std::enable_if<!std::is_arithmetic<F>::value>::type>

auto negate(F f) { return -f(); }

// for containers

template<typename Cont>

auto size1(Cont const& cont) -> decltype(cont.size());

https://youtu.be/a0FliKwcwXE?t=1747

516

Assuming that is_sizeable is written appropriately, these two declarations should be exactly equivalent with

respect to SFINAE. Which is the easiest to write, and which is the easiest to review and understand at a glance?

Now let's consider how we might want to implement arithmetic helpers that avoid signed integer overflow in favour

of wrap around or modular behaviour. Which is to say that e.g. incr(i, 3) would be the same as i += 3 save for

the fact that the result would always be defined even if i is an int with value INT_MAX. These are two possible

alternatives:

Once again which is the easiest to write, and which is the easiest to review and understand at a glance?

A strength of std::enable_if is how it plays with refactoring and API design. If is_sizeable<Cont>::value is

meant to reflect whether cont.size() is valid then just using the expression as it appears for size1 can be more

concise, although that could depend on whether is_sizeable would be used in several places or not. Contrast that

with std::is_signed which reflects its intention much more clearly than when its implementation leaks into the

declaration of incr1.

Section 103.4: is_detected

To generalize type_trait creation:based on SFINAE there are experimental traits detected_or, detected_t,

is_detected.

With template parameters typename Default, template <typename...> Op and typename ... Args:

is_detected: alias of std::true_type or std::false_type depending of the validity of Op<Args...>

detected_t: alias of Op<Args...> or nonesuch depending of validity of Op<Args...>.

// for arrays

template<typename Elt, std::size_t Size>

std::size_t size1(Elt const(&arr)[Size]);

// implementation omitted

template<typename Cont>

struct is_sizeable;

// for containers

template<typename Cont, std::enable_if_t<std::is_sizeable<Cont>::value, int> = 0>

auto size2(Cont const& cont);

// for arrays

template<typename Elt, std::size_t Size>

std::size_t size2(Elt const(&arr)[Size]);

// handle signed types

template<typename Int>

auto incr1(Int& target, Int amount)

-> std::void_t<int[static_cast<Int>(-1) < static_cast<Int>(0)]>;

// handle unsigned types by just doing target += amount

// since unsigned arithmetic already behaves as intended

template<typename Int>

auto incr1(Int& target, Int amount)

-> std::void_t<int[static_cast<Int>(0) < static_cast<Int>(-1)]>;

template<typename Int, std::enable_if_t<std::is_signed<Int>::value, int> = 0>

void incr2(Int& target, Int amount);

template<typename Int, std::enable_if_t<std::is_unsigned<Int>::value, int> = 0>

void incr2(Int& target, Int amount);

517

detected_or: alias of a struct with value_t which is is_detected, and type which is Op<Args...> or Default

depending of validity of Op<Args...>

which can be implemented using std::void_t for SFINAE as following:

Version ≥ C++17

namespace detail {

template <class Default, class AlwaysVoid,

template<class...> class Op, class... Args>

struct detector

{

using value_t = std::false_type;

using type = Default;

};

template <class Default, template<class...> class Op, class... Args>

struct detector<Default, std::void_t<Op<Args...>>, Op, Args...>

{

using value_t = std::true_type;

using type = Op<Args...>;

};

} // namespace detail

// special type to indicate detection failure

struct nonesuch {

nonesuch() = delete;

~nonesuch() = delete;

nonesuch(nonesuch const&) = delete;

void operator=(nonesuch const&) = delete;

};

template <template<class...> class Op, class... Args>

using is_detected =

typename detail::detector<nonesuch, void, Op, Args...>::value_t;

template <template<class...> class Op, class... Args>

using detected_t = typename detail::detector<nonesuch, void, Op, Args...>::type;

template <class Default, template<class...> class Op, class... Args>

using detected_or = detail::detector<Default, void, Op, Args...>;

Traits to detect presence of method can then be simply implemented:

typename <typename T, typename ...Ts>

using foo_type = decltype(std::declval<T>().foo(std::declval<Ts>()...));

struct C1 {};

struct C2 {

int foo(char) const;

};

template <typename T>

using has_foo_char = is_detected<foo_type, T, char>;

static_assert(!has_foo_char<C1>::value, "Unexpected");

static_assert(has_foo_char<C2>::value, "Unexpected");

static_assert(std::is_same<int, detected_t<foo_type, C2, char>>::value,

"Unexpected");

518

Section 103.5: Overload resolution with a large number of
options

If you need to select between several options, enabling just one via enable_if<> can be quite cumbersome, since

several conditions needs to be negated too.

The ordering between overloads can instead be selected using inheritance, i.e. tag dispatch.

Instead of testing for the thing that needs to be well-formed, and also testing the negation of all the other versions

conditions, we instead test just for what we need, preferably in a decltype in a trailing return.

This might leave several option well formed, we differentiate between those using 'tags', similar to iterator-trait tags

(random_access_tag et al). This works because a direct match is better that a base class, which is better that a base

class of a base class, etc.

#include <algorithm>

#include <iterator>

namespace detail

{

// this gives us infinite types, that inherit from each other

template<std::size_t N>

struct pick : pick<N-1> {};

template<>

struct pick<0> {};

// the overload we want to be preferred have a higher N in pick<N>

// this is the first helper template function

template<typename T>

auto stable_sort(T& t, pick<2>)

-> decltype(t.stable_sort(), void())

{

// if the container have a member stable_sort, use that

t.stable_sort();

}

// this helper will be second best match

template<typename T>

auto stable_sort(T& t, pick<1>)

-> decltype(t.sort(), void())

{

// if the container have a member sort, but no member stable_sort

// it's customary that the sort member is stable t.sort();

}

// this helper will be picked last

template<typename T>

auto stable_sort(T& t, pick<0>)

-> decltype(std::stable_sort(std::begin(t), std::end(t)), void())

{

// the container have neither a member sort, nor member stable_sort

std::stable_sort(std::begin(t), std::end(t));

}

static_assert(std::is_same<void, // Default

detected_or<void, foo_type, C1, char>>::value,

"Unexpected");

static_assert(std::is_same<int, detected_or<void, foo_type, C2, char>>::value,

"Unexpected");

519

There are other methods commonly used to differentiate between overloads, such as exact match being better

than conversion, being better than ellipsis.

However, tag-dispatch can extend to any number of choices, and is a bit more clear in intent.

Section 103.6: trailing decltype in function templates

Version ≥ C++11

One of constraining function is to use trailing decltype to specify the return type:

If I call convert_to_string() with an argument with which I can invoke to_string(), then I have two viable functions

for details::convert_to_string(). The first is preferred since the conversion from 0 to int is a better implicit

conversion sequence than the conversion from 0 to ...

If I call convert_to_string() with an argument from which I cannot invoke to_string(), then the first function

template instantiation leads to substitution failure (there is no decltype(to_string(val))). As a result, that

candidate is removed from the overload set. The second function template is unconstrained, so it is selected and

we instead go through operator<<(std::ostream&, T). If that one is undefined, then we have a hard compile error

with a template stack on the line oss << val.

}

// this is the function the user calls. it will dispatch the call

// to the correct implementation with the help of 'tags'.

template<typename T>

void stable_sort(T& t)

{

// use an N that is higher that any used above.

// this will pick the highest overload that is well formed. detail::stable_sort(t,

detail::pick<10>{});

}

namespace details {

using std::to_string;

// this one is constrained on being able to call to_string(T)

template <class T>

auto convert_to_string(T const& val, int)

-> decltype(to_string(val))

{

return to_string(val);

}

// this one is unconstrained, but less preferred due to the ellipsis argument

template <class T>

std::string convert_to_string(T const& val, ...)

{

std::ostringstream oss;

oss << val;

return oss.str();

}

}

template <class T>

std::string convert_to_string(T const& val)

{

return details::convert_to_string(val, 0);

}

520

Section 103.7: enable_if_all / enable_if_any

Version ≥ C++11

Motivational example

When you have a variadic template pack in the template parameters list, like in the following code snippet:

The standard library (prior to C++17) offers no direct way to write enable_if to impose SFINAE constraints on all of

the parameters in Args or any of the parameters in Args. C++17 offers std::conjunction and std::disjunction

which solve this problem. For example:

If you do not have C++17 available, there are several solutions to achieve these. One of them is to use a base-case

class and partial specializations, as demonstrated in answers of this question.

Alternatively, one may also implement by hand the behavior of std::conjunction and std::disjunction in a

rather straight-forward way. In the following example I'll demonstrate the implementations and combine them with

std::enable_if to produce two alias: enable_if_all and enable_if_any, which do exactly what they are supposed

to semantically. This may provide a more scalable solution.

Implementation of enable_if_all and enable_if_any

First let's emulate std::conjunction and std::disjunction using customized seq_and and seq_or respectively:

Then the implementation is quite straight-forward:

template<typename ...Args> void func(Args &&...args) { //... };

/// C++17: SFINAE constraints on all of the parameters in Args.

template<typename ...Args,

std::enable_if_t<std::conjunction_v<custom_conditions_v<Args>...>>* = nullptr>

void func(Args &&...args) { //... };

/// C++17: SFINAE constraints on any of the parameters in Args.

template<typename ...Args,

std::enable_if_t<std::disjunction_v<custom_conditions_v<Args>...>>* = nullptr>

void func(Args &&...args) { //... };

/// Helper for prior to C++14.

template<bool B, class T, class F >

using conditional_t = typename std::conditional<B,T,F>::type;

/// Emulate C++17 std::conjunction.

template<bool...> struct seq_or: std::false_type {};

template<bool...> struct seq_and: std::true_type {};

template<bool B1, bool... Bs>

struct seq_or<B1,Bs...>:

conditional_t<B1,std::true_type,seq_or<Bs...>> {};

template<bool B1, bool... Bs>

struct seq_and<B1,Bs...>:

conditional_t<B1,seq_and<Bs...>,std::false_type> {};

template<bool... Bs>

using enable_if_any = std::enable_if<seq_or<Bs...>::value>;

template<bool... Bs>

http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/conjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://en.cppreference.com/w/cpp/types/disjunction
http://stackoverflow.com/questions/26421104/how-do-i-enable-if-a-class-with-variadic-template-arguments

521

Eventually some helpers:

Usage

The usage is also straight-forward:

using enable_if_all = std::enable_if<seq_and<Bs...>::value>;

template<bool... Bs>

using enable_if_any_t = typename enable_if_any<Bs...>::type;

template<bool... Bs>

using enable_if_all_t = typename enable_if_all<Bs...>::type;

/// SFINAE constraints on all of the parameters in Args.

template<typename ...Args,

enable_if_all_t<custom_conditions_v<Args>...>* = nullptr>

void func(Args &&...args) { //... };

/// SFINAE constraints on any of the parameters in Args.

template<typename ...Args,

enable_if_any_t<custom_conditions_v<Args>...>* = nullptr>

void func(Args &&...args) { //... };

522

Chapter 104: Undefined Behavior
What is undefined behavior (UB)? According to the ISO C++ Standard (§1.3.24, N4296), it is "behavior for which this

International Standard imposes no requirements."

This means that when a program encounters UB, it is allowed to do whatever it wants. This often means a crash,

but it may simply do nothing, make demons fly out of your nose, or even appear to work properly!

Needless to say, you should avoid writing code that invokes UB.

Section 104.1: Reading or writing through a null pointer

This is undefined behavior, because a null pointer does not point to any valid object, so there is no object at *ptr

to write to.

Although this most often causes a segmentation fault, it is undefined and anything can happen.

Section 104.2: Using an uninitialized local variable

This results in undefined behavior, because a is uninitialised.

It is often, incorrectly, claimed that this is because the value is "indeterminate", or "whatever value was in that

memory location before". However, it is the act of accessing the value of a in the above example that gives

undefined behaviour. In practice, printing a "garbage value" is a common symptom in this case, but that is only one

possible form of undefined behaviour.

Although highly unlikely in practice (since it is reliant on specific hardware support) the compiler could equally well

electrocute the programmer when compiling the code sample above. With such a compiler and hardware support,

such a response to undefined behaviour would markedly increase average (living) programmer understanding of

the true meaning of undefined behaviour - which is that the standard places no constraint on the resultant

behaviour.

Version ≥ C++14

Using an indeterminate value of unsigned char type does not produce undefined behavior if the value is used as:

the second or third operand of the ternary conditional operator;

the right operand of the built-in comma operator;

the operand of a conversion to unsigned char;

the right operand of the assignment operator, if the left operand is also of type unsigned char;

the initializer for an unsigned char object;

or if the value is discarded. In such cases, the indeterminate value simply propagates to the result of the

expression, if applicable.

Note that a static variable is always zero-initialized (if possible):

int *ptr = nullptr;

*ptr = 1; // Undefined behavior

int a;

std::cout << a; // Undefined behavior!

http://catb.org/jargon/html/N/nasal-demons.html

523

Section 104.3: Accessing an out-of-bounds index

It is undefined behavior to access an index that is out of bounds for an array (or standard library container for that

matter, as they are all implemented using a raw array):

It is allowed to have a pointer pointing to the end of the array (in this case array + 5), you just can't dereference it,

as it is not a valid element.

In general, you're not allowed to create an out-of-bounds pointer. A pointer must point to an element within the

array, or one past the end.

Section 104.4: Deleting a derived object via a pointer to a
base class that doesn't have a virtual destructor

In section [expr.delete] § 5.3.5/3 the standard says that if delete is called on an object whose static type does not

have a virtual destructor:

if the static type of the object to be deleted is different from its dynamic type, the static type shall be a

base class of the dynamic type of the object to be deleted and the static type shall have a virtual

destructor or the behavior is undefined.

This is the case regardless of the question whether the derived class added any data members to the base class.

Section 104.5: Extending the `std` or `posix` Namespace

The standard (17.6.4.2.1/1) generally forbids extending the std namespace:

The behavior of a C++ program is undefined if it adds declarations or definitions to namespace std or to a

namespace within namespace std unless otherwise specified.

The same goes for posix (17.6.4.2.2/1):

static int a;

std::cout << a; // Defined behavior, 'a' is 0

int array[] = {1, 2, 3, 4, 5};

array[5] = 0; // Undefined behavior

const int *end = array + 5; // Pointer to one past the last index

for (int *p = array; p != end; ++p)

// Do something with `p`

class base { };

class derived: public base { };

int main() {

base* p = new derived();

delete p; // The is undefined behavior!

}

https://isocpp.org/files/papers/N3690.pdf

524

The behavior of a C++ program is undefined if it adds declarations or definitions to namespace posix or

to a namespace within namespace posix unless otherwise specified.

Consider the following:

Nothing in the standard forbids algorithm (or one of the headers it includes) defining the same definition, and so

this code would violate the One Definition Rule.

So, in general, this is forbidden. There are specific exceptions allowed, though. Perhaps most usefully, it is allowed

to add specializations for user defined types. So, for example, suppose your code has

Then the following is fine

Section 104.6: Invalid pointer arithmetic

The following uses of pointer arithmetic cause undefined behavior:

Addition or subtraction of an integer, if the result does not belong to the same array object as the pointer

operand. (Here, the element one past the end is considered to still belong to the array.)

Subtraction of two pointers if they do not both belong to the same array object. (Again, the element one past

the end is considered to belong to the array.) The exception is that two null pointers may be subtracted,

yielding 0.

#include <algorithm>

namespace std

{

int foo(){}

}

class foo

{

// Stuff

};

namespace std

{

template<>

struct hash<foo>

{

public:

size_t operator()(const foo &f) const;

};

}

int a[10];

int* p1 = &a[5];

int* p2 = p1 + 4; // ok; p2 points to a[9]

int* p3 = p1 + 5; // ok; p2 points to one past the end of a int*

p4 = p1 + 6; // UB

int* p5 = p1 - 5; // ok; p2 points to a[0]

int* p6 = p1 - 6; // UB

int* p7 = p3 - 5; // ok; p7 points to a[5]

https://en.wikipedia.org/wiki/One_Definition_Rule
http://en.cppreference.com/w/cpp/language/extending_std

525

Subtraction of two pointers if the result overflows std::ptrdiff_t.

Any pointer arithmetic where either operand's pointee type does not match the dynamic type of the object

pointed to (ignoring cv-qualification). According to the standard, "[in] particular, a pointer to a base class

cannot be used for pointer arithmetic when the array contains objects of a derived class type."

Section 104.7: No return statement for a function with a non-
void return type

Omitting the return statement in a function which is has a return type that is not void is undefined behavior.

Most modern day compilers emit a warning at compile time for this kind of undefined behavior.

Note: main is the only exception to the rule. If main doesn't have a return statement, the compiler automatically

inserts return 0; for you, so it can be safely left out.

Section 104.8: Accessing a dangling reference

It is illegal to access a reference to an object that has gone out of scope or been otherwise destroyed. Such a

reference is said to be dangling since it no longer refers to a valid object.

int a[10];

int b[10];

int *p1 = &a[8], *p2 =

&a[3]; int d1 = p1 - p2; //

yields 5

int *p3 = p1 + 2; // ok; p3 points to one past the end of a

int d2 = p3 - p2; // yields 7

int *p4 = &b[0];

int d3 = p4 - p1; // UB

struct Base { int x; };

struct Derived : Base { int y; };

Derived a[10];

Base* p1 = &a[1]; // ok

Base* p2 = p1 + 1; // UB; p1 points to Derived

Base* p3 = p1 - 1; // likewise

Base* p4 = &a[2]; // ok

auto p5 = p4 - p1; // UB; p4 and p1 point to Derived

const Derived* p6 = &a[1];

const Derived* p7 = p6 + 1; // ok; cv-qualifiers don't matter

int function() {

// Missing return statement

}

int main() {

function(); //Undefined Behavior

}

#include <iostream> int&

getX() {

int x = 42;

return x;

}

526

In this example, the local variable x goes out of scope when getX returns. (Note that lifetime extension cannot

extend the lifetime of a local variable past the scope of the block in which it is defined.) Therefore r is a dangling

reference. This program has undefined behavior, although it may appear to work and print 42 in some cases.

Section 104.9: Integer division by zero

Division by 0 is mathematically undefined, and as such it makes sense that this is undefined behavior.

However:

Most implementation implement IEEE-754, which defines floating point division by zero to return NaN (if numerator

is 0.0f), infinity (if numerator is positive) or -infinity (if numerator is negative).

Section 104.10: Shifting by an invalid number of positions

For the built-in shift operator, the right operand must be nonnegative and strictly less than the bit width of the

promoted left operand. Otherwise, the behavior is undefined.

Section 104.11: Incorrect pairing of memory allocation and
deallocation

An object can only be deallocated by delete if it was allocated by new and is not an array. If the argument to delete

was not returned by new or is an array, the behavior is undefined.

An object can only be deallocated by delete[] if it was allocated by new and is an array. If the argument to delete[]

was not returned by new or is not an array, the behavior is undefined.

If the argument to free was not returned by malloc, the behavior is undefined.

int main() {

int& r = getX();

std::cout << r << "\n";

}

int x = 5 / 0; // Undefined behavior

float x = 5.0f / 0.0f; // x is +infinity

const int a = 42;

const int b = a << -1; // UB

const int c = a << 0; // ok

const int d = a << 32; // UB if int is 32 bits or less const

int e = a >> 32; // also UB if int is 32 bits or less const

signed char f = 'x';

const int g = f << 10; // ok even if signed char is 10 bits or less;

// int must be at least 16 bits

int* p1 = new int;

delete p1; // correct

// delete[] p1; // undefined

// free(p1); // undefined

int* p2 = new int[10];

delete[] p2; // correct

// delete p2; // undefined

// free(p2); // undefined

527

Such issues can be avoided by completely avoiding malloc and free in C++ programs, preferring the standard

library smart pointers over raw new and delete, and preferring std::vector and std::string over raw new and

delete[].

Section 104.12: Signed Integer Overflow

If during the evaluation of an expression, the result is not mathematically defined or not in the range of

representable values for its type, the behavior is undefined.

(C++11 Standard paragraph 5/4)

This is one of the more nasty ones, as it usually yields reproducible, non-crashing behavior so developers may be

tempted to rely heavily on the observed behavior.

On the other hand:

is well defined since:

Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2^n where n is the

number of bits in the value representation of that particular size of integer.

(C++11 Standard paragraph 3.9.1/4)

Sometimes compilers may exploit an undefined behavior and optimize

Here since a signed integer overflow is not defined, compiler is free to assume that it may never happen and hence

it can optimize away the "if" block

Section 104.13: Multiple non-identical definitions (the One
Definition Rule)

If a class, enum, inline function, template, or member of a template has external linkage and is defined in multiple

translation units, all definitions must be identical or the behavior is undefined according to the One Definition Rule

int* p3 = static_cast<int*>(malloc(sizeof(int)));

free(p3); // correct

// delete p3; // undefined

// delete[] p3; // undefined

int x = INT_MAX + 1;

// x can be anything -> Undefined behavior

unsigned int x = UINT_MAX + 1;

// x is 0

signed int x ;

if(x > x + 1)

{

//do something

}

https://en.wikipedia.org/wiki/One_Definition_Rule

528

(ODR).

foo.h:

foo.cpp:

main.cpp:

The above program exhibits undefined behavior because it contains two definitions of the class ::Foo, which has

external linkage, in different translation units, but the two definitions are not identical. Unlike redefinition of a class

within the same translation unit, this problem is not required to be diagnosed by the compiler.

Section 104.14: Modifying a const object

Any attempt to modify a const object results in undefined behavior. This applies to const variables, members of

const objects, and class members declared const. (However, a mutable member of a const object is not const.)

Such an attempt can be made through const_cast:

A compiler will usually inline the value of a const int object, so it's possible that this code compiles and prints 123.

Compilers can also place const objects' values in read-only memory, so a segmentation fault may occur. In any

case, the behavior is undefined and the program might do anything.

The following program conceals a far more subtle error:

class Foo {

public:

double x;

private:

int y;

};

Foo get_foo();

#include "foo.h"

Foo get_foo() { /* implementation */ }

// I want access to the private member, so I am going to replace Foo with my own type

class Foo {

public:

double x;

int y;

};

Foo get_foo(); // declare this function ourselves since we aren't including foo.h int

main() {

Foo foo = get_foo();

// do something with foo.y

}

const int x = 123;

const_cast<int&>(x) = 456;

std::cout << x << '\n';

#include <iostream>

class Foo* instance;

https://en.wikipedia.org/wiki/One_Definition_Rule

529

In this code, getFoo creates a singleton of type const Foo and its member m_x is initialized to 123. Then do_evil is

called and the value of foo.m_x is apparently changed to 456. What went wrong?

Despite its name, do_evil does nothing particularly evil; all it does is call a setter through a Foo*. But that pointer

points to a const Foo object even though const_cast was not used. This pointer was obtained through Foo's

constructor. A const object does not become const until its initialization is complete, so this has type Foo*, not

const Foo*, within the constructor.

Therefore, undefined behavior occurs even though there are no obviously dangerous constructs in this program.

Section 104.15: Returning from a [[noreturn]] function

Version ≥ C++11

Example from the Standard, [dcl.attr.noreturn]:

Section 104.16: Infinite template recursion

Example from the Standard, [temp.inst]/17:

class Foo {

public:

int get_x() const { return m_x; }

void set_x(int x) { m_x = x; }

private:

Foo(int x, Foo*& this_ref): m_x(x)

{ this_ref = this;

}

int m_x;

friend const Foo& getFoo();

};

const Foo& getFoo() {

static const Foo foo(123, instance);

return foo;

}

void do_evil(int x) {

instance->set_x(x);

}

int main() {

const Foo& foo = getFoo();

do_evil(456);

std::cout << foo.get_x() << '\n';

}

[[noreturn]] void f() {

throw "error"; // OK

}

[[noreturn]] void q(int i) { // behavior is undefined if called with an argument <= 0 if

(i > 0)

throw "positive";

}

template<class T> class X {

X<T>* p; // OK

X<T*> a; // implicit generation of X<T> requires

// the implicit instantiation of X<T*> which requires

530

Section 104.17: Overflow during conversion to or from
floating point type

If, during the conversion of:

an integer type to a floating point type,

a floating point type to an integer type, or

a floating point type to a shorter floating point type,

the source value is outside the range of values that can be represented in the destination type, the result is

undefined behavior. Example:

Section 104.18: Modifying a string literal

Version < C++11

"hello world" is a string literal, so modifying it gives undefined behaviour.

The initialisation of str in the above example was formally deprecated (scheduled for removal from a future

version of the standard) in C++03. A number of compilers before 2003 might issue a warning about this (e.g. a

suspicious conversion). After 2003, compilers typically warn about a deprecated conversion.

Version ≥ C++11

The above example is illegal, and results in a compiler diagnostic, in C++11 and later. A similar example may be

constructed to exhibit undefined behaviour by explicitly permitting the type conversion, such as:

Section 104.19: Accessing an object as the wrong type

In most cases, it is illegal to access an object of one type as though it were a different type (disregarding cv-

qualifiers). Example:

The result is undefined behavior.

There are some exceptions to this strict aliasing rule:

An object of class type can be accessed as though it were of a type that is a base class of the actual class type.

Any type can be accessed as a char or unsigned char, but the reverse is not true: a char array cannot be

accessed as though it were an arbitrary type.

A signed integer type can be accessed as the corresponding unsigned type and vice versa.

char *str = "hello world";

str[0] = 'H';

// the implicit instantiation of X<T**> which ...

};

double x = 1e100;

int y = x; // int probably cannot hold numbers that large, so this is UB

char *str = const_cast<char *>("hello world"); str[0]

= 'H';

float x = 42;

int y = reinterpret_cast<int&>(x);

531

A related rule is that if a non-static member function is called on an object that does not actually have the same

type as the defining class of the function, or a derived class, then undefined behavior occurs. This is true even if the

function does not access the object.

Section 104.20: Invalid derived-to-base conversion for
pointers to members

When static_cast is used to convert T D::* to T B::*, the member pointed to must belong to a class that is a

base class or derived class of B. Otherwise the behavior is undefined. See Derived to base conversion for pointers

to members

Section 104.21: Destroying an object that has already been
destroyed

In this example, a destructor is explicitly invoked for an object that will later be automatically destroyed.

A similar issue occurs when a std::unique_ptr<T> is made to point at a T with automatic or static storage duration.

Another way to destroy an object twice is by having two shared_ptrs both manage the object without sharing

ownership with each other.

struct Base {

};

struct Derived : Base {

void f() {}

};

struct Unrelated {};

Unrelated u;

Derived& r1 = reinterpret_cast<Derived&>(u); // ok

r1.f(); // UB

Base b;

Derived& r2 = reinterpret_cast<Derived&>(b); // ok

r2.f(); // UB

struct S {

~S() { std::cout << "destroying S\n"; }

};

int main() {

S s;

s.~S();

} // UB: s destroyed a second time here

void f(std::unique_ptr<S> p);

int main() {

S s;

std::unique_ptr<S> p(&s);

f(std::move(p)); // s destroyed upon return from f

} // UB: s destroyed

void f(std::shared_ptr<S> p1, std::shared_ptr<S> p2);

int main() {

S* p = new S;

// I want to pass the same object twice...

std::shared_ptr<S> sp1(p);

std::shared_ptr<S> sp2(p);

f(sp1, sp2);

} // UB: both sp1 and sp2 will destroy s separately

532

Section 104.22: Access to nonexistent member through
pointer to member

When accessing a non-static member of an object through a pointer to member, if the object does not actually

contain the member denoted by the pointer, the behavior is undefined. (Such a pointer to member can be obtained

through static_cast.)

Section 104.23: Invalid base-to-derived static cast

If static_cast is used to convert a pointer (resp. reference) to base class to a pointer (resp. reference) to derived

class, but the operand does not point (resp. refer) to an object of the derived class type, the behavior is undefined.

See Base to derived conversion.

Section 104.24: Floating point overflow

If an arithmetic operation that yields a floating point type produces a value that is not in the range of representable

values of the result type, the behavior is undefined according to the C++ standard, but may be defined by other

standards the machine might conform to, such as IEEE 754.

Section 104.25: Calling (Pure) Virtual Members From
Constructor Or Destructor

The Standard (10.4) states:

Member functions can be called from a constructor (or destructor) of an abstract class; the effect of

making a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or

destroyed) from such a constructor (or destructor) is undefined.

More generally, some C++ authorities, e.g. Scott Meyers, suggest never calling virtual functions (even non-pure

ones) from constructors and dstructors.

Consider the following example, modified from the above link:

// NB: this is correct:

// std::shared_ptr<S> sp(p);

// f(sp, sp);

struct Base { int x; };

struct Derived : Base { int y; };

int Derived::*pdy = &Derived::y;

int Base::*pby = static_cast<int Base::*>(pdy);

Base* b1 = new Derived;

b1->*pby = 42; // ok; sets y in Derived object to 42

Base* b2 = new Base;

b2->*pby = 42; // undefined; there is no y member in Base

float x = 1.0;

for (int i = 0; i < 10000; i++) {

x *= 10.0; // will probably overflow eventually; undefined behavior

}

class transaction

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.artima.com/cppsource/nevercall.html

533

Suppose we create a sell_transaction object:

This implicitly calls the constructor of sell_transaction, which first calls the constructor of transaction. When the

constructor of transaction is called though, the object is not yet of the type sell_transaction, but rather only of

the type transaction.

Consequently, the call in transaction::transaction() to log_it, won't do what might seem to be the intuitive

thing - namely call sell_transaction::log_it.

If log_it is pure virtual, as in this example, the behaviour is undefined.

If log_it is non-pure virtual, transaction::log_it will be called.

Section 104.26: Function call through mismatched function
pointer type

In order to call a function through a function pointer, the function pointer's type must exactly match the function's

type. Otherwise, the behaviour is undefined. Example:

{

public:

transaction(){ log_it(); }

virtual void log_it() const = 0;

};

class sell_transaction : public transaction

{

public:

virtual void log_it() const { /* Do something */ }

};

sell_transaction s;

int f();

void (*p)() = reinterpret_cast<void(*)()>(f);

p(); // undefined

534

Chapter 105: Overload resolution

Section 105.1: Categorization of argument to parameter cost

Overload resolution partitions the cost of passing an argument to a parameter into one of four different

categorizes, called "sequences". Each sequence may include zero, one or several conversions

Standard conversion sequence

User defined conversion sequence

Ellipsis conversion sequence

List initialization sequence

The general principle is that Standard conversion sequences are the cheapest, followed by user defined conversion

sequences, followed by ellipsis conversion sequences.

A special case is the list initialization sequence, which does not constitute a conversion (an initializer list is not an

expression with a type). Its cost is determined by defining it to be equivalent to one of the other three conversion

sequences, depending on the parameter type and form of initializer list.

Section 105.2: Arithmetic promotions and conversions

Converting an integer type to the corresponding promoted type is better than converting it to some other integer

type.

Promoting a float to double is better than converting it to some other floating point type.

Arithmetic conversions other than promotions are neither better nor worse than each other.

void f(int a); f(42);

void f(std::string s); f("hello");

void f(...); f(42);

void f(std::vector<int> v); f({1, 2, 3});

void f(int x);

void f(short x);

signed char c = 42;

f(c); // calls f(int); promotion to int is better than conversion to short short

s = 42;

f(s); // calls f(short); exact match is better than promotion to int

void f(double x);

void f(long double x);

f(3.14f); // calls f(double); promotion to double is better than conversion to long double

void f(float x);

void f(long double x);

f(3.14); // ambiguous

535

Therefore, in order to ensure that there will be no ambiguity when calling a function f with either integral or

floating-point arguments of any standard type, a total of eight overloads are needed, so that for each possible

argument type, either an overload matches exactly or the unique overload with the promoted argument type will

be selected.

Section 105.3: Overloading on Forwarding Reference

You must be very careful when providing a forwarding reference overload as it may match too well:

The intent here was that A is copyable, and that we have this other constructor that might initialize some other

member. However:

There are two viable matches for the construction call:

Both are Exact Matches, but #3 takes a reference to a less cv-qualified object than #2 does, so it has the better

standard conversion sequence and is the best viable function.

The solution here is to always constrain these constructors (e.g. using SFINAE):

The type trait here is to exclude any A or class publicly and unambiguously derived from A from consideration,

which would make this constructor ill-formed in the example described earlier (and hence removed from the

overload set). As a result, the copy constructor is invoked - which is what we wanted.

void g(long x);

void g(long double x);

g(42); // ambiguous

g(3.14); // ambiguous

void f(int x);

void f(unsigned int x);

void f(long x);

void f(unsigned long x);

void f(long long x);

void f(unsigned long long x);

void f(double x);

void f(long double x);

struct A {

A() = default; // #1

A(A const&) = default; // #2

template <class T>

A(T&&); // #3

};

A
a;

// calls #1

A b(a); // calls #3!

A(A const&); // #2

A(A&); // #3, with T = A&

template <class T,

class = std::enable_if_t<!std::is_convertible<std::decay_t<T>*, A*>::value>

>

A(T&&

);

536

Section 105.4: Exact match

An overload without conversions needed for parameter types or only conversions needed between types that are

still considered exact matches is preferred over an overload that requires other conversions in order to call.

When an argument binds to a reference to the same type, the match is considered to not require a conversion even

if the reference is more cv-qualified.

For the purposes of overload resolution, the type "array of T" is considered to match exactly with the type "pointer

to T", and the function type T is considered to match exactly with the function pointer type T*, even though both

require conversions.

Section 105.5: Overloading on constness and volatility

Passing a pointer argument to a T* parameter, if possible, is better than passing it to a const T* parameter.

Likewise, passing an argument to a T& parameter, if possible, is better than passing it to a const T& parameter,

even if both have exact match rank.

void f(int x);

void f(double x);

f(42); // calls f(int)

void f(int& x);

void f(double x);

int x = 42;

f(x); // argument type is int; exact match with int&

void g(const int& x);

void g(int x);

g(x); // ambiguous; both overloads give exact match

void f(int* p);

void f(void* p);

void g(int* p);

void g(int (&p)[100]);

int a[100];

f(a); // calls f(int*); exact match with array-to-pointer conversion

g(a); // ambiguous; both overloads give exact match

struct Base {};

struct Derived : Base {};

void f(Base* pb);

void f(const Base* pb);

void f(const Derived* pd);

void f(bool b);

Base b;

f(&b); // f(Base*) is better than f(const Base*)

Derived d;

f(&d); // f(const Derived*) is better than f(Base*) though;

// constness is only a "tie-breaker" rule

void f(int& r);

void f(const int& r);

537

This rule applies to const-qualified member functions as well, where it is important for allowing mutable access to

non-const objects and immutable access to const objects.

In the same way, a volatile overload will be less preferred than a non-volatile overload.

Section 105.6: Name lookup and access checking

Overload resolution occurs after name lookup. This means that a better-matching function will not be selected by

overload resolution if it loses name lookup:

Overload resolution occurs before access checking. An inaccessible function might be selected by overload

resolution if it is a better match than an accessible function.

int x;

f(x); // both overloads match exactly, but f(int&) is still better

const int y = 42;

f(y); // only f(const int&) is viable

class IntVector {

public:

// ...

int* data() { return m_data; }

const int* data() const { return m_data; }

private:

// ...

int* m_data;

};

IntVector v1;

int* data1 = v1.data(); // Vector::data() is better than Vector::data() const;

// data1 can be used to modify the vector's data

const IntVector v2;

const int* data2 = v2.data(); // only Vector::data() const is viable;

// data2 can't be used to modify the vector's data

class AtomicInt {

public:

// ...

int load();

int load() volatile;

private:

// ...

};

AtomicInt a1;

a1.load(); // non-volatile overload preferred; no side effect volatile

AtomicInt a2;

a2.load(); // only volatile overload is viable; side effect static_cast<volatile

AtomicInt&>(a1).load(); // force volatile semantics for a1

void f(int x);

struct S {

void f(double x);

void g() { f(42); } // calls S::f because global f is not visible here,

// even though it would be a better match

};

class C {

public:

static void f(double x);

538

Similarly, overload resolution happens without checking whether the resulting call is well-formed with regards to

explicit:

Section 105.7: Overloading within a class hierarchy

The following examples will use this class hierarchy:

The conversion from derived class type to base class type is preferred to user-defined conversions. This applies

when passing by value or by reference, as well as when converting pointer-to-derived to pointer-to-base.

A pointer conversion from derived class to base class is also better than conversion to void*.

If there are multiple overloads within the same chain of inheritance, the most derived base class overload is

preferred. This is based on a similar principle as virtual dispatch: the "most specialized" implementation is chosen.

However, overload resolution always occurs at compile time and will never implicitly down-cast.

For pointers to members, which are contravariant with respect to the class, a similar rule applies in the opposite

direction: the least derived derived class is preferred.

private:

static void f(int x);

};

C::f(42); // Error! Calls private C::f(int) even though public C::f(double) is viable.

struct X {

explicit X(int);

X(char);

};

void foo(X);

foo({4}); // X(int) is better much, but expression is

// ill-formed because selected constructor is explicit

struct A { int m; };

struct B : A {};

struct C : B {};

struct Unrelated {

Unrelated(B b);

};

void f(A a);

void f(Unrelated u);

B b;

f(b); // calls f(A)

void f(A* p);

void f(void* p);

B b;

f(&b); // calls f(A*)

void f(const A& a);

void f(const B& b);

C c;

f(c); // calls f(const B&) B

b;

A& r = b;

f(r); // calls f(const A&); the f(const B&) overload is not viable

539

Section 105.8: Steps of Overload Resolution

The steps of overload resolution are:

1. Find candidate functions via name lookup. Unqualified calls will perform both regular unqualified lookup as

well as argument-dependent lookup (if applicable).

2. Filter the set of candidate functions to a set of viable functions. A viable function for which there exists an

implicit conversion sequence between the arguments the function is called with and the parameters the

function takes.

3. Pick the best viable candidate. A viable function F1 is a better function than another viable function F2 if the

implicit conversion sequence for each argument in F1 is not worse than the corresponding implicit

conversion sequence in F2, and...:

3.1. For some argument, the implicit conversion sequence for that argument in F1 is a better conversion

sequence than for that argument in F2, or

3.2. In a user-defined conversion, the standard conversion sequence from the return of F1 to the destination

type is a better conversion sequence than that of the return type of F2, or

3.3. In a direct reference binding, F1 has the same kind of reference by F2 is not, or

void f(int B::*p);

void f(int C::*p);

int A::*p = &A::m;

f(p); // calls f(int B::*)

void f(char); // (1)

void f(int) = delete; // (2)

void f(); // (3)

void f(int&); // (4)

f(4); // 1,2 are viable (even though 2 is deleted!)

// 3 is not viable because the argument lists don't match

// 4 is not viable because we cannot bind a temporary to

// a non-const lvalue reference

void f(int); // (1)

void f(char); // (2)

f(4); // call (1), better conversion sequence

struct A

{

operator int();

operator double();

} a;

int i = a; // a.operator int() is better than a.operator double() and a conversion

float f = a; // ambiguous

struct A

{

operator X&(); // #1

operator X&&(); // #2

540

3.4. F1 is not a function template specialization, but F2 is, or

3.5. F1 and F2 are both function template specializations, but F1 is more specialized than F2.

The ordering here is significant. The better conversion sequence check happens before the template vs non-

template check. This leads to a common error with overloading on forwarding reference:

If there's no single best viable candidate at the end, the call is ambiguous:

};

A a;

X& lx = a; // calls #1

X&& rx = a; // calls #2

template <class T> void f(T); // #1

void f(int); // #2

f(42); // calls #2, the non-template

template <class T> void f(T); // #1

template <class T> void f(T*); // #2

int* p;

f(p); // calls #2, more specialized

struct A {

A(A const&); // #1

template <class T>

A(T&&); // #2, not constrained

};

A a;

A b(a); // calls #2!

// #1 is not a template but #2 resolves to

// A(A&), which is a less cv-qualified reference than #1

// which makes it a better implicit conversion sequence

void f(double) { }

void f(float) { }

f(42); // error: ambiguous

541

Chapter 106: Move Semantics

Section 106.1: Move semantics

Move semantics are a way of moving one object to another in C++. For this, we empty the old object and place

everything it had in the new object.

For this, we must understand what an rvalue reference is. An rvalue reference (T&& where T is the object type) is not

much different than a normal reference (T&, now called lvalue references). But they act as 2 different types, and so,

we can make constructors or functions that take one type or the other, which will be necessary when dealing with

move semantics.

The reason why we need two different types is to specify two different behaviors. Lvalue reference constructors are

related to copying, while rvalue reference constructors are related to moving.

To move an object, we will use std::move(obj). This function returns an rvalue reference to the object, so that we

can steal the data from that object into a new one. There are several ways of doing this which are discussed below.

Important to note is that the use of std::move creates just an rvalue reference. In other words the statement

std::move(obj) does not change the content of obj, while auto obj2 = std::move(obj) (possibly) does.

Section 106.2: Using std::move to reduce complexity from
O(n²) to O(n)

C++11 introduced core language and standard library support for moving an object. The idea is that when an

object o is a temporary and one wants a logical copy, then its safe to just pilfer o's resources, such as a dynamically

allocated buffer, leaving o logically empty but still destructible and copyable.

The core language support is mainly

the rvalue reference type builder &&, e.g., std::string&& is an rvalue reference to a std::string, indicating

that that referred to object is a temporary whose resources can just be pilfered (i.e. moved)

special support for a move constructor T(T&&), which is supposed to efficiently move resources from the

specified other object, instead of actually copying those resources, and

special support for a move assignment operator auto operator=(T&&) -> T&, which also is supposed to

move from the source.

The standard library support is mainly the std::move function template from the <utility> header. This function

produces an rvalue reference to the specified object, indicating that it can be moved from, just as if it were a

temporary.

For a container actual copying is typically of O(n) complexity, where n is the number of items in the container, while

moving is O(1), constant time. And for an algorithm that logically copies that container n times, this can reduce the

complexity from the usually impractical O(n²) to just linear O(n).

In his article “Containers That Never Change” in Dr. Dobbs Journal in September 19 2013, Andrew Koenig presented

an interesting example of algorithmic inefficiency when using a style of programming where variables are

immutable after initialization. With this style loops are generally expressed using recursion. And for some

algorithms such as generating a Collatz sequence, the recursion requires logically copying a container:

// Based on an example by Andrew Koenig in his Dr. Dobbs Journal article

http://www.drdobbs.com/cpp/containters-that-never-change/240161543
http://www.drdobbs.com/cpp/containters-that-never-change/240161543
http://www.drdobbs.com/cpp/containters-that-never-change/240161543
http://www.drdobbs.com/cpp/containters-that-never-change/240161543

542

// “Containers That Never Change” September 19, 2013, available at

// <url: http://www.drdobbs.com/cpp/containters-that-never-change/240161543>

// Includes here, e.g. <vector>

namespace my {

template< class Item >

using Vector_ = /* E.g. std::vector<Item> */;

auto concat(Vector_<int> const& v, int const x)

-> Vector_<int>

{

auto result{ v };

result.push_back(x);

return result;

}

auto collatz_aux(int const n, Vector_<int> const& result)

-> Vector_<int>

{

if(n == 1)

{

return result;

}

auto const new_result = concat(result, n); if(

n % 2 == 0)

{

return collatz_aux(n/2, new_result);

}

else

{

return collatz_aux(3*n + 1, new_result);

}

}

auto collatz(int const n)

-> Vector_<int>

{

assert(n != 0);

return collatz_aux(n, Vector_<int>());

}

} // namespace my

#include <iostream>

using namespace std;

auto main() -> int

{

for(int const x : my::collatz(42))

{

cout << x << ' ';

}

cout << '\n';

}

Output:

42 21 64 32 16 8 4 2

The number of item copy operations due to copying of the vectors is here roughly O(n²), since it's the sum 1 + 2 + 3

+ ... n.

http://www.drdobbs.com/cpp/containters-that-never-change/240161543

543

In concrete numbers, with g++ and Visual C++ compilers the above invocation of collatz(42) resulted in a Collatz

sequence of 8 items and 36 item copy operations (8*7/2 = 28, plus some) in vector copy constructor calls.

All of these item copy operations can be removed by simply moving vectors whose values are not needed anymore.

To do this it's necessary to remove const and reference for the vector type arguments, passing the vectors by value.

The function returns are already automatically optimized. For the calls where vectors are passed, and not used

again further on in the function, just apply std::move to move those buffers rather than actually copying them:

using std::move;

auto concat(Vector_<int> v, int const x)

-> Vector_<int>

{

v.push_back(x);

// warning: moving a local object in a return statement prevents copy elision [-Wpessimizing-

move]

// See https://stackoverflow.com/documentation/c%2b%2b/2489/copy-elision

// return move(v);

return v;

}

auto collatz_aux(int const n, Vector_<int> result)

-> Vector_<int>

{

if(n == 1)

{

return result;

}

auto new_result = concat(move(result), n);

struct result; // Make absolutely sure no use of `result` after this.

if(n % 2 == 0)

{

return collatz_aux(n/2, move(new_result));

}

else

{

return collatz_aux(3*n + 1, move(new_result));

}

}

auto collatz(int const n)

-> Vector_<int>

{

assert(n != 0);

return collatz_aux(n, Vector_<int>());

}

Here, with g++ and Visual C++ compilers, the number of item copy operations due to vector copy constructor

invocations, was exactly 0.

The algorithm is necessarily still O(n) in the length of the Collatz sequence produced, but this is a quite dramatic

improvement: O(n²) → O(n).

With some language support one could perhaps use moving and still express and enforce the immutability of a

variable between its initialization and final move, after which any use of that variable should be an error. Alas, as of

C++14 C++ does not support that. For loop-free code the no use after move can be enforced via a re-declaration of

the relevant name as an incomplete struct, as with struct result; above, but this is ugly and not likely to be

understood by other programmers; also the diagnostics can be quite misleading.

544

Summing up, the C++ language and library support for moving allows drastic improvements in algorithm

complexity, but due the support's incompleteness, at the cost of forsaking the code correctness guarantees and

code clarity that const can provide.

For completeness, the instrumented vector class used to measure the number of item copy operations due to copy

constructor invocations:

Section 106.3: Move constructor

Say we have this code snippet.

To create a copy constructor, that is, to make a function that copies an object and creates a new one, we normally

would choose the syntax shown above, we would have a constructor for A that takes an reference to another object

of type A, and we would copy the object manually inside the method.

Alternatively, we could have written A(const A &) = default; which automatically copies over all members,

template< class Item >

class Copy_tracking_vector

{

private:

static auto n_copy_ops()

-> int&

{

static int value;

return value;

}

vector<Item> items_;

public:

static auto n() -> int { return n_copy_ops(); }

void push_back(Item const& o) { items_.push_back(o); }

auto begin() const { return items_.begin(); }

auto end() const { return items_.end(); }

Copy_tracking_vector(){}

Copy_tracking_vector(Copy_tracking_vector const& other)

: items_(other.items_)

{ n_copy_ops() += items_.size(); }

Copy_tracking_vector(Copy_tracking_vector&& other)

: items_(move(other.items_))

{}

};

class A {

public:

int a;

int b;

A(const A &other) {

this->a = other.a;

this->b = other.b;

}

};

545

making use of its copy constructor.

To create a move constructor, however, we will be taking an rvalue reference instead of an lvalue reference, like

here.

Please notice that we set the old values to zero. The default move constructor (Wallet(Wallet&&) = default;)

copies the value of nrOfDollars, as it is a POD.

As move semantics are designed to allow 'stealing' state from the original instance, it is important to consider how

the original instance should look like after this stealing. In this case, if we would not change the value to zero we

would have doubled the amount of dollars into play.

Thus we have move constructed an object from an old one.

While the above is a simple example, it shows what the move constructor is intended to do. It becomes more useful

in more complex cases, such as when resource management is involved.

// Manages operations involving a specified type.

// Owns a helper on the heap, and one in its memory (presumably on the stack).

// Both helpers are DefaultConstructible, CopyConstructible, and MoveConstructible.

template<typename T,

template<typename> typename HeapHelper,

template<typename> typename StackHelper>

class OperationsManager {

using MyType = OperationsManager<T, HeapHelper, StackHelper>;

HeapHelper<T>* h_helper;

StackHelper<T> s_helper;

// ...

public:

// Default constructor & Rule of Five.

OperationsManager() : h_helper(new HeapHelper<T>) {}

OperationsManager(const MyType& other)

: h_helper(new HeapHelper<T>(*other.h_helper)), s_helper(other.s_helper) {}

MyType& operator=(MyType copy) {

swap(*this, copy);

return *this;

}

~OperationsManager() {

if (h_helper) { delete h_helper; }

class Wallet {

public:

int nrOfDollars;

Wallet() = default; //default ctor

Wallet(Wallet &&other) {

this->nrOfDollars = other.nrOfDollars;

other.nrOfDollars = 0;

}

};

Wallet a;

a.nrOfDollars = 1;

Wallet b (std::move(a)); //calling B(B&& other);

std::cout << a.nrOfDollars << std::endl; //0

std::cout << b.nrOfDollars << std::endl; //1

546

}

// Move constructor (without swap()).

// Takes other's HeapHelper<T>*.

// Takes other's StackHelper<T>, by forcing the use of StackHelper<T>'s move constructor.

// Replaces other's HeapHelper<T>* with nullptr, to keep other from deleting our shiny

// new helper when it's destroyed.

OperationsManager(MyType&& other) noexcept

: h_helper(other.h_helper),

s_helper(std::move(other.s_helper)) {

other.h_helper = nullptr;

}

// Move constructor (with swap()).

// Places our members in the condition we want other's to be in, then switches members

// with other.

// OperationsManager(MyType&& other) noexcept : h_helper(nullptr) {

// swap(*this, other);

// }

// Copy/move helper.

friend void swap(MyType& left, MyType& right) noexcept {

std::swap(left.h_helper, right.h_helper);

std::swap(left.s_helper, right.s_helper);

}

};

Section 106.4: Re-use a moved object

You can re-use a moved object:

Section 106.5: Move assignment

Similarly to how we can assign a value to an object with an lvalue reference, copying it, we can also move the values

from an object to another without constructing a new one. We call this move assignment. We move the values from

void consumingFunction(std::vector<int> vec) {

// Some operations

}

int main() {

// initialize vec with 1, 2, 3, 4

std::vector<int> vec{1, 2, 3, 4};

// Send the vector by move

consumingFunction(std::move(vec));

// Here the vec object is in an indeterminate state.

// Since the object is not destroyed, we can assign it a new content.

// We will, in this case, assign an empty value to the vector,

// making it effectively empty

vec = {};

// Since the vector as gained a determinate value, we can use it normally.

vec.push_back(42);

// Send the vector by move again.

consumingFunction(std::move(vec));

}

547

one object to another existing object.

For this, we will have to overload operator =, not so that it takes an lvalue reference, like in copy assignment, but

so that it takes an rvalue reference.

This is the typical syntax to define move assignment. We overload operator = so that we can feed it an rvalue

reference and it can assign it to another object.

Thus, we can move assign an object to another one.

Section 106.6: Using move semantics on containers

You can move a container instead of copying it:

class A {

int a;

A& operator= (A&& other)

{ this->a = other.a;

other.a = 0;

return *this;

}

};

A a;

a.a =

1; A b;

b = std::move(a); //calling A& operator= (A&& other)

std::cout << a.a << std::endl; //0

std::cout << b.a << std::endl; //1

void print(const std::vector<int>& vec) {

for (auto&& val : vec) {

std::cout << val << ", ";

}

std::cout << std::endl;

}

int main() {

// initialize vec1 with 1, 2, 3, 4 and vec2 as an empty vector

std::vector<int> vec1{1, 2, 3, 4};

std::vector<int> vec2;

// The following line will print 1, 2, 3, 4 print(vec1);

// The following line will print a new line

print(vec2);

// The vector vec2 is assigned with move assingment.

// This will "steal" the value of vec1 without copying it.

vec2 = std::move(vec1);

// Here the vec1 object is in an indeterminate state, but still valid.

// The object vec1 is not destroyed,

// but there's is no guarantees about what it contains.

// The following line will print 1, 2, 3, 4 print(vec2);

548

}

549

Chapter 107: Pimpl Idiom

Section 107.1: Basic Pimpl idiom

Version ≥ C++11

In the header file:

In the implementation file:

The pImpl contains the Widget state (or some/most of it). Instead of the Widget description of state being exposed

in the header file, it can be only exposed within the implementation.

pImpl stands for "pointer to implementation". The "real" implementation of Widget is in the pImpl.

Danger: Note that for this to work with unique_ptr, ~Widget() must be implemented at a point in a file where the

// widget.h

#include <memory> // std::unique_ptr

#include <experimental/propagate_const>

class Widget

{

public:

Widget();

~Widget();

void DoSomething();

private:

// the pImpl idiom is named after the typical variable name used

// ie, pImpl:

struct Impl; // forward declaration

std::experimental::propagate_const<std::unique_ptr< Impl >> pImpl; // ptr to actual

implementation

};

// widget.cpp

#include "widget.h"

#include "reallycomplextype.h" // no need to include this header inside widget.h

struct Widget::Impl

{

// the attributes needed from Widget go here

ReallyComplexType rct;

};

Widget::Widget() :

pImpl(std::make_unique<Impl>())

{}

Widget::~Widget() = default;

void Widget::DoSomething()

{

// do the stuff here with pImpl

}

550

Impl is fully visible. You can =default it there, but if =default where Impl is undefined, the program may easily

become ill-formed, no diagnostic required.

551

Chapter 108: auto

Section 108.1: Basic auto sample

The keyword auto provides the auto-deduction of type of a variable.

It is especially convenient when dealing with long type names:

with range-based for loops:

with lambdas:

to avoid the repetition of the type:

to avoid surprising and unnecessary copies:

The reason for the copy is that the returned type is actually std::pair<const int,float>!

Section 108.2: Generic lambda (C++14)

Version ≥ C++14

C++14 allows to use auto in lambda argument

That lambda is mostly equivalent to

std::map< std::string, std::shared_ptr< Widget > > table;

// C++98

std::map< std::string, std::shared_ptr< Widget > >::iterator i = table.find("42");

// C++11/14/17

auto j = table.find("42");

vector<int> v = {0, 1, 2, 3, 4, 5};

for(auto n: v)

std::cout << n << ' ';

auto f = [](){ std::cout << "lambda\n"; };

f();

auto w = std::make_shared< Widget >();

auto myMap = std::map<int,float>();

myMap.emplace(1,3.14);

std::pair<int,float> const& firstPair2 = *myMap.begin(); // copy!

auto const& firstPair = *myMap.begin(); // no copy!

auto print = [](const auto& arg) { std::cout << arg << std::endl; };

print(42);

print("hello world");

struct lambda {

template <typename T>

auto operator ()(const T& arg) const {

552

and then

Section 108.3: auto and proxy objects

Sometimes auto may behave not quite as was expected by a programmer. It type deduces the expression, even

when type deduction is not the right thing to do.

As an example, when proxy objects are used in the code:

Here flag would be not bool, but std::vector<bool>::reference, since for bool specialization of template vector

the operator [] returns a proxy object with conversion operator operator bool defined.

When flags.push_back(true) modifies the container, this pseudo-reference could end up dangling, referring to an

element that no longer exists.

It also makes the next situation possible:

The vector is discarded immediately, so flag is a pseudo-reference to an element that has been discarded. The call

to foo invokes undefined behavior.

In cases like this you can declare a variable with auto and initialize it by casting to the type you want to be deduced:

but at that point, simply replacing auto with bool makes more sense.

Another case where proxy objects can cause problems is expression templates. In that case, the templates are

sometimes not designed to last beyond the current full-expression for efficiency sake, and using the proxy object

on the next causes undefined behavior.

Section 108.4: auto and Expression Templates

auto can also cause problems where expression templates come into play:

std::cout << arg << std::endl;

}

};

lambda print;

print(42);

print("hello world");

std::vector<bool> flags{true, true, false};

auto flag = flags[0]; flags.push_back(true);

void foo(bool b);

std::vector<bool> getFlags();

auto flag = getFlags()[5];

foo(flag);

auto flag = static_cast<bool>(getFlags()[5]);

auto mult(int c) {

return c * std::valarray<int>{1};

553

The reason is that operator* on valarray gives you a proxy object that refers to the valarray as a means of lazy

evaluation. By using auto, you're creating a dangling reference. Instead of mult had returned a

std::valarray<int>, then the code would definitely print 3.

Section 108.5: auto, const, and references

The auto keyword by itself represents a value type, similar to int or char. It can be modified with the const

keyword and the & symbol to represent a const type or a reference type, respectively. These modifiers can be

combined.

In this example, s is a value type (its type will be inferred as std::string), so each iteration of the for loop copies a

string from the vector into s.

If the body of the loop modifies s (such as by calling s.append(" and stuff")), only this copy will be modified, not

the original member of strings.

On the other hand, if s is declared with auto& it will be a reference type (inferred to be std::string&), so on each

iteration of the loop it will be assigned a reference to a string in the vector:

In the body of this loop, modifications to s will directly affect the element of strings that it references.

Finally, if s is declared const auto&, it will be a const reference type, meaning that on each iteration of the loop it

will be assigned a const reference to a string in the vector:

Within the body of this loop, s cannot be modified (i.e. no non-const methods can be called on it).

When using auto with range-based for loops, it is generally good practice to use const auto& if the loop body will

not modify the structure being looped over, since this avoids unnecessary copies.

Section 108.6: Trailing return type

auto is used in the syntax for trailing return type:

which is equivalent to

}

auto v = mult(3);

std::cout << v[0]; // some value that could be, but almost certainly is not, 3.

std::vector<std::string> strings = { "stuff", "things", "misc" };

for(auto s : strings) {

std::cout << s << std::endl;

}

for(auto& s : strings) {

std::cout << s <<

std::endl;

}

for(const auto& s : strings) {

std::cout << s <<

std::endl;

}

auto main() -> int {}

554

Mostly useful combined with decltype to use parameters instead of std::declval<T>:

int main() {}

template <typename T1, typename T2>

auto Add(const T1& lhs, const T2& rhs) -> decltype(lhs + rhs) { return lhs + rhs; }

555

Chapter 109: Copy Elision

Section 109.1: Purpose of copy elision

There are places in the standard where an object is copied or moved in order to initialize an object. Copy elision

(sometimes called return value optimization) is an optimization whereby, under certain specific circumstances, a

compiler is permitted to avoid the copy or move even though the standard says that it must happen.

Consider the following function:

According to the strict wording of the standard, this function will initialize a temporary std::string, then

copy/move that into the return value object, then destroy the temporary. The standard is very clear that this is how

the code is interpreted.

Copy elision is a rule that permits a C++ compiler to ignore the creation of the temporary and its subsequent

copy/destruction. That is, the compiler can take the initializing expression for the temporary and initialize the

function's return value from it directly. This obviously saves performance.

However, it does have two visible effects on the user:

1. The type must have the copy/move constructor that would have been called. Even if the compiler elides the

copy/move, the type must still be able to have been copied/moved.

2. Side-effects of copy/move constructors are not guaranteed in circumstances where elision can happen.

Consider the following:

Version ≥ C++11

What will calling func do? Well, it will never print "Copying", since the temporary is an rvalue and my_type is a

moveable type. So will it print "Moving"?

Without the copy elision rule, this would be required to always print "Moving". But because the copy elision rule

exists, the move constructor may or may not be called; it is implementation-dependent.

And therefore, you cannot depend on the calling of copy/move constructors in contexts where elision is possible.

Because elision is an optimization, your compiler may not support elision in all cases. And regardless of whether

the compiler elides a particular case or not, the type must still support the operation being elided. So if a copy

struct my_type

{

my_type() = default;

my_type(const my_type &) {std::cout <<"Copying\n";}

my_type(my_type &&) {std::cout <<"Moving\n";}

};

my_type func()

{

return my_type();

}

std::string get_string()

{

return std::string("I am a string.");

}

556

construction is elided, the type must still have a copy constructor, even though it will not be called.

Section 109.2: Guaranteed copy elision

Version ≥ C++17

Normally, elision is an optimization. While virtually every compiler support copy elision in the simplest of cases,

having elision still places a particular burden on users. Namely, the type who's copy/move is being elided must still

have the copy/move operation that was elided.

For example:

This might be useful in cases where a_mutex is a mutex that is privately held by some system, yet an external user

might want to have a scoped lock to it.

This is also not legal, because std::lock_guard cannot be copied or moved. Even though virtually every C++

compiler will elide the copy/move, the standard still requires the type to have that operation available.

Until C++17.

C++17 mandates elision by effectively redefining the very meaning of certain expressions so that no copy/moving

takes place. Consider the above code.

Under pre-C++17 wording, that code says to create a temporary and then use the temporary to copy/move into the

return value, but the temporary copy can be elided. Under C++17 wording, that does not create a temporary at all.

In C++17, any prvalue expression, when used to initialize an object of the same type as the expression, does not

generate a temporary. The expression directly initializes that object. If you return a prvalue of the same type as the

return value, then the type need not have a copy/move constructor. And therefore, under C++17 rules, the above

code can work.

The C++17 wording works in cases where the prvalue's type matches the type being initialized. So given get_lock

above, this will also not require a copy/move:

Since the result of get_lock is a prvalue expression being used to initialize an object of the same type, no copying

or moving will happen. That expression never creates a temporary; it is used to directly initialize the_lock. There is

no elision because there is no copy/move to be elided elide.

The term "guaranteed copy elision" is therefore something of a misnomer, but that is the name of the feature as it

is proposed for C++17 standardization. It does not guarantee elision at all; it eliminates the copy/move altogether,

redefining C++ so that there never was a copy/move to be elided.

This feature only works in cases involving a prvalue expression. As such, this uses the usual elision rules:

std::mutex a_mutex;

std::lock_guard<std::mutex> get_lock()

{

return std::lock_guard<std::mutex>(a_mutex);

}

std::lock_guard the_lock = get_lock();

std::mutex a_mutex;

std::lock_guard<std::mutex> get_lock()

{

std::lock_guard<std::mutex> my_lock(a_mutex);

http://wg21.link/P0135
http://wg21.link/P0135

557

While this is a valid case for copy elision, C++17 rules do not eliminate the copy/move in this case. As such, the type

must still have a copy/move constructor to use to initialize the return value. And since lock_guard does not, this is

still a compile error. Implementations are allowed to refuse to elide copies when passing or returning an object of

trivially-copyable type. This is to allow moving such objects around in registers, which some ABIs might mandate in

their calling conventions.

Section 109.3: Parameter elision

When you pass an argument to a function, and the argument is a prvalue expression of the function's parameter

type, and this type is not a reference, then the prvalue's construction can be elided.

This says to create a temporary string, then move it into the function parameter str. Copy elision permits this

expression to directly create the object in str, rather than using a temporary+move.

This is a useful optimization for cases where a constructor is declared explicit. For example, we could have

written the above as func("foo"), but only because string has an implicit constructor that converts from a const

char* to a string. If that constructor was explicit, we would be forced to use a temporary to call the explicit

constructor. Copy elision saves us from having to do a needless copy/move.

Section 109.4: Return value elision

If you return a prvalue expression from a function, and the prvalue expression has the same type as the function's

return type, then the copy from the prvalue temporary can be elided:

Pretty much all compilers will elide the temporary construction in this case.

Section 109.5: Named return value elision

If you return an lvalue expression from a function, and this lvalue:

represents an automatic variable local to that function, which will be destroyed after the return

the automatic variable is not a function parameter

and the type of the variable is the same type as the function's return type

//Do stuff

return my_lock;

}

struct trivially_copyable { int

a;

};

void foo (trivially_copyable a) {}

foo(trivially_copyable{}); //copy elision not mandated

void func(std::string str) { ... }

func(std::string("foo"));

std::string func()

{

return std::string("foo");

}

558

If all of these are the case, then the copy/move from the lvalue can be elided:

More complex cases are eligible for elision, but the more complex the case, the less likely the compiler will be to

actually elide it:

The compiler could still elide ret, but the chances of them doing so go down.

As noted earlier, elision is not permitted for value parameters.

Section 109.6: Copy initialization elision

If you use a prvalue expression to copy initialize a variable, and that variable has the same type as the prvalue

expression, then the copying can be elided.

Copy initialization effectively transforms this into std::string str("foo"); (there are minor differences).

This also works with return values:

Without copy elision, this would provoke 2 calls to std::string's move constructor. Copy elision permits this to call

the move constructor 1 or zero times, and most compilers will opt for the latter.

std::string func()

{

std::string str("foo");

//Do stuff

return str;

}

std::string func()

{

std::string ret("foo");

if(some_condition)

{

return "bar";

}

return ret;

}

std::string func(std::string str)

{

str.assign("foo");

//Do stuff

return str; //No elision possible

}

std::string str = std::string("foo");

std::string func()

{

return std::string("foo");

}

std::string str = func();

559

Chapter 110: Fold Expressions

Section 110.1: Unary Folds

Unary folds are used to fold parameter packs over a specific operator. There are 2 kinds of unary folds:

Unary Left Fold (... op pack) which expands as follows:

Unary Right Fold (pack op ...) which expands as follows:

Here is an example

Section 110.2: Binary Folds

Binary folds are basically unary folds, with an extra argument.

There are 2 kinds of binary folds:

Binary Left Fold - (value op ... op pack) - Expands as follows:

Binary Right Fold (pack op ... op value) - Expands as follows:

Here is an example:

((Pack1 op Pack2) op ...) op PackN

Pack1 op (... (Pack(N-1) op PackN))

template<typename... Ts>

int sum(Ts... args)

{

return (... + args); //Unary left fold

//return (args + ...); //Unary right fold

// The two are equivalent if the operator is associative.

// For +, ((1+2)+3) (left fold) == (1+(2+3)) (right fold)

// For -, ((1-2)-3) (left fold) != (1-(2-3)) (right fold)

}

int result = sum(1, 2, 3); // 6

(((Value op Pack1) op Pack2) op ...) op PackN

Pack1 op (... op (Pack(N-1) op (PackN op Value)))

template<typename... Ts>

int removeFrom(int num, Ts... args)

{

return (num - ... - args); //Binary left fold

// Note that a binary right fold cannot be used

// due to the lack of associativity of operator-

}

560

Section 110.3: Folding over a comma

It is a common operation to need to perform a particular function over each element in a parameter pack. With

C++11, the best we can do is:

But with a fold expression, the above simplifies nicely to:

No cryptic boilerplate required.

int result = removeFrom(1000, 5, 10, 15); //'result' is 1000 - 5 - 10 - 15 = 970

template <class... Ts>

void print_all(std::ostream& os, Ts const&... args) {

using expander = int[];

(void)expander{0,

(void(os << args), 0)...

};

}

template <class... Ts>

void print_all(std::ostream& os, Ts const&... args) {

(void(os << args), ...);

}

561

Chapter 111: Unions

Section 111.1: Undefined Behavior

Section 111.2: Basic Union Features

Unions are a specialized struct within which all members occupy overlapping memory.

Section 111.3: Typical Use

Unions are useful for minimizing memory usage for exclusive data, such as when implementing mixed data types.

union U {

int a;

short b;

float c;

};

U u;

u.a = 10;

if (u.b == 10) {

// this is undefined behavior since 'a' was the last member to be

// written to. A lot of compilers will allow this and might issue a

// warning, but the result will be "as expected"; this is a compiler

// extension and cannot be guaranteed across compilers (i.e. this is

// not compliant/portable code).

}

union U {

int a;

short b;

float c;

};

U u;

//Address of a and b will be equal

(void*)&u.a == (void*)&u.b;

(void*)&u.a == (void*)&u.c;

//Assigning to any union member changes the shared memory of all members

u.c = 4.f;

u.a = 5;

u.c != 4.f;

struct AnyType {

enum {

IS_INT,

IS_FLOA

T

} type;

union Data {

int as_int;

float as_float;

} value;

AnyType(int i) : type(IS_INT) { value.as_int = i; }

AnyType(float f) : type(IS_FLOAT) { value.as_float = f; }

562

int get_int() const {

if(type ==

IS_INT)

return value.as_int;

else

return (int)value.as_float;

}

float get_float() const {

if(type == IS_FLOAT)

return value.as_float;

else

return (float)value.as_int;

}
};

563

Chapter 112: Design pattern
implementation in C++
On this page, you can find examples of how design patterns are implemented in C++. For the details on these

patterns, you can check out the design patterns documentation.

Section 112.1: Adapter Pattern

Convert the interface of a class into another interface clients expect. Adapter (or Wrapper) lets classes work

together that couldn't otherwise because of incompatible interfaces. Adapter pattern's motivation is that we can

reuse existing software if we can modify the interface.

1. Adapter pattern relies on object composition.

2. Client calls operation on Adapter object.

3. Adapter calls Adaptee to carry out the operation.

4. In STL, stack adapted from vector: When stack executes push(), underlying vector does vector::push_back().

Example:

#include <iostream>

// Desired interface (Target) class

Rectangle

{

public:

virtual void draw() = 0;

};

// Legacy component (Adaptee)

class LegacyRectangle

{

public:

LegacyRectangle(int x1, int y1, int x2, int y2) {

x1_ = x1;

y1_ =

y1; x2_

= x2;

y2_ =

y2;

std::cout << "LegacyRectangle(x1,y1,x2,y2)\n";

}

void oldDraw() {

std::cout << "LegacyRectangle: oldDraw(). \n";

}

private:

int x1_;

int y1_;

int x2_;

int y2_;

};

// Adapter wrapper

class RectangleAdapter: public Rectangle, private LegacyRectangle

{

public:

RectangleAdapter(int x, int y, int w, int h):

LegacyRectangle(x, y, x + w, y + h) {

564

Summary of the code:

1. The client thinks he is talking to a Rectangle

2. The target is the Rectangle class. This is what the client invokes method on.

3. Note that the adapter class uses multiple inheritance.

4. The Adapter RectangleAdapter lets the LegacyRectangle responds to request (draw() on a Rectangle) by

inheriting BOTH classes.

5. The LegacyRectangle class does not have the same methods (draw()) as Rectangle, but the

Adapter(RectangleAdapter) can take the Rectangle method calls and turn around and invoke method on

the LegacyRectangle, oldDraw().

Adapter design pattern translates the interface for one class into a compatible but different interface. So, this is

similar to the proxy pattern in that it's a single-component wrapper. But the interface for the adapter class and the

std::cout << "RectangleAdapter(x,y,x+w,x+h)\n";

}

void draw() {

std::cout << "RectangleAdapter: draw().\n";

oldDraw();

}

};

int main()

{

int x = 20, y = 50, w = 300, h = 200;

Rectangle *r = new

RectangleAdapter(x,y,w,h); r->draw();

}

//Output:

//LegacyRectangle(x1,y1,x2,y2)

//RectangleAdapter(x,y,x+w,x+h)

Rectangle *r = new

RectangleAdapter(x,y,w,h); r->draw();

class RectangleAdapter: public Rectangle, private LegacyRectangle {

...

}

class RectangleAdapter: public Rectangle, private LegacyRectangle { public:

RectangleAdapter(int x, int y, int w, int h):

LegacyRectangle(x, y, x + w, y + h) {

std::cout << "RectangleAdapter(x,y,x+w,x+h)\n";

}

void draw() {

std::cout << "RectangleAdapter: draw().\n";

oldDraw();

}

};

565

original class may be different.

As we've seen in the example above, this adapter pattern is useful to expose a different interface for an existing

API to allow it to work with other code. Also, by using adapter pattern, we can take heterogeneous interfaces, and

transform them to provide consistent API.

Bridge pattern has a structure similar to an object adapter, but Bridge has a different intent: It is meant to

separate an interface from its implementation so that they can be varied easily and independently. An adapter is

meant to change the interface of an existing object.

Section 112.2: Observer pattern

Observer Pattern's intent is to define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.

The subject and observers define the one-to-many relationship. The observers are dependent on the subject such

that when the subject's state changes, the observers get notified. Depending on the notification, the observers may

also be updated with new values.

Here is the example from the book "Design Patterns" by Gamma.

#include <iostream>

#include <vector>

class Subject;

class Observer

{

public:

virtual ~Observer() = default;

virtual void Update(Subject&) = 0;

};

class Subject

{

public:

virtual ~Subject() = default;

void Attach(Observer& o) { observers.push_back(&o); }

void Detach(Observer& o)

{

observers.erase(std::remove(observers.begin(), observers.end(), &o));

}

void Notify()

{

for (auto* o : observers) {

o->Update(*this);

}

}

private:

std::vector<Observer*> observers;

};

class ClockTimer : public Subject

{

public:

void SetTime(int hour, int minute, int second)

{

this->hour = hour;

566

this->minute = minute;

this->second = second;

Notify();

}

int GetHour() const { return hour; }

int GetMinute() const { return minute; } int

GetSecond() const { return second; }

private:

int hour;

int minute;

int second;

};

class DigitalClock: public Observer

{

public:

explicit DigitalClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }

~DigitalClock() { subject.Detach(*this); }

void Update(Subject& theChangedSubject) override

{

if (&theChangedSubject == &subject) {

Draw();

}

}

void Draw()

{

int hour = subject.GetHour();

int minute = subject.GetMinute();

int second = subject.GetSecond();

std::cout << "Digital time is " << hour << ":"

<< minute << ":"

<< second << std::endl;

}

private:

ClockTimer& subject;

};

class AnalogClock: public Observer

{

public:

explicit AnalogClock(ClockTimer& s) : subject(s) { subject.Attach(*this); }

~AnalogClock() { subject.Detach(*this); }

void Update(Subject& theChangedSubject) override

{

if (&theChangedSubject == &subject) {

Draw();

}

}

void Draw()

{

int hour = subject.GetHour();

int minute = subject.GetMinute();

int second = subject.GetSecond();

std::cout << "Analog time is " << hour << ":"

<< minute << ":"

567

Output:

Here are the summary of the pattern:

1. Objects (DigitalClock or AnalogClock object) use the Subject interfaces (Attach() or Detach()) either to

subscribe (register) as observers or unsubscribe (remove) themselves from being observers

(subject.Attach(*this); , subject.Detach(*this);.

2. Each subject can have many observers(vector<Observer*> observers;).

3. All observers need to implement the Observer interface. This interface just has one method, Update(), that

gets called when the Subject's state changes (Update(Subject &))

4. In addition to the Attach() and Detach() methods, the concrete subject implements a Notify() method that

is used to update all the current observers whenever state changes. But in this case, all of them are done in

the parent class, Subject (Subject::Attach (Observer&), void Subject::Detach(Observer&) and void

Subject::Notify() .

5. The Concrete object may also have methods for setting and getting its state.

6. Concrete observers can be any class that implements the Observer interface. Each observer subscribe

(register) with a concrete subject to receive update (subject.Attach(*this);).

7. The two objects of Observer Pattern are loosely coupled, they can interact but with little knowledge of each

other.

Variation:

Signal and Slots

Signals and slots is a language construct introduced in Qt, which makes it easy to implement the Observer pattern

while avoiding boilerplate code. The concept is that controls (also known as widgets) can send signals containing

event information which can be received by other controls using special functions known as slots. The slot in Qt

must be a class member declared as such. The signal/slot system fits well with the way Graphical User Interfaces

are designed. Similarly, the signal/slot system can be used for asynchronous I/O (including sockets, pipes, serial

devices, etc.) event notification or to associate timeout events with appropriate object instances and methods or

functions. No registration/deregistration/invocation code need be written, because Qt's Meta Object Compiler

(MOC) automatically generates the needed infrastructure.

<< second << std::endl;

}

private:

ClockTimer& subject;

};

int main()

{

ClockTimer timer;

DigitalClock digitalClock(timer);

AnalogClock analogClock(timer);

timer.SetTime(14, 41, 36);

}

Digital time is 14:41:36

Analog time is 14:41:36

568

The C# language also supports a similar construct although with a different terminology and syntax: events play the

role of signals, and delegates are the slots. Additionally, a delegate can be a local variable, much like a function

pointer, while a slot in Qt must be a class member declared as such.

Section 112.3: Factory Pattern

Factory pattern decouples object creation and allows creation by name using a common interface:

class Animal{

public:

virtual std::shared_ptr<Animal> clone() const = 0;

virtual std::string getname() const = 0;

};

class Bear: public Animal{

public:

virtual std::shared_ptr<Animal> clone() const override

{

return std::make_shared<Bear>(*this);

}

virtual std::string getname() const override

{

return "bear";

}

};

class Cat: public Animal{ public:

virtual std::shared_ptr<Animal> clone() const override

{

return std::make_shared<Cat>(*this);

}

virtual std::string getname() const override

{

return "cat";

}

};

class AnimalFactory{

public:

static std::shared_ptr<Animal> getAnimal(const std::string& name)

{

if (name == "bear")

return std::make_shared<Bear>();

if (name == "cat")

return std::shared_ptr<Cat>();

return nullptr;

}

};

Section 112.4: Builder Pattern with Fluent API

The Builder Pattern decouples the creation of the object from the object itself. The main idea behind is that an

object does not have to be responsible for its own creation. The correct and valid assembly of a complex object

may be a complicated task in itself, so this task can be delegated to another class.

569

Inspired by the Email Builder in C#, I've decided to make a C++ version here. An Email object is not necessarily a

very complex object, but it can demonstrate the pattern.

#include <iostream>

#include <sstream>

#include <string>

using namespace std;

// Forward declaring the builder

class EmailBuilder;

class Email

{

public:

friend class EmailBuilder; // the builder can access Email's privates

static EmailBuilder make();

string to_string() const {

stringstream stream;

stream << "from: " << m_from

<< "\nto: " << m_to

<< "\nsubject: " << m_subject

<< "\nbody: " << m_body;

return stream.str();

}

private:

Email() = default; // restrict construction to builder

string m_from;

string m_to;

string m_subject;

string m_body;

};

class EmailBuilder

{

public:

EmailBuilder& from(const string &from) { m_email.m_from

= from;

return *this;

}

EmailBuilder& to(const string &to) {

m_email.m_to = to;

return *this;

}

EmailBuilder& subject(const string &subject) {

m_email.m_subject = subject;

return *this;

}

EmailBuilder& body(const string &body) { m_email.m_body

= body;

return *this;

}

operator Email&&() {

570

For older versions of C++, one may just ignore the std::move operation and remove the && from the conversion

operator (although this will create a temporary copy).

The builder finishes its work when it releases the built email by the operator Email&&(). In this example, the

builder is a temporary object and returns the email before being destroyed. You could also use an explicit

operation like Email EmailBuilder::build() {...} instead of the conversion operator.

Pass the builder around

A great feature the Builder Pattern provides is the ability to use several actors to build an object together. This is

done by passing the builder to the other actors that will each one give some more information to the built object.

This is specially powerful when you are building some sort of query, adding filters and other specifications.

return std::move(m_email); // notice the move

}

private:

Email m_email;

};

EmailBuilder Email::make()

{

return EmailBuilder();

}

// Bonus example!

std::ostream& operator <<(std::ostream& stream, const Email& email)

{

stream << email.to_string();

return stream;

}

int main()

{

Email mail = Email::make().from("me@mail.com")

.to("you@mail.com")

.subject("C++ builders")

.body("I like this API, don't you?");

cout << mail << endl;

}

void add_addresses(EmailBuilder& builder)

{

builder.from("me@mail.com")

.to("you@mail.com");

}

void compose_mail(EmailBuilder& builder)

{

builder.subject("I know the subject")

.body("And the body. Someone else knows the addresses.");

}

int main()

{

EmailBuilder builder;

add_addresses(builder);

compose_mail(builder);

mailto:me@mail.com
mailto:you@mail.com
mailto:me@mail.com
mailto:you@mail.com

571

Design variant : Mutable object

You can change the design of this pattern to fit your needs. I'll give one variant.

In the given example the Email object is immutable, i.e., it's properties can't be modified because there is no access

to them. This was a desired feature. If you need to modify the object after its creation you have to provide some

setters to it. Since those setters would be duplicated in the builder, you may consider to do it all in one class (no

builder class needed anymore). Nevertheless, I would consider the need to make the built object mutable in the

first place.

Email mail = builder;

cout << mail <<

endl; }

572

Chapter 113: Singleton Design Pattern

Section 113.1: Lazy Initialization

This example has been lifted from the Q & A section here:http://stackoverflow.com/a/1008289/3807729

See this article for a simple design for a lazy evaluated with guaranteed destruction singleton:

Can any one provide me a sample of Singleton in c++?

The classic lazy evaluated and correctly destroyed singleton.

See this article about when to use a singleton: (not often)

Singleton: How should it be used

See this two article about initialization order and how to cope:

Static variables initialisation order

Finding C++ static initialization order problems

See this article describing lifetimes:

What is the lifetime of a static variable in a C++ function?

See this article that discusses some threading implications to singletons:

Singleton instance declared as static variable of GetInstance method

class S

{

public:

static S& getInstance()

{

static S instance; // Guaranteed to be destroyed.

// Instantiated on first use.

return instance;

}

private:

S() {}; // Constructor? (the {} brackets) are needed here.

// C++ 03

// ========

// Don't forget to declare these two. You want to make sure they

// are unacceptable otherwise you may accidentally get copies of

// your singleton appearing.

S(S const&); // Don't Implement

void operator=(S const&); // Don't implement

// C++ 11

// =======

// We can use the better technique of deleting the methods

// we don't want.

public:

S(S const&) = delete;

void operator=(S const&) = delete;

// Note: Scott Meyers mentions in his Effective Modern

// C++ book, that deleted functions should generally

// be public as it results in better error messages

// due to the compilers behavior to check accessibility

// before deleted status

};

http://stackoverflow.com/a/1008289/3807729
http://stackoverflow.com/questions/270947/can-any-one-provide-me-a-sample-of-singleton-in-c/271104#271104
http://stackoverflow.com/questions/86582/singleton-how-should-it-be-used
http://stackoverflow.com/questions/211237/c-static-variables-initialisation-order/211307#211307
http://stackoverflow.com/questions/335369/finding-c-static-initialization-order-problems/335746#335746
http://stackoverflow.com/questions/246564/what-is-the-lifetime-of-a-static-variable-in-a-c-function
http://stackoverflow.com/questions/449436/singleton-instance-declared-as-static-variable-of-getinstance-method/449823#449823

573

See this article that explains why double checked locking will not work on C++:

What are all the common undefined behaviours that a C++ programmer should know about?

Section 113.2: Static deinitialization-safe singleton

There are times with multiple static objects where you need to be able to guarantee that the singleton will not be

destroyed until all the static objects that use the singleton no longer need it.

In this case std::shared_ptr can be used to keep the singleton alive for all users even when the static destructors

are being called at the end of the program:

NOTE: This example appears as an answer in the Q&A section here.

Section 113.3: Thread-safe Singeton

Version ≥ C++11

The C++11 standards guarantees that the initialization of function scope objects are initialized in a synchronized

manner. This can be used to implement a thread-safe singleton with lazy initialization.

Section 113.4: Subclasses

class Singleton

{

public:

Singleton(Singleton const&) = delete;

Singleton& operator=(Singleton const&) = delete;

static std::shared_ptr<Singleton> instance()

{

static std::shared_ptr<Singleton> s{new Singleton};

return s;

}

private:

Singleton() {}

};

class Foo

{

public:

static Foo& instance()

{

static Foo inst;

return inst;

}

private:

Foo() {}

Foo(const Foo&) = delete;

Foo& operator =(const Foo&) = delete;

};

class API

{

public:

static API& instance();

virtual ~API() {}

http://stackoverflow.com/questions/367633/what-are-all-the-common-undefined-behaviour-that-c-programmer-should-know-about/367690#367690
http://stackoverflow.com/a/40337728/3807729

574

In this example, a simple compiler switch binds the API class to the appropriate subclass. In this way, API can be

accessed without being coupled to platform-specific code.

virtual const char* func1() = 0;

virtual void func2() = 0;

protected:

API() {}

API(const API&) = delete;

API& operator=(const API&) = delete;

};

class WindowsAPI : public API

{

public:

virtual const char* func1() override { /* Windows code */

} virtual void func2() override { /* Windows code */ }

};

class LinuxAPI : public API

{

public:

virtual const char* func1() override { /* Linux code */ }

virtual void func2() override { /* Linux code */ }

};

API& API::instance() {

#if PLATFORM ==

WIN32

static WindowsAPI instance;

#elif PLATFORM = LINUX

static LinuxAPI instance;

#endif

return instance;

}

575

Chapter 114: User-Defined Literals

Section 114.1: Self-made user-defined literal for binary

Despite you can write a binary number in C++14 like:

int number =0b0001'0101; // ==21

here comes a famous example with a self-made implementation for binary numbers:

Note: The whole template expanding program is running at compile time.

template< char FIRST, char... REST > struct binary

{

static_assert(FIRST == '0' || FIRST == '1', "invalid binary digit") ;

enum { value = ((FIRST - '0') << sizeof...(REST)) + binary<REST...>::value } ;

};

template<> struct binary<'0'> { enum { value = 0 } ; };

template<> struct binary<'1'> { enum { value = 1 } ; };

// raw literal operator

template< char... LITERAL > inline

constexpr unsigned int operator "" _b() { return binary<LITERAL...>::value ; }

// raw literal operator

template< char... LITERAL > inline

constexpr unsigned int operator "" _B() { return binary<LITERAL...>::value ; }

#include <iostream>

int main()

{

std::cout << 10101_B << ", " << 011011000111_b << '\n' ; // prints 21, 1735

}

Section 114.2: Standard user-defined literals for duration

Version ≥ C++14

Those following duration user literals are declared in the namespace std::literals::chrono_literals, where both

literals and chrono_literals are inline namespaces. Access to these operators can be gained with using

namespace std::literals, using namespace std::chrono_literals, and using namespace

std::literals::chrono_literals.

#include <chrono>

#include <iostream>

int main()

{

using namespace std::literals::chrono_literals;

std::chrono::nanoseconds t1 = 600ns;

std::chrono::microseconds t2 = 42us;

std::chrono::milliseconds t3 = 51ms;

std::chrono::seconds t4 = 61s;

std::chrono::minutes t5 = 88min;

576

Section 114.3: User-defined literals with long double values

The output of this program is the following:

Section 114.4: Standard user-defined literals for strings

Version ≥ C++14

Those following string user literals are declared in the namespace std::literals::string_literals, where both

literals and string_literals are inline namespaces. Access to these operators can be gained with using

namespace std::literals, using namespace std::string_literals, and using namespace

std::literals::string_literals.

auto t6 = 2 * 0.5h;

auto total = t1 + t2 + t3 + t4 + t5 + t6;

std::cout.precision(13);

std::cout << total.count() << " nanoseconds" << std::endl; // 8941051042600 nanoseconds

std::cout << std::chrono::duration_cast<std::chrono::hours>(total).count()

<< " hours" << std::endl; // 2 hours

}

#include <iostream>

long double operator"" _km(long double val)

{

return val * 1000.0;

}

long double operator"" _mi(long double val)

{

return val * 1609.344;

}

int main()

{

std::cout << "3 km = " << 3.0_km << "

m\n"; std::cout << "3 mi = " << 3.0_mi <<

" m\n"; return 0;

}

3 km = 3000 m

3 mi = 4828.03 m

#include <codecvt>

#include <iostream>

#include <locale>

#include <string>

int main()

{

using namespace std::literals::string_literals;

std::string s = "hello world"s;

std::u16string s16 = u"hello world"s;

std::u32string s32 = U"hello world"s;

std::wstring ws = L"hello world"s;

577

Note:

Literal string may containing \0

Section 114.5: Standard user-defined literals for complex

Version ≥ C++14

Those following complex user literals are declared in the namespace std::literals::complex_literals, where both

literals and complex_literals are inline namespaces. Access to these operators can be gained with using

namespace std::literals, using namespace std::complex_literals, and using namespace

std::literals::complex_literals.

std::cout << s << std::endl;

std::wstring_convert<std::codecvt_utf8_utf16<char16_t>, char16_t> utf16conv;

std::cout << utf16conv.to_bytes(s16) << std::endl;

std::wstring_convert<std::codecvt_utf8_utf16<char32_t>, char32_t> utf32conv;

std::cout << utf32conv.to_bytes(s32) << std::endl;

std::wcout << ws << std::endl;

}

std::string s1 = "foo\0\0bar"; // constructor from C-string: results in "foo"s

std::string s2 = "foo\0\0bar"s; // That string contains 2 '\0' in its middle

#include <complex>

#include <iostream>

int main()

{

using namespace std::literals::complex_literals;

std::complex<double> c = 2.0 + 1i;

std::complex<float> cf = 2.0f + 1if;

// {2.0, 1.}

// {2.0f, 1.f}

std::complex<long double> cl = 2.0L + 1il; // {2.0L, 1.L}

std::cout << "abs" << c << " = " << abs(c) << std::endl; // abs(2,1) = 2.23607

std::cout << "abs" << cf << " = " << abs(cf) << std::endl; // abs(2,1) = 2.23607

std::cout << "abs" << cl << " = " << abs(cl) << std::endl; // abs(2,1) =

2.23607 }

578

Chapter 115: Memory management

Section 115.1: Free Storage (Heap, Dynamic Allocation ...)

The term 'heap' is a general computing term meaning an area of memory from which portions can be allocated

and deallocated independently of the memory provided by the stack.

In C++ the Standard refers to this area as the Free Store which is considered a more accurate term.

Areas of memory allocated from the Free Store may live longer than the original scope in which it was allocated.

Data too large to be stored on the stack may also be allocated from the Free Store.

Raw memory can be allocated and deallocated by the new and delete keywords.

It's also possible to allocate fixed size arrays with new and delete, with a slightly different syntax. Array allocation is

not compatible with non-array allocation, and mixing the two will lead to heap corruption. Allocating an array also

allocates memory to track the size of the array for later deletion in an implementation-defined way.

When using new and delete instead malloc and free, the constructor and destructor will get executed (Similar to

stack based objects). This is why new and delete are preferred over malloc and free.

Version ≥ C++11

From C++11 on, the use of smart pointers is recommended for indicating ownership.

Version ≥ C++14

C++14 added std::make_unique to the STL, changing the recommendation to favor std::make_unique or

std::make_shared instead of using naked new and delete.

float *foo = nullptr;

{

*foo = new float; // Allocates memory for a float

float bar; // Stack allocated

} // End lifetime of bar, while foo still alive

delete foo;

foo = nullptr;

practice

// Deletes the memory for the float at pF, invalidating the pointer

// Setting the pointer to nullptr after delete is often considered good

// Allocates memory for an array of 256 ints int

*foo = new int[256];

// Deletes an array of 256 ints at foo

delete[] foo;

struct ComplexType {

int a = 0;

ComplexType() { std::cout << "Ctor" << std::endl; }

~ComplexType() { std::cout << "Dtor" << std::endl; }

};

// Allocates memory for a ComplexType, and calls its constructor

ComplexType *foo = new ComplexType();

//Calls the destructor for ComplexType() and deletes memory for a Complextype at pC

delete foo;

579

Section 115.2: Placement new

There are situations when we don't want to rely upon Free Store for allocating memory and we want to use custom

memory allocations using new.

For these situations we can use Placement New, where we can tell `new' operator to allocate memory from a pre-

allocated memory location

For example

In this example, the memory pointed by a4byteChar is 4 byte allocated to 'stack' via integer variable a4byteInteger.

The benefit of this kind of memory allocation is the fact that programmers control the allocation. In the example

above, since a4byteInteger is allocated on stack, we don't need to make an explicit call to 'delete a4byteChar`.

Same behavior can be achieved for dynamic allocated memory also. For example

In this case, the memory pointer by a8byteChar will be referring to dynamic memory allocated by

a8byteDynamicInteger. In this case however, we need to explicitly calldelete a8byteDynamicInteger to release the

memory

Another example for C++ Class

int a4byteInteger;

char *a4byteChar = new (&a4byteInteger) char[4];

int *a8byteDynamicInteger = new int[2];

char *a8byteChar = new (a8byteDynamicInteger) char[8];

struct ComplexType {

int a;

ComplexType() : a(0) {}

~ComplexType() {}

};

int main() {

char* dynArray = new char[256];

//Calls ComplexType's constructor to initialize memory as a ComplexType

new((void*)dynArray) ComplexType();

//Clean up memory once we're done

reinterpret_cast<ComplexType*>(dynArray)->~ComplexType();

delete[] dynArray;

//Stack memory can also be used with placement new

alignas(ComplexType) char localArray[256]; //alignas() available since C++11

new((void*)localArray) ComplexType();

//Only need to call the destructor for stack memory

reinterpret_cast<ComplexType*>(localArray)->~ComplexType();

return 0;

}

580

Section 115.3: Stack

The stack is a small region of memory into which temporary values are placed during execution. Allocating data into

the stack is very fast compared to heap allocation, as all the memory has already been assigned for this purpose.

The stack is named because chains of function calls will have their temporary memory 'stacked' on top of each

other, each one using a separate small section of memory.

Data stored on the stack is only valid so long as the scope that allocated the variable is still active.

int main() {

int a = 0; //Stored on the stack

return a;

}

float bar() {

//f will be placed on the stack after anything else

float f = 2;

return f;

}

double foo() {

//d will be placed just after anything within main()

double d = bar();

return d;

}

int main() {

//The stack has no user variables stored in it until foo() is called

return (int)foo();

}

int* pA = nullptr;

void foo() {

int b = *pA;

pA = &b;

}

int main() {

int a = 5;

pA = &a;

foo();

//Undefined behavior, the value pointed to by pA is no longer in scope a

= *pA;

}

581

Chapter 116: C++11 Memory Model
Different threads trying to access the same memory location participate in a data race if at least one of the

operations is a modification (also known as store operation). These data races cause undefined behavior. To avoid

them one needs to prevent these threads from concurrently executing such conflicting operations.

Synchronization primitives (mutex, critical section and the like) can guard such accesses. The Memory Model

introduced in C++11 defines two new portable ways to synchronize access to memory in multi -threaded

environment: atomic operations and fences.

Atomic Operations

It is now possible to read and write to given memory location by the use of atomic load and atomic store operations.

For convenience these are wrapped in the std::atomic<t> template class. This class wraps a value of type t but

this time loads and stores to the object are atomic.

The template is not available for all types. Which types are available is implementation specific, but this usually

includes most (or all) available integral types as well as pointer types. So that std::atomic<unsigned> and

std::atomic<std::vector<foo> *> should be available, while std::atomic<std::pair<bool,char>> most

probably wont be.

Atomic operations have the following properties:

All atomic operations can be performed concurrently from multiple threads without causing undefined

behavior.

An atomic load will see either the initial value which the atomic object was constructed with, or the value

written to it via some atomic store operation.

Atomic stores to the same atomic object are ordered the same in all threads. If a thread has already seen the

value of some atomic store operation, subsequent atomic load operations will see either the same value, or

the value stored by subsequent atomic store operation.

Atomic read-modify-write operations allow atomic load and atomic store to happen without other atomic store

in between. For example one can atomically increment a counter from multiple threads, and no increment

will be lost regardless of the contention between the threads.

Atomic operations receive an optional std::memory_order parameter which defines what additional

properties the operation has regarding other memory locations.

std::memory_order Meaning

std::memory_order_relaxed no additional restrictions

std::memory_order_release →
std::memory_order_acquire

if load-acquire sees the value stored by store-release then
stores sequenced before the store-release happen before

loads sequenced after the load acquire

std::memory_order_consume like memory_order_acquire but only for dependent loads

std::memory_order_acq_rel combines load-acquire and store-release

std::memory_order_seq_cst sequential consistency

These memory order tags allow three different memory ordering disciplines: sequential consistency, relaxed, and

release-acquire with its sibling release-consume.

Sequential Consistency

If no memory order is specified for an atomic operation, the order defaults to sequential consistency. This mode can

also be explicitly selected by tagging the operation with std::memory_order_seq_cst.

582

With this order no memory operation can cross the atomic operation. All memory operations sequenced before the

atomic operation happen before the atomic operation and the atomic operation happens before all memory

operations that are sequenced after it. This mode is probably the easiest one to reason about but it also leads to

the greatest penalty to performance. It also prevents all compiler optimizations that might otherwise try to reorder

operations past the atomic operation.

Relaxed Ordering

The opposite to sequential consistency is the relaxed memory ordering. It is selected with the

std::memory_order_relaxed tag. Relaxed atomic operation will impose no restrictions on other memory

operations. The only effect that remains, is that the operation is itself still atomic.

Release-Acquire Ordering

An atomic store operation can be tagged with std::memory_order_release and an atomic load operation can be

tagged with std::memory_order_acquire. The first operation is called (atomic) store-release while the second is

called (atomic) load-acquire.

When load-acquire sees the value written by a store-release the following happens: all store operations sequenced

before the store-release become visible to (happen before) load operations that are sequenced after the load-acquire.

Atomic read-modify-write operations can also receive the cumulative tag std::memory_order_acq_rel. This makes

the atomic load portion of the operation an atomic load-acquire while the atomic store portion becomes atomic store-

release.

The compiler is not allowed to move store operations after an atomic store-release operation. It is also not allowed

to move load operations before atomic load-acquire (or load-consume).

Also note that there is no atomic load-release or atomic store-acquire. Attempting to create such operations makes

them relaxed operations.

Release-Consume Ordering

This combination is similar to release-acquire, but this time the atomic load is tagged with

std::memory_order_consume and becomes (atomic) load-consume operation. This mode is the same as release-

acquire with the only difference that among the load operations sequenced after the load-consume only these

depending on the value loaded by the load-consume are ordered.

Fences

Fences also allow memory operations to be ordered between threads. A fence is either a release fence or acquire

fence.

If a release fence happens before an acquire fence, then stores sequenced before the release fence are visible to

loads sequenced after the acquire fence. To guarantee that the release fence happens before the acquire fence one

may use other synchronization primitives including relaxed atomic operations.

Section 116.1: Need for Memory Model

int x, y;

bool ready = false;

void init()

{

x = 2;

583

One thread calls the init() function while another thread (or signal handler) calls the use() function. One might

expect that the use() function will either print 5 or do nothing. This may not always be the case for several reasons:

The CPU may reorder the writes that happen in init() so that the code that actually executes might look

like:

The CPU may reorder the reads that happen in use() so that the actually executed code might become:

An optimizing C++ compiler may decide to reorder the program in similar way.

Such reordering cannot change the behavior of a program running in single thread because a thread cannot

interleave the calls to init() and use(). On the other hand in a multi-threaded setting one thread may see part of

the writes performed by the other thread where it may happen that use() may see ready==true and garbage in x

or y or both.

The C++ Memory Model allows the programmer to specify which reordering operations are permitted and which

are not, so that a multi-threaded program would also be able to behave as expected. The example above can be

rewritten in thread-safe way like this:

y = 3;

ready = true;

}

void use()

{

if (ready)

std::cout << x + y;

}

void init()

{

ready = true;

x = 2;

y = 3;

}

void use()

{

int local_x = x;

int local_y = y;

if (ready)

std::cout << local_x + local_y;

}

int x, y;

std::atomic<bool> ready{false};

void init()

{

x = 2;

y = 3;

ready.store(true, std::memory_order_release);

}

void use()

{

if (ready.load(std::memory_order_acquire))

std::cout << x + y;

}

584

Here init() performs atomic store-release operation. This not only stores the value true into ready, but also tells

the compiler that it cannot move this operation before write operations that are sequenced before it.

The use() function does an atomic load-acquire operation. It reads the current value of ready and also forbids the

compiler from placing read operations that are sequenced after it to happen before the atomic load-acquire.

These atomic operations also cause the compiler to put whatever hardware instructions are needed to inform the

CPU to refrain from the unwanted reorderings.

Because the atomic store-release is to the same memory location as the atomic load-acquire, the memory model

stipulates that if the load-acquire operation sees the value written by the store-release operation, then all writes

performed by init()'s thread prior to that store-release will be visible to loads that use()'s thread executes after its

load-acquire. That is if use() sees ready==true, then it is guaranteed to see x==2 and y==3.

Note that the compiler and the CPU are still allowed to write to y before writing to x, and similarly the reads from

these variables in use() can happen in any order.

Section 116.2: Fence example

The example above can also be implemented with fences and relaxed atomic operations:

If the atomic load operation sees the value written by the atomic store then the store happens before the load, and

so do the fences: the release fence happens before the acquire fence making the writes to x and y that precede the

release fence to become visible to the std::cout statement that follows the acquire fence.

A fence might be beneficial if it can reduce the overall number of acquire, release or other synchronization

operations. For example:

The block_and_use() function spins until the ready flag is set with the help of relaxed atomic load. Then a single

acquire fence is used to provide the needed memory ordering.

int x, y;

std::atomic<bool> ready{false};

void init()

{

x = 2;

y = 3;

atomic_thread_fence(std::memory_order_release);

ready.store(true, std::memory_order_relaxed);

}

void use()

{

if (ready.load(std::memory_order_relaxed))

{

atomic_thread_fence(std::memory_order_acquire);

std::cout << x + y;

}

}

void block_and_use()

{

while (!ready.load(std::memory_order_relaxed))

;

atomic_thread_fence(std::memory_order_acquire);

std::cout << x + y;

}

585

Chapter 117: Scopes

Section 117.1: Global variables

To declare a single instance of a variable which is accessible in different source files, it is possible to make it in the

global scope with keyword extern. This keyword says the compiler that somewhere in the code there is a definition

for this variable, so it can be used everywhere and all write/read will be done in one place of memory.

Output:

Section 117.2: Simple block scope

The scope of a variable in a block { ... }, begins after declaration and ends at the end of the block. If there is

nested block, the inner block can hide the scope of a variable which is declared in the outer block.

If a nested block starts within an outer block, a new declared variable with the same name which is before in the

// File my_globals.h:

#ifndef MY_GLOBALS_H

#define MY_GLOBALS_H

extern int circle_radius; // Promise to the compiler that circle_radius

// will be defined somewhere

#endif

// File foo1.cpp:

#include "my_globals.h"

int circle_radius = 123; // Defining the extern variable

// File main.cpp:

#include "my_globals.h"

#include <iostream>

int main()

{

std::cout << "The radius is: " << circle_radius << "\n";'

return 0;

}

The radius is: 123

{

int x = 100;

// ^

// Scope of `x` begins here

//

} // <- Scope of `x` ends here

586

outer class, hides the first one.

{

int x = 100;

{

int x = 200;

std::cout << x; // <- Output is 200

}

std::cout << x; // <- Output is 100

}

587

Chapter 118: static_assert
Parameter Details

bool_constexpr Expression to check

message Message to print when bool_constexpr is false

Section 118.1: static_assert

Assertations mean that a condition should be checked and if it's false, it's an error. For static_assert(), this is

done compile-time.

A static_assert() has a mandatory first parameter, the condition, that is a bool constexpr. It might have a second

parameter, the message, that is a string literal. From C++17, the second parameter is optional; before that, it's

mandatory.

Version ≥ C++17

It is used when:

In general, a verification at compile-time is required on some type on constexpr value

A template function needs to verify certain properties of a type passed to it

One wants to write test cases for:

template metafunctions

constexpr functions

macro metaprogramming

Certain defines are required (for ex., C++ version)

Porting legacy code, assertations on sizeof(T) (e.g., 32-bit int)

Certain compiler features are required for the program to work (packing, empty base class optimization, etc.)

Note that static_assert() does not participate in SFINAE: thus, when additional overloads / specializations are

possible, one should not use it instead of template metaprogramming techniques (like std::enable_if<>). It might

be used in template code when the expected overload / specialization is already found, but further verifications are

required. In such cases, it might provide more concrete error message(s) than relying on SFINAE for this.

template<typename T>

T mul10(const T t)

{

static_assert(std::is_integral<T>::value);

return (t << 3) + (t << 1);

}

template<typename T>

T mul10(const T t)

{

static_assert(std::is_integral<T>::value, "mul10() only works for integral types");

return (t << 3) + (t << 1);

}

588

Chapter 119: constexpr
constexpr is a keyword that can be used to mark a variable's value as a constant expression, a function as

potentially usable in constant expressions, or (since C++17) an if statement as having only one of its branches

selected to be compiled.

Section 119.1: constexpr variables

A variable declared constexpr is implicitly const and its value may be used as a constant expression.

Comparison with #define

A constexpr is type-safe replacement for #define based compile-time expressions. With constexpr the compile-

time evaluated expression is replaced with the result. For example:

Version ≥ C++11

will produce the following code:

A pre-processor based compile-time macro would be different. Consider:

will produce:

which will obviously be converted to cout << 10 + 2;. However, the compiler would have to do more work. Also, it

creates a problem if not used correctly.

For example (with #define):

forms:

But a pre-evaluated constexpr would correctly give 24.

Comparison with const

int main()

{

constexpr int N = 10 + 2;

cout << N;

}

cout << 12;

#define N 10 + 2

int main()

{

cout << N;

}

cout << 10 + 2;

cout << N * 2;

cout << 10 + 2 * 2; // 14

589

A const variable is a variable which needs memory for its storage. A constexpr does not. A constexpr produces

compile time constant, which cannot be changed. You may argue that const may also not be changed. But

consider:

With most compilers the second statement will fail (may work with GCC, for example). The size of any array, as you

might know, has to be a constant expression (i.e. results in compile-time value). The second variable size2 is

assigned some value that is decided at runtime (even though you know it is 10, for the compiler it is not compile-

time).

This means that a const may or may not be a true compile-time constant. You cannot guarantee or enforce that a

particular const value is absolutely compile-time. You may use #define but it has its own pitfalls.

Therefore simply use:

Version ≥ C++11

A constexpr expression must evaluate to a compile-time value. Thus, you cannot use:

Version ≥ C++11

Unless the function (abs) is itself returning a constexpr.

All basic types can be initialized with constexpr.

Version ≥ C++11

Interestingly, and conveniently, you may also use auto:

Version ≥ C++11

Section 119.2: Static if statement

Version ≥ C++17

The if constexpr statement can be used to conditionally compile code. The condition must be a constant

expression. The branch not selected is discarded. A discarded statement inside a template is not instantiated. For

constexpr auto domain = ".COM"; // const char * const domain = ".COM"

constexpr auto PI = 3.14; // constexpr double

constexpr bool FailFatal = true;

constexpr float PI = 3.14f;

constexpr char* site= "StackOverflow";

constexpr int size = abs(10);

int main()

{

constexpr int size = 10;

int arr[size];

}

int main()

{

const int size1 = 10;

const int size2 = abs(10);

int arr_one[size1];

int arr_two[size2];

}

590

example:

In addition, variables and functions that are odr-used only inside discarded statements are not required to be

defined, and discarded return statements are not used for function return type deduction.

if constexpr is distinct from #ifdef. #ifdef conditionally compiles code, but only based on conditions that can be

evaluated at preprocessing time. For example, #ifdef could not be used to conditionally compile code depending

on the value of a template parameter. On the other hand, if constexpr cannot be used to discard syntactically

invalid code, while #ifdef can.

Section 119.3: constexpr functions

A function that is declared constexpr is implicitly inline and calls to such a function potentially yield constant

expressions. For example, the following function, if called with constant expression arguments, yields a constant

expression too:

Version ≥ C++11

Thus, the result of the function call may be used as an array bound or a template argument, or to initialize a

constexpr variable:

Version ≥ C++11

Note that if you remove constexpr from function's return type specification, assignment to S will not work, as S is a

constexpr variable, and must be assigned a compile-time const. Similarly, size of array will also not be a constant-

expression, if function Sum is not constexpr.

Interesting thing about constexpr functions is that you may also use it like ordinary functions:

Version ≥ C++11

int a = 20;

auto sum = Sum(a, abs(-20));

int main()

{

constexpr int S = Sum(10,20);

int Array[S];

int Array2[Sum(20,30)]; // 50 array size, compile time

}

constexpr int Sum(int a, int b)

{

return a + b;

}

template<class T, class ... Rest>

void g(T &&p, Rest &&...rs)

{

// ... handle p

if constexpr (sizeof...(rs) > 0)

g(rs...); // never instantiated with an empty argument list

}

if constexpr(false) {

foobar; // error; foobar has not been declared

std::vector<int> v("hello, world"); // error; no matching constructor

}

591

Sum will not be a constexpr function now, it will be compiled as an ordinary function, taking variable (non-constant)

arguments, and returning non-constant value. You need not to write two functions.

It also means that if you try to assign such call to a non-const variable, it won't compile:

Version ≥ C++11

The reason is simple: constexpr must only be assigned a compile-time constant. However, the above function call

makes Sum a non-constexpr (R-value is non-const, but L-value is declaring itself to be constexpr).

The constexpr function must also return a compile-time constant. Following will not compile:

Version ≥ C++11

Because a1 is a non-constexpr variable, and prohibits the function from being a true constexpr function. Making it

constexpr and assigning it a will also not work - since value of a (incoming parameter) is still not yet known:

Version ≥ C++11

Furthermore, following will also not compile:

Version ≥ C++11

Since abs(a) is not a constant expression (even abs(10) will not work, since abs is not returning a constexpr int !

What about this?

Version ≥ C++11

We crafted our own Abs function which is a constexpr, and the body of Abs also doesn't break any rule. Also, at the

call site (inside Sum), the expression evaluates to a constexpr. Hence, the call to Sum(-10, 20) will be a compile-time

constant expression resulting to 30.

constexpr int Abs(int v)

{

return v >= 0 ? v : -v;

}

constexpr int Sum(int a, int b)

{

return Abs(a) + b;

}

constexpr int Sum(int a, int b)

{

return abs(a) + b; // or abs(a) + abs(b)

}

constexpr int Sum(int a, int b)

{

constexpr int a1 = a; // ERROR

..

constexpr int Sum(int a, int b)

{

int a1 = a; // ERROR

return a + b;

}

int a = 20;

constexpr auto sum = Sum(a, abs(-20));

592

Chapter 120: One Definition Rule (ODR)

Section 120.1: ODR violation via overload resolution

Even with identical tokens for inline functions, ODR can be violated if lookup of names doesn't refer to the same

entity. let's consider func in following:

header.h

foo.cpp

bar.cpp

We have an ODR violation as overloaded refers to different entities depending of the translation unit.

Section 120.2: Multiply defined function

The most important consequence of the One Definition Rule is that non-inline functions with external linkage

should only be defined once in a program, although they can be declared multiple times. Therefore, such functions

should not be defined in headers, since a header can be included multiple times from different translation units.

foo.h:

foo.cpp:

main.cpp:

void overloaded(int);

inline void func() { overloaded('*'); }

#include "header.h"

void foo()

{

func(); // `overloaded` refers to `void overloaded(int)`

}

void overloaded(char); // can come from other include

#include "header.h"

void bar()

{

func(); // `overloaded` refers to `void overloaded(char)`

}

#ifndef FOO_H

#define FOO_H

#include <iostream>

void foo() { std::cout << "foo"; }

void bar();

#endif

#include "foo.h"

void bar() { std:: cout << "bar"; }

593

In this program, the function foo is defined in the header foo.h, which is included twice: once from foo.cpp and

once from main.cpp. Each translation unit therefore contains its own definition of foo. Note that the include guards

in foo.h do not prevent this from happening, since foo.cpp and main.cpp both separately include foo.h. The most

likely result of trying to build this program is a link-time error identifying foo as having been multiply defined.

To avoid such errors, one should declare functions in headers and define them in the corresponding .cpp files, with

some exceptions (see other examples).

Section 120.3: Inline functions

A function declared inline may be defined in multiple translation units, provided that all definitions are identical. It

also must be defined in every translation unit in which it is used. Therefore, inline functions should be defined in

headers and there is no need to mention them in the implementation file.

The program will behave as though there is a single definition of the function.

foo.h:

foo.cpp:

main.cpp:

In this example, the simpler function foo is defined inline in the header file while the more complicated function

bar is not inline and is defined in the implementation file. Both the foo.cpp and main.cpp translation units contain

definitions of foo, but this program is well-formed since foo is inline.

A function defined within a class definition (which may be a member function or a friend function) is implicitly inline.

Therefore, if a class is defined in a header, member functions of the class may be defined within the class definition,

even though the definitions may be included in multiple translation units:

#include "foo.h"

int main() {

foo();

bar();

}

#ifndef FOO_H

#define FOO_H

#include <iostream>

inline void foo() { std::cout << "foo"; }

void bar();

#endif

#include "foo.h"

void bar() {

// more complicated definition

}

#include "foo.h"

int main() {

foo();

bar();

}

// in foo.h

class Foo {

594

The function Foo::baz is defined out-of-line, so it is not an inline function, and must not be defined in the header.

void bar() { std::cout << "bar"; }

void baz();

};

// in foo.cpp

void Foo::baz() {

// definition

}

595

Chapter 121: Unspecified behavior

Section 121.1: Value of an out-of-range enum

If a scoped enum is converted to an integral type that is too small to hold its value, the resulting value is

unspecified. Example:

Also, if an integer is converted to an enum and the integer's value is outside the range of the enum's values, the

resulting value is unspecified. Example:

However, in the next example, the behavior is not unspecified, since the source value is within the range of the

enum, although it is unequal to all enumerators:

Here s will have the value 3, and be unequal to ONE, TWO, and FOUR.

Section 121.2: Evaluation order of function arguments

If a function has multiple arguments, it is unspecified what order they are evaluated in. The following code could

print x = 1, y = 2 or x = 2, y = 1 but it is unspecified which.

Version ≥ C++17

In C++17, the order of evaluation of function arguments remains unspecified.

enum class E {

X = 1,

Y = 1000,

};

// assume 1000 does not fit into a char

char c1 = static_cast<char>(E::X); // c1 is 1

char c2 = static_cast<char>(E::Y); // c2 has an unspecified value

enum Color {

RED = 1,

GREEN = 2,

BLUE = 3,

};

Color c = static_cast<Color>(4);

enum Scale {

ONE = 1,

TWO = 2,

FOUR = 4,

};

Scale s = static_cast<Scale>(3);

int f(int x, int y) {

printf("x = %d, y = %d\n", x, y);

}

int get_val() {

static int x = 0;

return ++x;

}

int main() {

f(get_val(), get_val());

}

596

However, each function argument is completely evaluated, and the calling object is guaranteed evaluated before

any function arguments are.

this must print:

or

it may not print bar after any of the make or from's, and it may not print:

or similar. Prior to C++17 printing bar after make_ints was legal, as was doing both make_ints prior to doing any

from_ints.

Section 121.3: Result of some reinterpret_cast conversions

The result of a reinterpret_cast from one function pointer type to another, or one function reference type to

another, is unspecified. Example:

struct from_int {

from_int(int x) { std::cout << "from_int (" << x << ")\n"; }

};

int make_int(int x){ std::cout << "make_int (" << x << ")\n"; return x; }

void foo(from_int a, from_int b) {

}

void bar(from_int a, from_int b) {

}

auto which_func(bool b){

std::cout << b?"foo":"bar" << "\n";

return b?foo:bar;

}

int main(int argc, char const*const* argv) {

which_func(true)(make_int(1), make_int(2));

}

bar

make_int(1)

from_int(1)

make_int(2)

from_int(2)

bar

make_int(2)

from_int(2)

make_int(1)

from_int(1)

bar

make_int(2)

make_int(1)

from_int(2)

from_int(1)

int f();

597

Version ≤ C++03

The result of a reinterpret_cast from one object pointer type to another, or one object reference type to another,

is unspecified. Example:

However, with most compilers, this was equivalent to static_cast<char*>(static_cast<void*>(&x)) so the

resulting pointer p pointed to the first byte of x. This was made the standard behavior in C++11. See type punning

conversion for more details.

Section 121.4: Space occupied by a reference

A reference is not an object, and unlike an object, it is not guaranteed to occupy some contiguous bytes of memory.

The standard leaves it unspecified whether a reference requires any storage at all. A number of features of the

language conspire to make it impossible to portably examine any storage the reference might occupy:

If sizeof is applied to a reference, it returns the size of the referenced type, thereby giving no information

about whether the reference occupies any storage.

Arrays of references are illegal, so it is not possible to examine the addresses of two consecutive elements of

a hypothetical reference of arrays in order to determine the size of a reference.

If the address of a reference is taken, the result is the address of the referent, so we cannot get a pointer to

the reference itself.

If a class has a reference member, attempting to extract the address of that member using offsetof yields

undefined behavior since such a class is not a standard-layout class.

If a class has a reference member, the class is no longer standard layout, so attempts to access any data used

to store the reference results in undefined or unspecified behavior.

In practice, in some cases a reference variable may be implemented similarly to a pointer variable and hence

occupy the same amount of storage as a pointer, while in other cases a reference may occupy no space at all since

it can be optimized out. For example, in:

the compiler is free to simply treat r as an alias for x and replace all occurrences of r in the rest of the function f

with x, and not allocate any storage to hold r.

Section 121.5: Moved-from state of most standard library
classes

Version ≥ C++11

All standard library containers are left in a valid but unspecified state after being moved from. For example, in the

following code, v2 will contain {1, 2, 3, 4} after the move, but v1 is not guaranteed to be empty.

auto fp = reinterpret_cast<int(*)(int)>(&f); // fp has unspecified value

int x = 42;

char* p = reinterpret_cast<char*>(&x); // p has unspecified value

void f() {

int x;

int& r = x;

// do something with r

}

int main() {

std::vector<int> v1{1, 2, 3, 4};

std::vector<int> v2 = std::move(v1);

598

Some classes do have a precisely defined moved-from state. The most important case is that of

std::unique_ptr<T>, which is guaranteed to be null after being moved from.

Section 121.6: Result of some pointer comparisons

If two pointers are compared using <, >, <=, or >=, the result is unspecified in the following cases:

The pointers point into different arrays. (A non-array object is considered an array of size 1.)

The pointers point into the same object, but to members with different access control.

Section 121.7: Static cast from bogus void* value

If a void* value is converted to a pointer to object type, T*, but is not properly aligned for T, the resulting pointer

value is unspecified. Example:

The value of p3 is unspecified because p2 cannot point to an object of type int; its value is not a properly aligned

address.

Section 121.8: Order of initialization of globals across TU

Whereas inside a Translation Unit, order of initialization of global variables is specified, order of initialization across

Translation Units is unspecified.

So program with following files

}

int x;

int y;

const bool b1 = &x <

&y; int a[10];

const bool b2 = &a[0] <
&a[1];

const bool b3 = &a[0] < &x;

// unspecified

// true

// unspecified

const bool b4 = (a + 9) < (a + 10); // true

// note: a+10 points past the end of the array

class A {

public:

int x;

int y;

bool f1() { return &x < &y; } // true; x comes before y

bool f2() { return &x < &z; } // unspecified

private:

int z;

};

// Suppose that alignof(int) is 4

int x = 42;

void* p1 = &x;

// Do some pointer arithmetic...

void* p2 = static_cast<char*>(p1) + 2;

int* p3 = static_cast<int*>(p2);

599

foo.cpp

bar.cpp

main.cpp

might produce as output:

or

That may lead to Static Initialization Order Fiasco.

#include <iostream>

int dummyFoo = ((std::cout << "foo"), 0);

#include <iostream>

int dummyBar = ((std::cout << "bar"), 0);

int main() {}

foobar

barfoo

600

Chapter 122: Argument Dependent Name
Lookup

Section 122.1: What functions are found

Functions are found by first collecting a set of "associated classes" and "associated namespaces" that include one ore

more of the following, depending on the argument type T. First, let us show the rules for classes, enumeration and

class template specialization names.

If T is a nested class, member enumeration, then the surrounding class of it.

If T is an enumeration (it may also be a class member!), the innermost namespace of it.

If T is a class (it may also be nested!), all its base classes and the class itself. The innermost namespace of all

associated classes.

If T is a ClassTemplate<TemplateArguments> (this is also a class!), the classes and namespaces associated

with the template type arguments, the namespace of any template template argument and the surrounding

class of any template template argument, if a template argument is a member template.

Now there are a few rules for builtin types as well

If T is a pointer to U or array of U, the classes and namespaces associated with U. Example: void (*fptr)(A);

f(fptr);, includes the namespaces and classes associated with void(A) (see next rule).

If T is a function type, the classes and namespaces associated with parameter and return types. Example:

void(A) would includes the namespaces and classes associated with A.

If T is a pointer to member, the classes and namespaces associated with the member type (may apply to both

pointer to member functions and pointer to data member!). Example: B A::*p; void (A::*pf)(B); f(p);

f(pf); includes the namespaces and classes associated with A, B, void(B) (which applies bullet above for

function types).

All functions and templates within all associated namespaces are found by argument dependent lookup. In addition,

namespace-scope friend functions declared in associated classes are found, which are normally not visible. Using

directives are ignored, however.

All of the following example calls are valid, without qualifying f by the namespace name in the call.

namespace A {

struct Z { };

namespace I { void g(Z); }

using namespace I;

struct X { struct Y { }; friend void f(Y) { } };

void f(X p) { }

void f(std::shared_ptr<X> p) { }

}

// example calls

f(A::X());

f(A::X::Y());

f(std::make_shared<A::X>());

g(A::Z()); // invalid: "using namespace I;" is ignored!

601

Chapter 123: Attributes

Section 123.1: [[fallthrough]]

Version ≥ C++17

Whenever a case is ended in a switch, the code of the next case will get executed. This last one can be prevented

by using the ´break` statement. As this so-called fallthrough behavior can introduce bugs when not intended,

several compilers and static analyzers give a warning on this.

From C++17 on, a standard attribute was introduced to indicate that the warning is not needed when the code is

meant to fall through. Compilers can safely give warnings when a case is ended without break or [[fallthrough]]

and has at least one statement.

See the proposal for more detailed examples on how [[fallthrough]] can be used.

Section 123.2: [[nodiscard]]

Version ≥ C++17

The [[nodiscard]] attribute can be used to indicate that the return value of a function shouldn't be ignored when

you do a function call. If the return value is ignored, the compiler should give a warning on this. The attribute can be

added to:

A function definition

A type

Adding the attribute to a type has the same behaviour as adding the attribute to every single function which returns

this type.

See the proposal for more detailed examples on how [[nodiscard]] can be used.

switch(input) {

case 2011:

case 2014:

case 2017:

std::cout << "Using modern C++" << std::endl;

[[fallthrough]]; // > No warning

case 1998:

case 2003:

standard = input;

}

template<typename Function>

[[nodiscard]] Finally<std::decay_t<Function>> onExit(Function &&f);

void f(int &i) {

assert(i == 0);

++i;

// Just to make comments clear!

// i == 1

auto exit1 = onExit([&i]{ --i; }); // Reduce by 1 on exiting f()

++i; // i == 2

onExit([&i]{ --i; }); // BUG: Reducing by 1 directly

// Compiler warning expected

std::cout << i << std::end; // Expected: 2, Real: 1

}

https://isocpp.org/files/papers/P0188R0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0068r0.pdf

602

Note: The implementation details of Finally/onExit are omitted in the example, see Finally/ScopeExit.

Section 123.3: [[deprecated]] and [[deprecated("reason")]]

Version ≥ C++14

C++14 introduced a standard way of deprecating functions via attributes. [[deprecated]] can be used to indicate

that a function is deprecated. [[deprecated("reason")]] allows adding a specific reason which can be shown by

the compiler.

This attribute may be applied to:

the declaration of a class

a typedef-name

a variable

a non-static data member

a function

an enumeration

a template specialization

(ref. c++14 standard draft: 7.6.5 Deprecated attribute)

Section 123.4: [[maybe_unused]]

The [[maybe_unused]] attribute is created for indicating in code that certain logic might not be used. This if often

linked to preprocessor conditions where this might be used or might not be used. As compilers can give warnings

on unused variables, this is a way of suppressing them by indicating intent.

A typical example of variables which are needed in debug builds while unneeded in production are return values

indicating success. In the debug builds, the condition should be asserted, though in production these asserts have

been removed.

A more complex example are different kind of helper functions which are in an unnamed namespace. If these

functions aren't used during compilation, a compiler might give a warning on them. Ideally you would like to guard

them with the same preprocessor tags as the caller, though as this might become complex the [[maybe_unused]]

attribute is a more maintainable alternative.

void function(std::unique_ptr<A> &&a);

// Provides specific message which helps other programmers fixing there code

[[deprecated("Use the variant with unique_ptr instead, this function will be removed in the next

release")]]

void function(std::auto_ptr<A> a);

// No message, will result in generic warning if called.

[[deprecated]]

void function(A *a);

[[maybe_unused]] auto mapInsertResult = configuration.emplace("LicenseInfo",

stringifiedLicenseInfo);

assert(mapInsertResult.second); // We only get called during startup, so we can't be in the map

namespace {

[[maybe_unused]] std::string createWindowsConfigFilePath(const std::string &relativePath);

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3797.pdf

603

See the proposal for more detailed examples on how [[maybe_unused]] can be used.

Section 123.5: [[noreturn]]

Version ≥ C++11

C++11 introduced the [[noreturn]] attribute. It can be used for a function to indicate that the function does not

return to the caller by either executing a return statement, or by reaching the end if it's body (it is important to note

that this does not apply to void functions, since they do return to the caller, they just do not return any value). Such

a function may end by calling std::terminate or std::exit, or by throwing an exception. It is also worth noting that

such a function can return by executing longjmp.

For instance, the function below will always either throw an exception or call std::terminate, so it is a good

candidate for [[noreturn]]:

This kind of functionality allows the compiler to end a function without a return statement if it knows the code will

never be executed. Here, because the call to ownAssertFailureHandler (defined above) in the code below will

never return, the compiler does not need to add code below that call:

It is undefined behavior if the function will actually return, so the following is not allowed:

// TODO: Reuse this on BSD, MAC ...

[[maybe_unused]] std::string createLinuxConfigFilePath(const std::string &relativePath);

}

std::string createConfigFilePath(const std::string &relativePath) { #if

OS == "WINDOWS"

return createWindowsConfigFilePath(relativePath);

#elif OS == "LINUX"

return createLinuxConfigFilePath(relativePath);

#else

#error "OS is not yet supported"

#endif

}

[[noreturn]] void ownAssertFailureHandler(std::string message) {

std::cerr << message << std::endl;

if (THROW_EXCEPTION_ON_ASSERT)

throw AssertException(std::move(message));

std::terminate();

}

std::vector<int> createSequence(int end) {

if (end > 0) {

std::vector<int> sequence;

sequence.reserve(end+1);

for (int i = 0; i <= end; ++i)

sequence.push_back(i);

return sequence;

}

ownAssertFailureHandler("Negative number passed to createSequence()"s);

// return std::vector<int>{}; //< Not needed because of [[noreturn]]

}

[[noreturn]] void assertPositive(int number) { if

(number >= 0)

return;

else

https://isocpp.org/files/papers/P0212R0.pdf

604

Note that the [[noreturn]] is mostly used in void functions. However, this is not a requirement, allowing the

functions to be used in generic programming:

The following standard library functions have this attribute:

std::abort

std::exit

std::quick_exit

std::unexpected

std::terminate

std::rethrow_exception

std::throw_with_nested

std::nested_exception::rethrow_nested

ownAssertFailureHandler("Positive number expected"s); //< [[noreturn]]

}

template<class InconsistencyHandler>

double fortyTwoDivideBy(int i) {

if (i == 0)

i = InconsistencyHandler::correct(i); return

42. / i;

}

struct InconsistencyThrower {

static [[noreturn]] int correct(int i) { ownAssertFailureHandler("Unknown inconsistency"s); }

}

struct InconsistencyChangeToOne {

static int correct(int i) { return 1; }

}

double fortyTwo = fortyTwoDivideBy<InconsistencyChangeToOne>(0);

double unreachable = fortyTwoDivideBy<InconsistencyThrower>(0);

605

Chapter 124: Recursion in C++

Section 124.1: Using tail recursion and Fibonnaci-style
recursion to solve the Fibonnaci sequence

The simple and most obvious way to use recursion to get the Nth term of the Fibonnaci sequence is this

However, this algorithm does not scale for higher terms: for bigger and bigger n, the number of function calls that

you need to make grows exponentially. This can be replaced with a simple tail recursion.

Each call to the function now immediately calculates the next term in the Fibonnaci sequence, so the number of

function calls scales linearly with n.

Section 124.2: Recursion with memoization

Recursive functions can get quite expensive. If they are pure functions (functions that always return the same value

when called with the same arguments, and that neither depend on nor modify external state), they can be made

considerably faster at the expense of memory by storing the values already calculated.

The following is an implementation of the Fibonacci sequence with memoization:

int get_term_fib(int n)

{

if (n == 0)

return 0;

if (n == 1)

return 1;

return get_term_fib(n - 1) + get_term_fib(n - 2);

}

int get_term_fib(int n, int prev = 0, int curr = 1)

{

if (n == 0)

return prev;

if (n == 1)

return curr;

return get_term_fib(n - 1, curr, prev + curr);

}

#include <map>

int fibonacci(int n)

{

static std::map<int, int> values;

if (n==0 || n==1)

return n;

std::map<int,int>::iterator iter = values.find(n);

if (iter == values.end())

{

return values[n] = fibonacci(n-1) + fibonacci(n-2);

}

else

{

return iter->second;

}

}

606

Note that despite using the simple recursion formula, on first call this function is $O(n)$. On subsequent calls with

the same value, it is of course $O(1)$.

Note however that this implementation is not reentrant. Also, it doesn't allow to get rid of stored values. An

alternative implementation would be to allow the map to be passed as additional argument:

For this version, the caller is required to maintain the map with the stored values. This has the advantage that the

function is now reentrant, and that the caller can remove values that are no longer needed, saving memory. It has

the disadvantage that it breaks encapsulation; the caller can change the output by populating the map with

incorrect values.

#include <map>

int fibonacci(int n, std::map<int, int> values)

{

if (n==0 || n==1)

return n;

std::map<int,int>::iterator iter = values.find(n);

if (iter == values.end())

{

return values[n] = fibonacci(n-1) + fibonacci(n-2);

}

else

{

return iter->second;

}

}

607

Chapter 125: Arithmitic Metaprogramming
These are example of using C++ template metaprogramming in processing arithmitic operations in compile time.

Section 125.1: Calculating power in O(log n)

This example shows an efficient way of calculating power using template metaprogramming.

Example Usage:

Version ≥ C++14

This one also handles negative exponents:

template <int base, int exponent>

struct powerDouble

{

static const int exponentAbs = exponent < 0 ? (-exponent) : exponent;

static const int halfvalue = powerDouble<base, exponentAbs / 2>::intermediateValue;

static const int intermediateValue = halfvalue * halfvalue * powerDouble<base, exponentAbs %

2>::intermediateValue;

constexpr static double value = exponent < 0 ? (1.0 / intermediateValue) : intermediateValue;

};

template <int base>

struct powerDouble<base, 0>

{

static const int intermediateValue = 1;

constexpr static double value = 1;

static_assert(base != 0, "powerDouble<0, 0> is not allowed");

};

template <int base>

template <int base, unsigned int exponent> struct

power

{

static const int halfvalue = power<base, exponent / 2>::value;

static const int value = halfvalue * halfvalue * power<base, exponent % 2>::value;

};

template <int base>

struct power<base, 0>

{

static const int value = 1;

static_assert(base != 0, "power<0, 0> is not allowed");

};

template <int base>

struct power<base, 1>

{

static const int value = base;

};

std::cout << power<2, 9>::value;

608

struct powerDouble<base, 1>

{

static const int intermediateValue = base;

constexpr static double value = base;

};

int main()

{

std::cout << powerDouble<2,-3>::value;

}

609

Chapter 126: Callable Objects
Callable objects are the collection of all C++ structures which can be used as a function. In practice, this are all

things you can pass to the C++17 STL function invoke() or which can be used in the constructor of std::function, this

includes: Function pointers, Classes with operator(), Classes with implicit conversions, References to functions,

Pointers to member functions, Pointers to member data, lambdas. The callable objects are used in many STL

algorithms as predicate.

Section 126.1: Function Pointers

Function pointers are the most basic way of passing functions around, which can also be used in C. (See the C

documentation for more details).

For the purpose of callable objects, a function pointer can be defined as:

If we would be using a function pointer for writing our own vector sort, it would look like:

Alternatively, we could have invoked the function pointer one of following ways:

(*lessThan)(v.front(), v.back()) // All

std::invoke(lessThan, v.front(), v.back()) // <= C++17

Section 126.2: Classes with operator() (Functors)

Every class which overloads the operator() can be used as a function object. These classes can be written by hand

(often referred to as functors) or automatically generated by the compiler by writing Lambdas from C++11 on.

typedef returnType(*name)(arguments);

using name = returnType(*)(arguments);

// All

// <= C++11

using name = std::add_pointer<returnType(arguments)>::type; // <= C++11

using name = std::add_pointer_t<returnType(arguments)>; // <= C++14

using LessThanFunctionPtr = std::add_pointer_t<bool(int, int)>;

void sortVectorInt(std::vector<int>&v, LessThanFunctionPtr lessThan) {

if (v.size() < 2)

return;

if (v.size() == 2) {

if (!lessThan(v.front(), v.back())) // Invoke the function pointer

std::swap(v.front(), v.back());

return;

}

std::sort(v, lessThan);

}

bool lessThanInt(int lhs, int rhs) { return lhs < rhs; } sortVectorInt(vectorOfInt,

lessThanInt); // Passes the pointer to a free function

struct GreaterThanInt {

static bool cmp(int lhs, int rhs) { return lhs > rhs; }

};

sortVectorInt(vectorOfInt, &GreaterThanInt::cmp); // Passes the pointer to a static member function

struct Person {

std::string name;

unsigned int age;

};

610

As functors have their own identity, they cannot be put in a typedef and these have to be accepted via template

argument. The definition of std::find_if can look like:

From C++17 on, the calling of the predicate can be done with invoke: std::invoke(predicate, *i).

// Functor which find a person by name

struct FindPersonByName {

FindPersonByName(const std::string &name) : _name(name) {}

// Overloaded method which will get called

bool operator()(const Person &person) const {

return person.name == _name;

}

private:

std::string _name;

};

std::vector<Person> v; // Assume this contains data

std::vector<Person>::iterator iFind =

std::find_if(v.begin(), v.end(), FindPersonByName("Foobar"));

// ...

template<typename Iterator, typename Predicate>

Iterator find_if(Iterator begin, Iterator end, Predicate &predicate) {

for (Iterator i = begin, i != end, ++i)

if (predicate(*i))

return i;

return end;

}

611

Chapter 127: Client server examples

Section 127.1: Hello TCP Client

This program is complimentary to Hello TCP Server program, you can run either of them to check the validity of

each other. The program flow is quite common with Hello TCP server, so make sure to take a look at that too.

Here's the code -

#include <cstring>

#include <iostream>

#include <string>

#include <arpa/inet.h>

#include <netdb.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

// Now we're taking an ipaddress and a port number as arguments to our program if

(argc != 3) {

std::cerr << "Run program as 'program <ipaddress> <port>'\n";

return -1;

}

auto &ipAddress = argv[1];

auto &portNum = argv[2];

addrinfo hints, *p; memset(&hints,

0, sizeof(hints)); hints.ai_family

 = AF_UNSPEC;

hints.ai_socktype = SOCK_STREAM;

hints.ai_flags = AI_PASSIVE;

int gAddRes = getaddrinfo(ipAddress, portNum, &hints, &p);

if (gAddRes != 0) {

std::cerr << gai_strerror(gAddRes) << "\n";

return -2;

}

if (p == NULL) {

std::cerr << "No addresses found\n";

return -3;

}

// socket() call creates a new socket and returns it's descriptor int

sockFD = socket(p->ai_family, p->ai_socktype, p->ai_protocol); if

(sockFD == -1) {

std::cerr << "Error while creating socket\n";

return -4;

}

// Note: there is no bind() call as there was in Hello TCP Server

// why? well you could call it though it's not necessary

// because client doesn't necessarily has to have a fixed port number

// so next call will bind it to a random available port number

612

// connect() call tries to establish a TCP connection to the specified server

int connectR = connect(sockFD, p->ai_addr, p->ai_addrlen);

if (connectR == -1) {

close(sockFD);

std::cerr << "Error while connecting socket\n";

return -5;

}

std::string reply(15, ' ');

// recv() call tries to get the response from server

// BUT there's a catch here, the response might take multiple calls

// to recv() before it is completely received

// will be demonstrated in another example to keep this minimal

auto bytes_recv = recv(sockFD, &reply.front(), reply.size(), 0);

if (bytes_recv == -1) {

std::cerr << "Error while receiving bytes\n";

return -6;

}

std::cout << "\nClient recieved: " << reply << std::endl;

close(sockFD);

freeaddrinfo(p);

return 0;

}

Section 127.2: Hello TCP Server

Let me start by saying you should first visit Beej's Guide to Network Programming and give it a quick read, which

explains most of this stuff a bit more verbosely. We'll be creating a simple TCP server here which will say "H ello

World" to all incoming connections and then close them. Another thing to note is, the server will be communicating

to clients iteratively, which means one client at a time. Make sure to check out relevant man pages as they might

contain valuable information about each function call and socket structures.

We'll run the server with a port, so we'll take an argument for port number as well. Let's get started with code -

#include <cstring> // sizeof()

#include <iostream>

#include <string>

// headers for socket(), getaddrinfo() and friends

#include <arpa/inet.h>

#include <netdb.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <unistd.h> // close()

int main(int argc, char *argv[])

{

// Let's check if port number is supplied or not.. if

(argc != 2) {

std::cerr << "Run program as 'program <port>'\n"; return

-1;

}

auto &portNum = argv[1];

const unsigned int backLog = 8; // number of connections allowed on the incoming queue

https://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

613

addrinfo hints, *res, *p; // we need 2 pointers, res to hold and p to iterate over

memset(&hints, 0, sizeof(hints));

// for more explanation, man socket

hints.ai_family = AF_UNSPEC; // don't specify which IP version to use yet

hints.ai_socktype = SOCK_STREAM; // SOCK_STREAM refers to TCP, SOCK_DGRAM will

be? hints.ai_flags = AI_PASSIVE;

// man getaddrinfo

int gAddRes = getaddrinfo(NULL, portNum, &hints, &res);

if (gAddRes != 0) {

std::cerr << gai_strerror(gAddRes) << "\n";

return -2;

}

std::cout << "Detecting addresses" << std::endl;

unsigned int numOfAddr = 0;

char ipStr[INET6_ADDRSTRLEN]; // ipv6 length makes sure both ipv4/6 addresses can be stored

in this variable

// Now since getaddrinfo() has given us a list of addresses

// we're going to iterate over them and ask user to choose one

// address for program to bind to

for (p = res; p != NULL; p = p->ai_next)

{ void *addr;

std::string ipVer;

// if address is ipv4 address

if (p->ai_family == AF_INET)

{

ipVer = "IPv4";

sockaddr_in *ipv4 = reinterpret_cast<sockaddr_in *>(p->ai_addr);

addr = &(ipv4->sin_addr);

++numOfAddr;

}

// if address is ipv6 address

else {

ipVer = "IPv6";

sockaddr_in6 *ipv6 = reinterpret_cast<sockaddr_in6 *>(p->ai_addr);

addr = &(ipv6->sin6_addr);

++numOfAddr;

}

// convert IPv4 and IPv6 addresses from binary to text form

inet_ntop(p->ai_family, addr, ipStr, sizeof(ipStr));

std::cout << "(" << numOfAddr << ") " << ipVer << " : " << ipStr

<< std::endl;

}

// if no addresses found :(

if (!numOfAddr) {

std::cerr << "Found no host address to use\n";

return -3;

}

// ask user to choose an address

std::cout << "Enter the number of host address to bind with: ";

unsigned int choice = 0;

bool madeChoice = false;

614

do {

std::cin >> choice;

if (choice > (numOfAddr + 1) || choice < 1) {

madeChoice = false;

std::cout << "Wrong choice, try again!" << std::endl;

} else

madeChoice = true;

} while (!madeChoice);

p = res;

// let's create a new socket, socketFD is returned as descriptor

// man socket for more information

// these calls usually return -1 as result of some error

int sockFD = socket(p->ai_family, p->ai_socktype, p->ai_protocol);

if (sockFD == -1) {

std::cerr << "Error while creating socket\n";

freeaddrinfo(res);

return -4;

}

// Let's bind address to our socket we've just created

int bindR = bind(sockFD, p->ai_addr, p->ai_addrlen);

if (bindR == -1) {

std::cerr << "Error while binding socket\n";

// if some error occurs, make sure to close socket and free resources

close(sockFD);

freeaddrinfo(res); return

-5;

}

// finally start listening for connections on our socket int

listenR = listen(sockFD, backLog);

if (listenR == -1) {

std::cerr << "Error while Listening on socket\n";

// if some error occurs, make sure to close socket and free resources

close(sockFD);

freeaddrinfo(res); return

-6;

}

// structure large enough to hold client's address

sockaddr_storage client_addr;

socklen_t client_addr_size = sizeof(client_addr);

const std::string response = "Hello World";

// a fresh infinite loop to communicate with incoming connections

// this will take client connections one at a time

// in further examples, we're going to use fork() call for each client connection

while (1) {

// accept call will give us a new socket descriptor

615

The following program runs as -

int newFD

= accept(sockFD, (sockaddr *) &client_addr, &client_addr_size);

if (newFD == -1) {

std::cerr << "Error while Accepting on socket\n";

continue;

}

// send call sends the data you specify as second param and it's length as 3rd param, also

returns how many bytes were actually sent

auto bytes_sent = send(newFD, response.data(), response.length(), 0);

close(newFD);

}

close(sockFD);

freeaddrinfo(res);

return 0;

}

Detecting addresses

(1) IPv4 : 0.0.0.0

(2) IPv6 : ::

Enter the number of host address to bind with: 1

616

Chapter 128: Const Correctness

Section 128.1: The Basics

const correctness is the practice of designing code so that only code that needs to modify an instance is able to

modify an instance (i.e. has write access), and conversely, that any code that doesn't need to modify an instance is

unable to do so (i.e. only has read access). This prevents the instance from being modified unintentionally, making

code less errorprone, and documents whether the code is intended to change the instance's state or not. It also

allows instances to be treated as const whenever they don't need to be modified, or defined as const if they don't

need to be changed after initialisation, without losing any functionality.

This is done by giving member functions const CV-qualifiers, and by making pointer/reference parameters const,

except in the case that they need write access.

class ConstCorrectClass {

int x;

public:

int getX() const { return x; } // Function is const: Doesn't modify instance.

void setX(int i) { x = i; } // Not const: Modifies instance.

};

// Parameter is const: Doesn't modify parameter.

int const_correct_reader(const ConstCorrectClass& c) {

return c.getX();

}

// Parameter isn't const: Modifies parameter. void

const_correct_writer(ConstCorrectClass& c) {

c.setX(42);

}

const ConstCorrectClass invariant; // Instance is const: Can't be modified.

ConstCorrectClass variant; // Instance isn't const: Can be modified.

// ...

const_correct_reader(invariant); // Good. Calling non-modifying function on const instance.

const_correct_reader(variant); // Good. Calling non-modifying function on modifiable instance.

const_correct_writer(variant); // Good. Calling modifying function on modifiable instance.

const_correct_writer(invariant); // Error. Calling modifying function on const instance.

Due to the nature of const correctness, this starts with the class' member functions, and works its way outwards; if

you try to call a non-const member function from a const instance, or from a non-const instance being treated as

const, the compiler will give you an error about it losing cv-qualifiers.

Section 128.2: Const Correct Class Design

In a const-correct class, all member functions which don't change logical state have this cv-qualified as const,

indicating that they don't modify the object (apart from any mutable fields, which can freely be modified even in

const instances); if a const cv-qualified function returns a reference, that reference should also be const. This

allows them to be called on both constant and non-cv-qualified instances, as a const T* is capable of binding to

either a T* or a const T*. This, in turn, allows functions to declare their passed-by-reference parameters as const

when they don't need to be modified, without losing any functionality.

617

Furthermore, in a const correct class, all passed-by-reference function parameters will be const correct, as

discussed in Const Correct Function Parameters, so that they can only be modified when the function explicitly

needs to modify them.

First, let's look at this cv-qualifiers:

// Assume class Field, with member function "void insert_value(int);".

class ConstIncorrect {

Field fld;

public:

ConstIncorrect(Field& f); // Modifies.

Field& getField(); // Might modify. Also exposes member as non-const reference,

// allowing indirect modification.

void setField(Field& f); // Modifies.

void doSomething(int i); // Might modify.

void doNothing(); // Might modify.

};

ConstIncorrect::ConstIncorrect(Field& f) : fld(f) {} // Modifies. Field&

ConstIncorrect::getField() { return fld; } // Doesn't modify.

void ConstIncorrect::setField(Field& f) { fld = f; } // Modifies.

void ConstIncorrect::doSomething(int i) { // Modifies.

fld.insert_value(i);

}

void ConstIncorrect::doNothing() {} // Doesn't modify.

class ConstCorrectCVQ {

Field fld;

public:

ConstCorrectCVQ(Field& f); // Modifies.

const Field& getField() const; // Doesn't modify. Exposes member as const reference,

// preventing indirect modification.

void setField(Field& f); // Modifies.

void doSomething(int i); // Modifies.

void doNothing() const; // Doesn't modify.

};

ConstCorrectCVQ::ConstCorrectCVQ(Field& f) : fld(f) {}

Field& ConstCorrectCVQ::getField() const { return fld; }

void ConstCorrectCVQ::setField(Field& f) { fld = f; }

void ConstCorrectCVQ::doSomething(int i) {

fld.insert_value(i);

}

void ConstCorrectCVQ::doNothing() const {}

// This won't work.

// No member functions can be called on const ConstIncorrect instances.

void const_correct_func(const ConstIncorrect& c) {

Field f = c.getField();

c.do_nothing();

}

// But this will.

618

We can then combine this with Const Correct Function Parameters, causing the class to be fully const-correct.

This can also be combined with overloading based on constness, in the case that we want one behaviour if the

instance is const, and a different behaviour if it isn't; a common use for this is constainers providing accessors that

only allow modification if the container itself is non-const.

This is commonly used in the standard library, with most containers providing overloads to take constness into

account.

Section 128.3: Const Correct Function Parameters

In a const-correct function, all passed-by-reference parameters are marked as const unless the function directly or

indirectly modifies them, preventing the programmer from inadvertently changing something they didn't mean to

change. This allows the function to take both const and non-cv-qualified instances, and in turn, causes the

instance's this to be of type const T* when a member function is called, where T is the class' type.

// getField() and doNothing() can be called on const ConstCorrectCVQ instances.

void const_correct_func(const ConstCorrectCVQ& c) {

Field f = c.getField();

c.do_nothing();

}

class ConstCorrect {

Field fld;

public:

ConstCorrect(const Field& f); // Modifies instance. Doesn't modify parameter.

const Field& getField() const; // Doesn't modify. Exposes member as const reference,

// preventing indirect modification.

void setField(const Field& f); // Modifies instance. Doesn't modify parameter.

void doSomething(int i);

void doNothing() const;

// Modifies. Doesn't modify parameter (passed by value).

// Doesn't modify.

};

ConstCorrect::ConstCorrect(const Field& f) : fld(f) {}

Field& ConstCorrect::getField() const { return fld; }

void ConstCorrect::setField(const Field& f) { fld = f; }

void ConstCorrect::doSomething(int i) {

fld.insert_value(i);

}

void ConstCorrect::doNothing() const {}

class ConstCorrectContainer {

int arr[5];

public:

// Subscript operator provides read access if instance is const, or read/write access

// otherwise.

int& operator[](size_t index) { return arr[index]; }

const int& operator[](size_t index) const { return arr[index]; }

// ...

};

struct Example {

void func() { std::cout << 3 << std::endl;
}

619

While the effects of this are less immediately visible than those of const correct class design (in that const-correct

functions and const-incorrect classes will cause compilation errors, while const-correct classes and const-incorrect

functions will compile properly), const correct functions will catch a lot of errors that const incorrect functions

would let slip through, such as the one below. [Note, however, that a const-incorrect function will cause

compilation errors if passed a const instance when it expected a non-const one.]

// Read value from vector, then compute & return a value.

// Caches return values for speed.

template<typename T>

const T& bad_func(std::vector<T>& v, Helper<T>& h) {

// Cache values, for future use.

// Once a return value has been calculated, it's cached & its index is registered.

static std::vector<T> vals = {};

int v_ind = h.get_index(); // Current working index for v.

int vals_ind = h.get_cache_index(v_ind); // Will be -1 if cache index isn't registered.

if (vals.size() && (vals_ind != -1) && (vals_ind < vals.size()) && !(h.needs_recalc())) {

return vals[h.get_cache_index(v_ind)];

}

T temp = v[v_ind];

temp -= h.poll_device();

temp *= h.obtain_random();

temp += h.do_tedious_calculation(temp, v[h.get_last_handled_index()]);

// We're feeling tired all of a sudden, and this happens. if

(vals_ind != -1) {

vals[vals_ind] = temp;

} else {

v.push_back(temp); // Oops. Should've been accessing vals.

vals_ind = vals.size() - 1;

h.register_index(v_ind, vals_ind);

}

void func() const { std::cout << 5 << std::endl; }

};

void const_incorrect_function(Example& one, Example* two) {

one.func();

two->func();

}

void const_correct_function(const Example& one, const Example* two) {

one.func();

two->func();

}

int main() {

Example a, b;

const_incorrect_function(a, &b);

const_correct_function(a, &b);

}

// Output: 3

3

5

5

620

Section 128.4: Const Correctness as Documentation

One of the more useful things about const correctness is that it serves as a way of documenting code, providing

certain guarantees to the programmer and other users. These guarantees are enforced by the compiler due to

constness, with a lack of constness in turn indicating that code doesn't provide them.

const CV-Qualified Member Functions:

Any member function which is const can be assumed to have intent to read the instance, and:

Shall not modify the logical state of the instance they are called on. Therefore, they shall not modify

any member variables of the instance they are called on, except mutable variables.

Shall not call any other functions that would modify any member variables of the instance, except

mutable variables.

Conversely, any member function which isn't const can be assumed to have intent to modify the instance,

and:

May or may not modify logical state.

May or may not call other functions which modify logical state.

This can be used to make assumptions about the state of the object after any given member function is called, even

without seeing the definition of that function:

return vals[vals_ind];

}

// Const correct version. Is identical to above version, so most of it shall be skipped.

template<typename T>

const T& good_func(const std::vector<T>& v, Helper<T>& h) {

// ...

// We're feeling tired all of a sudden, and this happens. if

(vals_ind != -1) {

vals[vals_ind] = temp;

} else {

v.push_back(temp); // Error: discards qualifiers.

vals_ind = vals.size() - 1;

h.register_index(v_ind, vals_ind);

}

return vals[vals_ind];

}

// ConstMemberFunctions.h

class ConstMemberFunctions {

int val;

mutable int cache;

mutable bool state_changed;

public:

// Constructor clearly changes logical state. No assumptions necessary.

ConstMemberFunctions(int v = 0);

// We can assume this function doesn't change logical state, and doesn't call

// set_val(). It may or may not call squared_calc() or bad_func().

int calc() const;

// We can assume this function doesn't change logical state, and doesn't call

// set_val(). It may or may not call calc() or bad_func().

621

Due to const rules, these assumptions will in fact be enforced by the compiler.

const Function Parameters:

Any function with one or more parameters which are const can be assumed to have intent to read those

parameters, and:

Shall not modify those parameters, or call any member functions that would modify them.

Shall not pass those parameters to any other function which would modify them and/or call any

member functions that would modify them.

Conversely, any function with one or more parameters which aren't const can be assumed to have intent to

modify those parameters, and:

May or may not modify those parameters, or call any member functions which whould modify them.

May or may not pass those parameters to other functions which would modify them and/or call any

member functions that would modify them.

int squared_calc() const;

// We can assume this function doesn't change logical state, and doesn't call

// set_val(). It may or may not call calc() or squared_calc().

void bad_func() const;

// We can assume this function changes logical state, and may or may not call

// calc(), squared_calc(), or bad_func().

void set_val(int v);

};

// ConstMemberFunctions.cpp

ConstMemberFunctions::ConstMemberFunctions(int v /* = 0*/)

: cache(0), val(v), state_changed(true) {}

// Our assumption was correct.

int ConstMemberFunctions::calc() const {

if (state_changed) {

cache = 3 * val;

state_changed = false;

}

return cache;

}

// Our assumption was correct.

int ConstMemberFunctions::squared_calc() const {

return calc() * calc();

}

// Our assumption was incorrect.

// Function fails to compile, due to `this` losing qualifiers.

void ConstMemberFunctions::bad_func() const {

set_val(863);

}

// Our assumption was correct.

void ConstMemberFunctions::set_val(int v) {

if (v != val) {

val = v;

state_changed = true;

}

}

622

This can be used to make assumptions about the state of the parameters after being passed to any given function,

even without seeing the definition of that function.

Due to const rules, these assumptions will in fact be enforced by the compiler.

// function_parameter.cpp

// Our assumption was correct.

void const_function_parameter(const ConstMemberFunctions& c) {

std::cout << "With the current value, the output is: " << c.calc() << '\n'

<< "If squared, it's: " << c.squared_calc()

<< std::endl;

}

// Our assumption was correct.

void non_qualified_function_parameter(ConstMemberFunctions& c) {

c.set_val(42);

std::cout << "For the value 42, the output is: " << c.calc() << '\n'

<< "If squared, it's: " << c.squared_calc()

<< std::endl;

}

// Our assumption was correct, in the ugliest possible way.

// Note that const correctness doesn't prevent encapsulation from intentionally being broken,

// it merely prevents code from having write access when it doesn't need it.

void one_const_one_not(const ConstMemberFunctions& l, ConstMemberFunctions& r) {

// Let's just punch access modifiers and common sense in the face here.

struct Machiavelli {

int val;

int unimportant;

bool state_changed;

};

reinterpret_cast<Machiavelli&>(r).val = l.calc(); reinterpret_cast<Machiavelli&>(r).state_changed

= true;

const_function_parameter(l);

const_function_parameter(r);

}

// function_parameter.h

// We can assume that c isn't modified (and c.set_val() isn't called), and isn't passed

// to non_qualified_function_parameter(). If passed to one_const_one_not(), it is the first

// parameter.

void const_function_parameter(const ConstMemberFunctions& c);

// We can assume that c is modified and/or c.set_val() is called, and may or may not be passed

// to any of these functions. If passed to one_const_one_not, it may be either parameter.

void non_qualified_function_parameter(ConstMemberFunctions& c);

// We can assume that:

// l is not modified, and l.set_val() won't be called.

// l may or may not be passed to const_function_parameter().

// r is modified, and/or r.set_val() may be called.

// r may or may not be passed to either of the preceding functions.

void one_const_one_not(const ConstMemberFunctions& l, ConstMemberFunctions& r);

// We can assume that c isn't modified (and c.set_val() isn't called), and isn't passed

// to non_qualified_function_parameter(). If passed to one_const_one_not(), it is the first

// parameter.

void bad_parameter(const ConstMemberFunctions& c);

623

While it is possible to circumvent const correctness, and by extension break these guarantees, this must be done

intentionally by the programmer (just like breaking encapsulation with Machiavelli, above), and is likely to cause

undefined behaviour.

However, due to this requiring the programmer to very specifically tell the compiler that they intend to ignore

constness, and being inconsistent across compilers, it is generally safe to assume that const correct code will

refrain from doing so unless otherwise specified.

// Our assumption was incorrect.

// Function fails to compile, due to `this` losing qualifiers in c.set_val().

void bad_parameter(const ConstMemberFunctions& c) {

c.set_val(18);

}

class DealBreaker : public ConstMemberFunctions {

public:

DealBreaker(int v = 0);

// A foreboding name, but it's const...

void no_guarantees() const;

}

DealBreaker::DealBreaker(int v /* = 0 */) : ConstMemberFunctions(v) {}

// Our assumption was incorrect.

// const_cast removes const-ness, making the compiler think we know what we're doing. void

DealBreaker::no_guarantees() const {

const_cast<DealBreaker*>(this)->set_val(823);

}

// ...

const DealBreaker d(50);

d.no_guarantees(); // Undefined behaviour: d really IS const, it may or may not be modified.

624

Chapter 129: Parameter packs

Section 129.1: A template with a parameter pack

A parameter pack is a template parameter accepting zero or more template arguments. If a template has at least

one parameter pack is a variadic template.

Section 129.2: Expansion of a parameter pack

The pattern parameter_pack ... is expanded into a list of comma-separated substitutions of parameter_pack with

each one of its parameters

The code above invoked with variadic_printer(1, 2, 3, "hello"); prints

template<class ... Types> struct Tuple {};

template<class T> // Base of recursion

void variadic_printer(T last_argument) {

std::cout << last_argument;

}

template<class T, class ...Args>

void variadic_printer(T first_argument, Args... other_arguments) {

std::cout << first_argument << "\n";

variadic_printer(other_arguments...); // Parameter pack expansion

}

1

2

3

hello

625

Chapter 130: Build Systems
C++, like C, has a long and varied history regarding compilation workflows and build processes. Today, C++ has

various popular build systems that are used to compile programs, sometimes for multiple platforms within one

build system. Here, a few build systems will be reviewed and analyzed.

Section 130.1: Generating Build Environment with CMake

CMake generates build environments for nearly any compiler or IDE from a single project definition. The following

examples will demonstrate how to add a CMake file to the cross-platform "Hello World" C++ code.

CMake files are always named "CMakeLists.txt" and should already exist in every project's root directory (and

possibly in sub-directories too.) A basic CMakeLists.txt file looks like:

See it live on Coliru.

This file tells CMake the project name, what file version to expect, and instructions to generate an executable called

"HelloWorld" that requires main.cpp.

Generate a build environment for your installed compiler/IDE from the command line:

Build the application with:

This generates the default build environment for the system, depending on the OS and installed tools. Keep source

code clean from any build artifacts with use of "out-of-source" builds:

CMake can also abstract the platform shell's basic commands from the previous example:

CMake includes generators for a number of common build tools and IDEs. To generate makefiles for Visual Studio's

nmake:

cmake_minimum_required(VERSION

2.4) project(HelloWorld)

add_executable(HelloWorld main.cpp)

> cmake .

> cmake --build .

> mkdir build

> cd build

> cmake ..

> cmake --build .

> cmake -E make_directory build

> cmake -E chdir build cmake ..

> cmake --build build

> cmake -G "NMake Makefiles" ..

> nmake

https://cmake.org/
http://coliru.stacked-crooked.com/a/616a0939bdd91b8b
https://cmake.org/cmake/help/v3.0/manual/cmake-generators.7.html
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx
https://msdn.microsoft.com/en-us/library/dd9y37ha.aspx

626

Section 130.2: Compiling with GNU make

Introduction

The GNU Make (styled make) is a program dedicated to the automation of executing shell commands. GNU Make is

one specific program that falls under the Make family. Make remains popular among Unix-like and POSIX-like

operating systems, including those derived from the Linux kernel, Mac OS X, and BSD.

GNU Make is especially notable for being attached to the GNU Project, which is attached to the popular GNU/Linux

operating system. GNU Make also has compatible versions running on various flavors of Windows and Mac OS X. It

is also a very stable version with historical significance that remains popular. It is for these reasons that GNU Make

is often taught alongside C and C++.

Basic rules

To compile with make, create a Makefile in your project directory. Your Makefile could be as simple as:

Makefile

Set some variables to use in our command

First, we set the compiler to be g++

CXX=g++

Then, we say that we want to compile with g++'s recommended warnings and some extra ones.

CXXFLAGS=-Wall -Wextra -pedantic

This will be the output file

EXE=app

SRCS=main.cpp

When you call `make` at the command line, this "target" is called.

The $(EXE) at the right says that the `all` target depends on the `$(EXE)` target.

$(EXE) expands to be the content of the EXE variable

Note: Because this is the first target, it becomes the default target if `make` is called without

target

all: $(EXE)

This is equivalent to saying

app: $(SRCS)

$(SRCS) can be separated, which means that this target would depend on each file.

Note that this target has a "method body": the part indented by a tab (not four spaces).

When we build this target, make will execute the command, which is:

g++ -Wall -Wextra -pedantic -o app main.cpp

I.E. Compile main.cpp with warnings, and output to the file ./app

$(EXE): $(SRCS)

@$(CXX) $(CXXFLAGS) -o $@ $(SRCS)

This target should reverse the `all` target. If you call

make with an argument, like `make clean`, the corresponding target

gets called.

clean:

@rm -f $(EXE)

NOTE: Make absolutely sure that the indentations are with a tab, not with four spaces. Otherwise,

you'll get an error of Makefile:10: *** missing separator. Stop.

627

To run this from the command-line, do the following:

Incremental builds

When you start having more files, make becomes more useful. What if you edited a.cpp but not b.cpp? Recompiling

b.cpp would take more time.

With the following directory structure:

This would be a good Makefile:

Makefile

$ cd ~/Path/to/project

$ make

$ ls

app main.cpp Makefile

$./app Hello

World!

$ make clean

$ ls

main.cpp Makefile

.

+-- src

| +-- a.cpp

| +-- a.hpp

| +-- b.cpp

| +-- b.hpp

+-- Makefile

CXX=g++

CXXFLAGS=-Wall -Wextra -pedantic

EXE=app

SRCS_GLOB=src/*.cpp

SRCS=$(wildcard

$(SRCS_GLOB))

OBJS=$(SRCS:.cpp=.o)

all: $(EXE)

$(EXE): $(OBJS)

@$(CXX) -o $@

$(OBJS) depend: .depend

.depend: $(SRCS)

@-rm -f ./.depend

@$(CXX) $(CXXFLAGS) -MM $^>>./.depend

clean:

-rm -f $(EXE)

-rm $(OBJS)

-rm *~

-rm .depend

include .depend

628

Again watch the tabs. This new Makefile ensures that you only recompile changed files, minimizing compile time.

Documentation

For more on make, see the official documentation by the Free Software Foundation, the stackoverflow

documentation and dmckee's elaborate answer on stackoverflow.

Section 130.3: Building with SCons

You can build the cross-platform "Hello World" C++ code, using Scons - A Python-language software construction

tool.

First, create a file called SConstruct (note that SCons will look for a file with this exact name by default). For now,

the file should be in a directory right along your hello.cpp. Write in the new file the line

Now, from the terminal, run scons. You should see something like

(although the details will vary depending on your operating system and installed compiler).

The Environment and Glob classes will help you further configure what to build. E.g., the SConstruct file

builds the executable hello, using all cpp files in src. Its CPPPATH is /usr/include/boost and it specifies the C++11

standard.

Section 130.4: Autotools (GNU)

Introduction

The Autotools are a group of programs that create a GNU Build System for a given software package. It is a suite of

tools that work together to produce various build resources, such as a Makefile (to be used with GNU Make). Thus,

Autotools can be considered a de facto build system generator.

Some notable Autotools programs include:

Autoconf

Automake (not to be confused with make)

In general, Autotools is meant to generate the Unix-compatible script and Makefile to allow the following command

Program('hello.cpp')

$ scons

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

g++ -o hello.o -c hello.cpp

g++ -o hello hello.o

scons: done building targets.

env=Environment(CPPPATH='/usr/include/boost/',

CPPDEFINES=[],

LIBS=[],

SCONS_CXX_STANDARD="c++11"

)

env.Program('hello', Glob('src/*.cpp'))

https://www.gnu.org/software/make/manual/
http://stackoverflow.com/a/2481326/1896169
http://scons.org/
https://www.python.org/

629

to build (as well as install) most packages (in the simple case):

As such, Autotools also has a relationship with certain package managers, especially those that are attached to

operating systems that conform to the POSIX Standard(s).

Section 130.5: Ninja

Introduction

The Ninja build system is described by its project website as "a small build system with a focus on speed." Ninja is

designed to have its files generated by build system file generators, and takes a low-level approach to build

systems, in contrast to higher-level build system managers like CMake or Meson.

Ninja is primarily written in C++ and Python, and was created as an alternative to the SCons build system for the

Chromium project.

Section 130.6: NMAKE (Microsoft Program Maintenance Utility)

Introduction

NMAKE is a command-line utility developed by Microsoft to be used primarily in conjunction with Microsoft Visual

Studio and/or the Visual C++ command line tools.

NMAKE is build system that falls under the Make family of build systems, but has certain distinct features that

diverge from Unix-like Make programs, such as supporting Windows-specific file path syntax (which itself differs

from Unix-style file paths).

./configure && make && make install

https://ninja-build.org/

630

Chapter 131: Concurrency With OpenMP
This topic covers the basics of concurrency in C++ using OpenMP. OpenMP is documented in more detail in the

OpenMP tag.

Parallelism or concurrency implies the execution of code at the same time.

Section 131.1: OpenMP: Parallel Sections

This example illustrates the basics of executing sections of code in parallel.

As OpenMP is a built-in compiler feature, it works on any supported compilers without including any libraries. You

may wish to include omp.h if you want to use any of the openMP API features.

Sample Code

std::cout << "begin ";

// This pragma statement hints the compiler that the

// contents within the { } are to be executed in as

// parallel sections using openMP, the compiler will

// generate this chunk of code for parallel execution

#pragma omp parallel sections

{

// This pragma statement hints the compiler that

// this is a section that can be executed in parallel

// with other section, a single section will be executed

// by a single thread.

// Note that it is "section" as opposed to "sections" above

#pragma omp section

{

std::cout << "hello " << std::endl;

/** Do something **/

}

#pragma omp section

{

std::cout << "world " << std::endl;

/** Do something **/

}

}

// This line will not be executed until all the

// sections defined above terminates

std::cout << "end" << std::endl;

Outputs

This example produces 2 possible outputs and is dependent on the operating system and hardware. The output

also illustrates a race condition problem that would occur from such an implementation.

OUTPUT A OUTPUT B

begin hello world end begin world hello end

Section 131.2: OpenMP: Parallel Sections

This example shows how to execute chunks of code in parallel

std::cout << "begin ";

// Start of parallel sections

631

Output

begin hello world forever end

begin world hello forever end

begin hello forever world end

begin forever hello world end

As execution order is not guaranteed, you may observe any of the above output.

Section 131.3: OpenMP: Parallel For Loop

This example shows how to divide a loop into equal parts and execute them in parallel.

*Please take extra care to not modify the size of the vector used in parallel for loops as allocated range indices

doesn't update automatically.

Section 131.4: OpenMP: Parallel Gathering / Reduction

This example illustrates a concept to perform reduction or gathering using std::vector and OpenMP.

#pragma omp parallel sections

{

// Execute these sections in parallel

#pragma omp section

{

... do something ...

std::cout << "hello ";

}

#pragma omp section

{

... do something ...

std::cout << "world ";

}

#pragma omp section

{

... do something ...

std::cout << "forever ";

}

}

// end of parallel sections

std::cout << "end";

//

//

Splits element vector into element.size() / Thread Qty

and allocate that range for each thread.

#pragma omp parallel for

for (size_t i = 0; i < element.size(); ++i)

element[i] = ...

//

//

//

//

//

Example Allocation (100 element per thread)

Thread 1 : 0 ~ 99

Thread 2 : 100 ~ 199

Thread 2 : 200 ~ 299

...

// Continue process

// Only when all threads completed their allocated

// loop job

...

632

Supposed we have a scenario where we want multiple threads to help us generate a bunch of stuff, int is used

here for simplicity and can be replaced with other data types.

This is particularly useful when you need to merge results from slaves to avoid segement faults or memory access

violations and do not wish to use libraries or custom sync container libraries.

// The Master vector

// We want a vector of results gathered from slave threads

std::vector<int> Master;

// Hint the compiler to parallelize this { } of code

// with all available threads (usually the same as logical processor qty)

#pragma omp parallel

{

// In this area, you can write any code you want for each

// slave thread, in this case a vector to hold each of their results

// We don't have to worry about how many threads were spawn or if we need

// to repeat this declaration or not.

std::vector<int> Slave;

// Tell the compiler to use all threads allocated for this parallel region

// to perform this loop in parts. Actual load appx = 1000000 / Thread Qty

// The nowait keyword tells the compiler that the slave threads don't

// have to wait for all other slaves to finish this for loop job

#pragma omp for nowait

for (size_t i = 0; i < 1000000; ++i

{

/* Do something */

....

Slave.push_back(...);

}

// Slaves that finished their part of the job

// will perform this thread by thread one at a time

// critical section ensures that only 0 or 1 thread performs

// the { } at any time

#pragma omp critical

{

// Merge slave into master

// use move iterators instead, avoid copy unless

// you want to use it for something else after this section

Master.insert(Master.end(),

std::make_move_iterator(Slave.begin()),

std::make_move_iterator(Slave.end()));

}

}

// Have fun with Master vector

...

633

Chapter 132: Resource Management
One of the hardest things to do in C and C++ is resource management. Thankfully, in C++, we have many ways to go

about designing resource management in our programs. This article hopes to explain some of the idioms and

methods used to manage allocated resources.

Section 132.1: Resource Acquisition Is Initialization

Resource Acquisition Is Initialization (RAII) is a common idiom in resource management. In the case of dynamic

memory, it uses smart pointers to accomplish resource management. When using RAII, an acquired resource is

immediately given ownership to a smart pointer or equivalent resource manager. The resource is only accessed

through this manager, so the manager can keep track of various operations. For example, std::auto_ptr

automatically frees its corresponding resource when it falls out of scope or is otherwise deleted.

Version ≥ C++11

std::auto_ptr's main problem is that it can't copied without transferring ownership:

Because of these weird copy semantics, std::auto_ptr can't be used in containers, among other things. The

reason it does this is to prevent deleting memory twice: if there are two auto_ptrs with ownership of the same

resource, they both try to free it when they're destroyed. Freeing an already freed resource can generally cause

problems, so it is important to prevent it. However, std::shared_ptr has a method to avoid this while not

transferring ownership when copying:

#include <memory>

#include <iostream>

using namespace std;

int main() {

{

auto_ptr ap(new int(5)); // dynamic memory is the resource

cout << *ap << endl; // prints 5

} // auto_ptr is destroyed, its resource is automatically freed

}

#include <memory>

#include <iostream>

using namespace std;

int main() {

auto_ptr ap1(new int(5));

cout << *ap1 << endl; // prints 5

auto_ptr ap2(ap1); // copy ap2 from ap1; ownership now transfers to ap2

cout << *ap2 << endl; // prints 5

cout << ap1 == nullptr << endl; // prints 1; ap1 has lost ownership of resource

}

#include <memory>

#include <iostream>

using namespace std;

int main() {

shared_ptr sp2;

{

shared_ptr sp1(new int(5)); // give ownership to sp1 cout

<< *sp1 << endl; // prints 5

sp2 = sp1; // copy sp2 from sp1; both have ownership of resource

634

Section 132.2: Mutexes & Thread Safety

Problems may happen when multiple threads try to access a resource. For a simple example, suppose we have a

thread that adds one to a variable. It does this by first reading the variable, adding one to it, then storing it back.

Suppose we initialize this variable to 1, then create two instances of this thread. After both threads finish, intuition

suggests that this variable should have a value of 3. However, the below table illustrates what might go wrong:

Thread 1 Thread 2

Time Step 1 Read 1 from variable

Time Step 2 Read 1 from variable

Time Step 3 Add 1 plus 1 to get 2

Time Step 4 Add 1 plus 1 to get 2

Time Step 5 Store 2 into variable

Time Step 6 Store 2 into variable

As you can see, at the end of the operation, 2 is in the variable, instead of 3. The reason is that Thread 2 read the

variable before Thread 1 was done updating it. The solution? Mutexes.

A mutex (portmanteau of mutual exclusion) is a resource management object designed to solve this type of

problem. When a thread wants to access a resource, it "acquires" the resource's mutex. Once it is done accessing

the resource, the thread "releases" the mutex. While the mutex is acquired, all calls to acquire the mute x will not

return until the mutex is released. To better understand this, think of a mutex as a waiting line at the supermarket:

the threads go into line by trying to acquire the mutex and then waiting for the threads ahead of them to finish up,

then using the resource, then stepping out of line by releasing the mutex. There would be complete pandemonium

if everybody tried to access the resource at once.

Version ≥ C++11

std::mutex is C++11's implementation of a mutex.

cout << *sp1 << endl; // prints 5

cout << *sp2 << endl; // prints 5

} // sp1 goes out of scope and is destroyed; sp2 has sole ownership of resource

cout << *sp2 << endl;

} // sp2 goes out of scope; nothing has ownership, so resource is freed

#include <thread>

#include <mutex>

#include <iostream>

using namespace std;

void add_1(int& i, const mutex& m) { // function to be run in thread

m.lock();

i += 1;

m.unlock();

}

int main() {

int var = 1;

mutex m;

cout << var << endl; // prints 1

thread t1(add_1, var, m); // create thread with arguments

thread t2(add_1, var, m); // create another thread

t1.join(); t2.join(); // wait for both threads to finish

635

cout << var << endl; // prints 3

}

636

Chapter 133: Storage class specifiers
Storage class specifiers are keywords that can be used in declarations. They do not affect the type of the

declaration, but typically modify the way in which the entity is stored.

Section 133.1: extern

The extern storage class specifier can modify a declaration in one of the three following ways, depending on

context:

1. It can be used to declare a variable without defining it. Typically, this is used in a header file for a variable that

will be defined in a separate implementation file.

2. It gives external linkage to a variable at namespace scope even if const or constexpr would have otherwise

caused it to have internal linkage.

3. It redeclares a variable at block scope if it was previously declared with linkage. Otherwise, it declares a new

variable with linkage, which is a member of the nearest enclosing namespace.

A function can also be declared extern, but this has no effect. It is usually used as a hint to the reader that a

function declared here is defined in another translation unit. For example:

// global scope

int x;

extern int y;

// definition; x will be default-initialized

// declaration; y is defined elsewhere, most likely another TU

extern int z = 42; // definition; "extern" has no effect here (compiler may warn)

// global scope

const int w = 42;

static const int x = 42;

extern const int y = 42;

namespace {

// internal linkage in C++; external linkage in C

// internal linkage in both C++ and C

// external linkage in both C++ and C

extern const int z = 42; // however, this has internal linkage since

// it's in an unnamed namespace

}

// global scope

namespace {

int x = 1;

struct C {

int x = 2;

void f() {

extern int x; // redeclares namespace-scope x

std::cout << x << '\n'; // therefore, this prints 1, not 2

}

};

}

void g() {

extern int y; // y has external linkage; refers to global y defined elsewhere

}

void f(); // typically a forward declaration; f defined later in this TU

extern void g(); // typically not a forward declaration; g defined in another TU

637

In the above code, if f were changed to extern and g to non-extern, it would not affect the correctness or

semantics of the program at all, but would likely confuse the reader of the code.

Section 133.2: register

Version < C++17

A storage class specifier that hints to the compiler that a variable will be heavily used. The word "register" is related

to the fact that a compiler might choose to store such a variable in a CPU register so that it can be accessed in fewer

clock cycles. It was deprecated starting in C++11.

Both local variables and function parameters may be declared register. Unlike C, C++ does not place any

restrictions on what can be done with a register variable. For example, it is valid to take the address of a register

variable, but this may prevent the compiler from actually storing such a variable in a register.

Version ≥ C++17

The keyword register is unused and reserved. A program that uses the keyword register is ill-formed.

Section 133.3: static

The static storage class specifier has three different meanings.

1. Gives internal linkage to a variable or function declared at namespace scope.

2. Declares a variable to have static storage duration (unless it is thread_local). Namespace-scope variables

are implicitly static. A static local variable is initialized only once, the first time control passes through its

definition, and is not destroyed every time its scope is exited.

3. When applied to the declaration of a class member, declares that member to be a static member.

register int i = 0;

while (i < 100) {

f(i);

int g = i*i;

i += h(i, g);

}

// internal function; can't be linked to

static double semiperimeter(double a, double b, double c) {

return (a + b + c)/2.0;

}

// exported to client

double area(double a, double b, double c) {

const double s = semiperimeter(a, b, c);

return sqrt(s*(s-a)*(s-b)*(s-c));

}

void f() {

static int count = 0;

std::cout << "f has been called " << ++count << " times so far\n";

}

struct S {

static S* create() {

638

Note that in the case of a static data member of a class, both 2 and 3 apply simultaneously: the static keyword

both makes the member into a static data member and makes it into a variable with static storage duration.

Section 133.4: auto

Version ≤ C++03

Declares a variable to have automatic storage duration. It is redundant, since automatic storage duration is already

the default at block scope, and the auto specifier is not allowed at namespace scope.

In C++11, auto changed meaning completely, and is no longer a storage class specifier, but is instead used for type

deduction.

Section 133.5: mutable

A specifier that can be applied to the declaration of a non-static, non-reference data member of a class. A mutable

member of a class is not const even when the object is const.

Version ≥ C++11

A second meaning for mutable was added in C++11. When it follows the parameter list of a lambda, it suppresses

the implicit const on the lambda's function call operator. Therefore, a mutable lambda can modify the values of

entities captured by copy. See mutable lambdas for more details.

return new S;

}

};

int main() {

S* s = S::create();

}

void f() {

auto int x; // equivalent to: int x;

auto y; // illegal in C++; legal in C89

}

auto int z; // illegal: namespace-scope variable cannot be automatic

class C {

int x;

mutable int times_accessed;

public:

C(): x(0), times_accessed(0) {

}

int get_x() const {

++times_accessed; // ok: const member function can modify mutable data member

return x;

}

void set_x(int x) {

++times_accessed;

this->x = x;

}

};

std::vector<int> my_iota(int start, int count) {

std::vector<int> result(count);

std::generate(result.begin(), result.end(),

[start]() mutable { return start++; });

return result;

639

Note that mutable is not a storage class specifier when used this way to form a mutable lambda.

}

640

Chapter 134: Linkage specifications
A linkage specification tells the compiler to compile declarations in a way that allows them to be linked together

with declarations written in another language, such as C.

Section 134.1: Signal handler for Unix-like operating system

Since a signal handler will be called by the kernel using the C calling convention, we must tell the compiler to use

the C calling convention when compiling the function.

Section 134.2: Making a C library header compatible with C++

A C library header can usually be included into a C++ program, since most declarations are valid in both C and C++.

For example, consider the following foo.h:

The definition of make_foo is separately compiled and distributed with the header in object form.

A C++ program can #include <foo.h>, but the compiler will not know that the make_foo function is defined as a C

symbol, and will probably try to look for it with a mangled name, and fail to locate it. Even if it can find the definition

of make_foo in the library, not all platforms use the same calling conventions for C and C++, and the C++ compiler

will use the C++ calling convention when calling make_foo, which is likely to cause a segmentation fault if make_foo is

expecting to be called with the C calling convention.

The way to remedy this problem is to wrap almost all the declarations in the header in an extern "C" block.

volatile sig_atomic_t death_signal = 0;

extern "C" void cleanup(int signum) {

death_signal = signum;

}

int main() {

bind(...);

listen(...);

signal(SIGTERM,

cleanup);

while (int fd = accept(...)) {

if (fd == -1 && errno == EINTR && death_signal) {

printf("Caught signal %d; shutting down\n", death_signal);

break;

}

// ...

}

}

typedef struct Foo {

int bar;

} Foo;

Foo make_foo(int);

#ifdef cplusplus

extern "C" {

#endif

typedef struct Foo {

int bar;

} Foo;

Foo make_foo(int);

641

Now when foo.h is included from a C program, it will just appear as ordinary declarations, but when foo.h is

included from a C++ program, make_foo will be inside an extern "C" block and the compiler will know to look for

an unmangled name and use the C calling convention.

#ifdef cplusplus

} /* end of "extern C" block */

#endif

642

Chapter 135: Digit separators

Section 135.1: Digit Separator

Numeric literals of more than a few digits are hard to read.

Pronounce 7237498123.

Compare 237498123 with 237499123 for equality.

Decide whether 237499123 or 20249472 is larger.

C++14 define Simple Quotation Mark ' as a digit separator, in numbers and user-defined literals. This can make it

easier for human readers to parse large numbers.

Version ≥ C++14

Single quotes mark are ignored when determining its value.

Example:

The literals 1048576, 1'048'576, 0X100000, 0x10'0000, and 0'004'000'000 all have the same value.

The literals 1.602'176'565e-19 and 1.602176565e-19 have the same value.

The position of the single quotes is irrelevant. All the following are equivalent:

Version ≥ C++14

It is also allowed in user-defined literals:

Version ≥ C++14

std::chrono::seconds tiempo = 1'674'456s + 5'300h;

long long a1 = 123456789ll;

long long a2 = 123'456'789ll;

long long a3 = 12'34'56'78'9ll;

long long a4 = 12345'6789ll;

long long decn = 1'000'000'000ll;

long long hexn = 0xFFFF'FFFFll;

long long octn = 00'23'00ll;

long long binn = 0b1010'0011ll;

643

Chapter 136: C incompatibilities
This describes what C code will break in a C++ compiler.

Section 136.1: Reserved Keywords

The first example are keywords that have a special purpose in C++: the following is legal in C, but not C++.

These errors are easy to fix: just rename the variable.

Section 136.2: Weakly typed pointers

In C, pointers can be cast to a void*, which needs an explicit cast in C++. The following is illegal in C++, but legal in

C:

Adding an explicit cast makes this work, but can cause further issues.

Section 136.3: goto or switch

In C++, you may not skip initializations with goto or switch. The following is valid in C, but not C++:

These bugs may require redesign.

int class = 5

void* ptr;

int* intptr = ptr;

goto foo;

int skipped = 1;

foo;

644

Chapter 137: Side by Side Comparisons of
classic C++ examples solved via C++ vs
C++11 vs C++14 vs C++17

Section 137.1: Looping through a container

In C++, looping through a sequence container c can be done using indexes as follows:

While simple, such writings are subject to common semantic errors, like wrong comparison operator, or wrong

indexing variable:

Looping can also be achieved for all containers using iterators, with similar drawbacks:

C++11 introduced range-based for loops and auto keyword, allowing the code to become:

Here the only parameters are the container c, and a variable x to hold the current value. This prevents the

semantics errors previously pointed.

According to the C++11 standard, the underlying implementation is equivalent to:

In such implementation, the expression auto begin = c.begin(), end = c.end(); forces begin and end to be of

the same type, while end is never incremented, nor dereferenced. So the range-based for loop only works for

containers defined by a pair iterator/iterator. The C++17 standard relaxes this constraint by changing the

implementation to:

Here begin and end are allowed to be of different types, as long as they can be compared for inequality. This allows

to loop through more containers, e.g. a container defined by a pair iterator/sentinel.

for(size_t i = 0; i < c.size(); ++i) c[i] = 0;

for(size_t i = 0; i <= c.size(); ++j) c[i] = 0;

^~~~~~~~~~~~~~^

for(iterator it = c.begin(); it != c.end(); ++it) (*it) = 0;

for(auto& x : c) x = 0;

for(auto begin = c.begin(), end = c.end(); begin != end; ++begin)

{

// ...

}

auto begin = c.begin();

auto end = c.end();

for(; begin != end; ++begin)

{

// ...

}

645

Chapter 138: Compiling and Building
Programs written in C++ need to be compiled before they can be run. There is a large variety of compilers available

depending on your operating system.

Section 138.1: Compiling with GCC

Assuming a single source file named main.cpp, the command to compile and link an non-optimized executable is as

follows (Compiling without optimization is useful for initial development and debugging, although -Og is officially

recommended for newer GCC versions).

To produce an optimized executable for use in production, use one of the -O options (see: -O1, -O2, -O3, -Os, -

Ofast):

If the -O option is omitted, -O0, which means no optimizations, is used as default (specifying -O without a number

resolves to -O1).

Alternatively, use optimization flags from the O groups (or more experimental optimizations) directly. The following

example builds with -O2 optimization, plus one flag from the -O3 optimization level:

To produce a platform-specific optimized executable (for use in production on the machine with the same

architecture), use:

Either of the above will produce a binary file that can be run with .\app.exe on Windows and ./app on Linux, Mac OS,

etc.

The -o flag can also be skipped. In this case, GCC will create default output executable a.exe on Windows and

a.out on Unix-like systems. To compile a file without linking it, use the -c option:

This produces an object file named file.o which can later be linked with other files to produce a binary:

More about optimization options can be found at gcc.gnu.org. Of particular note are -Og (optimization with an

emphasis on debugging experience -- recommended for the standard edit-compile-debug cycle) and -Ofast (all

optimizations, including ones disregarding strict standards compliance).

The -Wall flag enables warnings for many common errors and should always be used. To improve code quality it is

often encouraged also to use -Wextra and other warning flags which are not automatically enabled by -Wall and -

Wextra.

If the code expects a specific C++ standard, specify which standard to use by including the -std= flag. Supported

g++ -o app -Wall main.cpp -O0

g++ -o app -Wall -O2 main.cpp

g++ -o app -Wall -O2 -ftree-partial-pre main.cpp

g++ -o app -Wall -O2 -march=native main.cpp

g++ -o file.o -Wall -c file.cpp

g++ -o app file.o otherfile.o

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Og-723
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Og-723
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O-716
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O1-717
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O1-717
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O2-718
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O2-718
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O3-719
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-O3-719
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Os-721
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Os-721
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Ofast-722
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#index-Ofast-722
https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#index-o-86
https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html#index-c-82
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wall-307
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wall-307
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wextra-310
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wextra-310
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-std-112

646

values correspond to the year of finalization for each version of the ISO C++ standard. As of GCC 6.1.0, valid values

for the std= flag are c++98/c++03, c++11, c++14, and c++17/c++1z. Values separated by a forward slash are

equivalent.

GCC includes some compiler-specific extensions that are disabled when they conflict with a standard specified by

the -std= flag. To compile with all extensions enabled, the value gnu++XX may be used, where XX is any of the years

used by the c++ values listed above.

The default standard will be used if none is specified. For versions of GCC prior to 6.1.0, the default is -

std=gnu++03; in GCC 6.1.0 and greater, the default is -std=gnu++14.

Note that due to bugs in GCC, the -pthread flag must be present at compilation and linking for GCC to support the

C++ standard threading functionality introduced with C++11, such as std::thread and std::wait_for. Omitting it

when using threading functions may result in no warnings but invalid results on some platforms.

Linking with libraries:

Use the -l option to pass the library name:

If the library is not in the standard library path, add the path with -L option:

Multiple libraries can be linked together:

If one library depends on another, put the dependent library before the independent library:

Or let the linker determine the ordering itself via --start-group and --end-group (note: this has significant

performance cost):

Section 138.2: Compiling with Visual Studio (Graphical
Interface) - Hello World

1. Download and install Visual Studio Community 2015

2. Open Visual Studio Community

3. Click File -> New -> Project

4. Click Templates -> Visual C++ -> Win32 Console Application and then name the project MyFirstProgram.

g++ -std=c++11 <file>

g++ main.cpp -lpcre2-8

#pcre2-8 is the PCRE2 library for 8bit code units (UTF-8)

g++ main.cpp -L/my/custom/path/ -lmylib

g++ main.cpp -lmylib1 -lmylib2 -lmylib3

g++ main.cpp -lchild-lib -lbase-lib

g++ main.cpp -Wl,--start-group -lbase-lib -lchild-lib -Wl,--end-group

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58929
https://www.visualstudio.com/

647

5. Click Ok

6. Click Next in the following window.

648

7. Check the Empty project box and then click Finish:

649

8. Right click on folder Source File then -> Add --> New Item :

9. Select C++ File and name the file main.cpp, then click Add:

650

10: Copy and paste the following code in the new file main.cpp:

You environment should look like:

11. Click Debug -> Start Without Debugging (or press ctrl + F5) :

#include <iostream>

int main()

{

std::cout << "Hello World!\n";

return 0;

}

651

12. Done. You should get the following console output :

Section 138.3: Online Compilers

Various websites provide online access to C++ compilers. Online compiler's feature set vary significantly from site to

site, but usually they allow to do the following:

Paste your code into a web form in the browser.

Select some compiler options and compile the code.

Collect compiler and/or program output.

652

Online compiler website behavior is usually quite restrictive as they allow anyone to run compilers and execute

arbitrary code on their server side, whereas ordinarily remote arbitrary code execution is considered a s

vulnerability.

Online compilers may be useful for the following purposes:

Run a small code snippet from a machine which lacks C++ compiler (smartphones, tablets, etc.).

Ensure that code compiles successfully with different compilers and runs the same way regardless the

compiler it was compiled with.

Learn or teach basics of C++.

Learn modern C++ features (C++14 and C++17 in near future) when up-to-date C++ compiler is not available

on local machine.

Spot a bug in your compiler by comparison with a large set of other compilers. Check if a compiler bug was

fixed in future versions, which are unavailable on your machine.

Solve online judge problems.

What online compilers should not be used for:

Develop full-featured (even small) applications using C++. Usually online compilers do not allow to link with

third-party libraries or download build artifacts.

Perform intensive computations. Sever-side computing resources are limited, so any user-provided program

will be killed after a few seconds of execution. The permitted execution time is usually enough for testing and

learning.

Attack compiler server itself or any third-party hosts on the net.

Examples:

Disclaimer: documentation author(s) are not affiliated with any resources listed below. Websites are listed

alphabetically.

http://codepad.org/ Online compiler with code sharing. Editing code after compiling with a source code

warning or error does not work so well.

http://coliru.stacked-crooked.com/ Online compiler for which you specify the command line. Provides both

GCC and Clang compilers for use.

http://cpp.sh/ - Online compiler with C++14 support. Does not allow you to edit compiler command line, but

some options are available via GUI controls.

https://gcc.godbolt.org/ - Provides a wide list of compiler versions, architectures, and disassembly output.

Very useful when you need to inspect what your code compiles into by different compilers. GCC, Clang, MSVC

(CL), Intel compiler (icc), ELLCC, and Zapcc are present, with one or more of these compilers available for the

ARM, ARMv8 (as ARM64), Atmel AVR, MIPS, MIPS64, MSP430, PowerPC, x86, and x64 architecutres. Compiler

command line arguments may be edited.

https://ideone.com/ - Widely used on the Net to illustrate code snippet behavior. Provides both GCC and

Clang for use, but doesn't allow you to edit the compiler command line.

http://melpon.org/wandbox - Supports numerous Clang and GNU/GCC compiler versions.

http://onlinegdb.com/ - An extremely minimalistic IDE that includes an editor, a compiler (gcc), and a

debugger (gdb).

http://rextester.com/ - Provides Clang, GCC, and Visual Studio compilers for both C and C++ (along with

compilers for other languages), with the Boost library available for use.

http://tutorialspoint.com/compile_cpp11_online.php - Full-featured UNIX shell with GCC, and a user-friendly

project explorer.

http://webcompiler.cloudapp.net/ - Online Visual Studio 2015 compiler, provided by Microsoft as part of

http://codepad.org/
http://coliru.stacked-crooked.com/
http://cpp.sh/
https://gcc.godbolt.org/
https://ideone.com/
http://melpon.org/wandbox
http://onlinegdb.com/
http://rextester.com/
http://tutorialspoint.com/compile_cpp11_online.php
http://webcompiler.cloudapp.net/

653

Visual Studio Command Prompt/Developer Command

RiSE4fun.

Section 138.4: Compiling with Visual C++ (Command Line)

For programmers coming from GCC or Clang to Visual Studio, or programmers more comfortable with the

command line in general, you can use the Visual C++ compiler from the command line as well as the IDE.

If you desire to compile your code from the command line in Visual Studio, you first need to set up the command

line environment. This can be done either by opening the

Prompt/x86 Native Tools Command Prompt/x64 Native Tools Command Prompt or similar (as provided by your

version of Visual Studio), or at the command prompt, by navigating to the VC subdirectory of the compiler's install

directory (typically \Program Files (x86)\Microsoft Visual Studio x\VC, where x is the version number (such as

10.0 for 2010, or 14.0 for 2015) and running the VCVARSALL batch file with a command-line parameter specified

here.

Note that unlike GCC, Visual Studio doesn't provide a front-end for the linker (link.exe) via the compiler (cl.exe),

but instead provides the linker as a separate program, which the compiler calls as it exits. cl.exe and link.exe can

be used separately with different files and options, or cl can be told to pass files and options to link if both tasks

are done together. Any linking options specified to cl will be translated into options for link, and any files not

processed by cl will be passed directly to link. As this is mainly a simple guide to compiling with the Visual Studio

command line, arguments for link will not be described at this time; if you need a list, see here.

Note that arguments to cl are case-sensitive, while arguments to link are not.

[Be advised that some of the following examples use the Windows shell "current directory" variable, %cd%, when

specifying absolute path names. For anyone unfamiliar with this variable, it expands to the current working

directory. From the command line, it will be the directory you were in when you ran cl, and is specified in the

command prompt by default (if your command prompt is C:\src>, for example, then %cd% is C:\src\).]

Assuming a single source file named main.cpp in the current folder, the command to compile and link an

unoptimised executable (useful for initial development and debugging) is (use either of the following):

Assuming an additional source file "niam.cpp" in the same directory, use the following:

You can also use wildcards, as one would expect:

cl main.cpp

// Generates object file "main.obj".

// Performs linking with "main.obj".

// Generates executable "main.exe".

cl /Od main.cpp

// Same as above.

// "/Od" is the "Optimisation: disabled" option, and is the default when no /O is specified.

cl main.cpp niam.cpp

// Generates object files "main.obj" and "niam.obj".

// Performs linking with "main.obj" and "niam.obj".

// Generates executable "main.exe".

cl main.cpp src*.cpp

// Generates object file "main.obj", plus one object file for each ".cpp" file in folder

// "%cd%\src".

// Performs linking with "main.obj", and every additional object file generated.

// All object files will be in the current folder.

https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_0
https://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx#Anchor_1
https://msdn.microsoft.com/en-us/library/y0zzbyt4.aspx

654

To rename or relocate the executable, use one of the following:

Both /o and /Fe pass their parameter (let's call it o-param) to link as /OUT:o-param, appending the appropriate

extension (generally .exe or .dll) to "name" o-params as necessary. While both /o and /Fe are to my knowledge

identical in functionality, the latter is preferred for Visual Studio. /o is marked as deprecated, and appears to mainly

be provided for programmers more familiar with GCC or Clang.

Note that while the space between /o and the specified folder and/or name is optional, there cannot be a space

between /Fe and the specified folder and/or name.

Similarly, to produce an optimised executable (for use in production), use:

Finally, to produce a platform-specific optimized executable (for use in production on the machine with the

specified architecture), choose the appropriate command prompt or VCVARSALL parameter for the target platform.

link should detect the desired platform from the object files; if not, use the /MACHINE option to explicitly specify the

target platform.

Any of the above will produce an executable with the name specified by /o or /Fe, or if neither is provided, with a

name identical to the first source or object file specified to the compiler.

// Generates executable "main.exe".

cl /o name main.cpp

// Generates executable named "name.exe".

cl /o folder\ main.cpp

// Generates executable named "main.exe", in folder "%cd%\folder".

cl /o folder\name main.cpp

// Generates executable named "name.exe", in folder "%cd%\folder".

cl /Fename main.cpp

// Same as "/o name".

cl /Fefolder\ main.cpp

// Same as "/o folder\".

cl /Fefolder\name main.cpp

// Same as "/o folder\name".

cl /O1 main.cpp

// Optimise for executable size. Produces small programs, at the possible expense of slower

// execution.

cl /O2 main.cpp

// Optimise for execution speed. Produces fast programs, at the possible expense of larger

// file size.

cl /GL main.cpp other.cpp

// Generates special object files used for whole-program optimisation, which allows CL to

// take every module (translation unit) into consideration during optimisation.

// Passes the option "/LTCG" (Link-Time Code Generation) to LINK, telling it to call CL during

// the linking phase to perform additional optimisations. If linking is not performed at this

// time, the generated object files should be linked with "/LTCG".

// Can be used with other CL optimisation options.

// If compiling for x64, and LINK doesn't automatically detect target platform: cl

main.cpp /link /machine:X64

https://msdn.microsoft.com/en-us/library/x4d2c09s.aspx
https://msdn.microsoft.com/en-us/library/x4d2c09s.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx
https://msdn.microsoft.com/en-us/library/5wy54dk2.aspx

655

To compile a file(s) without linking, use:

This tells cl to exit without calling link, and produces an object file, which can later be linked with other files to

produce a binary.

There are other valuable command line parameters as well, which it would be very useful for users to know:

cl /EHsc main.cpp

// "/EHsc" specifies that only standard C++ ("synchronous") exceptions will be caught,

// and `extern "C"` functions will not throw exceptions.

// This is recommended when writing portable, platform-independent code.

cl /clr main.cpp

// "/clr" specifies that the code should be compiled to use the common language runtime,

// the .NET Framework's virtual machine.

// Enables the use of Microsoft's C++/CLI language in addition to standard ("native") C++,

// and creates an executable that requires .NET to run.

cl /Za main.cpp

// "/Za" specifies that Microsoft extensions should be disabled, and code should be

// compiled strictly according to ISO C++ specifications.

// This is recommended for guaranteeing portability.

cl /Zi main.cpp

// "/Zi" generates a program database (PDB) file for use when debugging a program, without

// affecting optimisation specifications, and passes the option "/DEBUG" to LINK.

cl /LD dll.cpp

// "/LD" tells CL to configure LINK to generate a DLL instead of an executable.

// LINK will output a DLL, in addition to an LIB and EXP file for use when linking.

// To use the DLL in other programs, pass its associated LIB to CL or LINK when compiling those

// programs.

cl main.cpp /link /LINKER_OPTION

// "/link" passes everything following it directly to LINK, without parsing it in any way.

cl a.cpp b.cpp c.cpp

// Generates "a.exe".

cl d.obj a.cpp q.cpp

// Generates "d.exe".

cl y.lib n.cpp o.obj

// Generates "n.exe".

cl /o yo zp.obj pz.cpp

// Generates "yo.exe".

cl /c main.cpp

// Generates object file "main.obj".

cl main.obj niam.cpp

// Generates object file "niam.obj".

// Performs linking with "main.obj" and "niam.obj".

// Generates executable "main.exe".

link main.obj niam.obj

// Performs linking with "main.obj" and "niam.obj".

// Generates executable "main.exe".

656

For anyone more familiar with *nix systems and/or GCC/Clang, cl, link, and other Visual Studio command line

tools can accept parameters specified with a hyphen (such as -c) instead of a slash (such as /c). Additionally,

Windows recognises either a slash or a backslash as a valid path separator, so *nix-style paths can be used as well.

This makes it easy to convert simple compiler command lines from g++ or clang++ to cl, or vice versa, with minimal

changes.

Of course, when porting command lines that use more complex g++ or clang++ options, you need to look up

equivalent commands in the applicable compiler documentations and/or on resource sites, but this makes it easier

to get things started with minimal time spent learning about new compilers.

In case you need specific language features for your code, a specific release of MSVC was required. From Visual C++

2015 Update 3 on it is possible to choose the version of the standard to compile with via the /std flag. Possible

values are /std:c++14 and /std:c++latest (/std:c++17 will follow soon).

Note: In older versions of this compiler, specific feature flags were available however this was mostly used for

previews of new features.

Section 138.5: Compiling with Clang

As the Clang front-end is designed for being compatible with GCC, most programs that can be compiled via GCC will

compile when you swap g++ by clang++ in the build scripts. If no -std=version is given, gnu11 will be used.

Windows users who are used to MSVC can swap cl.exe with clang-cl.exe. By default, clang tries to be compatible

with the highest version of MSVC that has been installed.

In the case of compiling with visual studio, clang-cl can be used by changing the Platform toolset in the project

properties.

In both cases, clang is only compatible via its front-end, though it also tries to generate binary compatible object

files. Users of clang-cl should note that the compatibility with MSVC is not complete yet.

To use clang or clang-cl, one could use the default installation on certain Linux distributions or those bundled with

IDEs (like XCode on Mac). For other versions of this compiler or on platforms which don't have this installed, this

can be download from the official download page.

If you're using CMake to build your code you can usually switch the compiler by setting the CC and CXX environment

variables like this:

See also introduction to Cmake.

Section 138.6: The C++ compilation process

When you develop a C++ program, the next step is to compile the program before running it. The compilation is the

process which converts the program written in human readable language like C, C++ etc into a machine code,

// Replace "/LINKER_OPTION" with any desired LINK option(s).

g++ -o app src/main.cpp

cl -o app src/main.cpp

mkdir build

cd build

CC=clang CXX=clang++ cmake ..

cmake --build .

https://blogs.msdn.microsoft.com/vcblog/2016/06/07/standards-version-switches-in-the-compiler/
https://blogs.msdn.microsoft.com/vcblog/2016/06/07/standards-version-switches-in-the-compiler/
http://clang.llvm.org/
http://clang.llvm.org/docs/MSVCCompatibility.html
http://llvm.org/releases/download.html

657

directly understood by the Central Processing Unit. For example, if you have a C++ source code file named prog.cpp

and you execute the compile command,

There are 4 main stages involved in creating an executable file from the source file.

1. The C++ the preprocessor takes a C++ source code file and deals with the headers(#include), macros(#define)

and other preprocessor directives.

2. The expanded C++ source code file produced by the C++ preprocessor is compiled into the assembly

language for the platform.

3. The assembler code generated by the compiler is assembled into the object code for the platform.

4. The object code file produced by the assembler is linked together

with the object code files for any library functions used to produce either a library or an executable file.

Preprocessing

The preprocessor handles the preprocessor directives, like #include and #define. It is agnostic of the syntax of C++,

which is why it must be used with care.

It works on one C++ source file at a time by replacing #include directives with the content of the respective files

(which is usually just declarations), doing replacement of macros (#define), and selecting different portions of text

depending of #if, #ifdef and #ifndef directives.

The preprocessor works on a stream of preprocessing tokens. Macro substitution is defined as replacing tokens

with other tokens (the operator ## enables merging two tokens when it make sense).

After all this, the preprocessor produces a single output that is a stream of tokens resulting from the

transformations described above. It also adds some special markers that tell the compiler where each line came

from so that it can use those to produce sensible error messages.

Some errors can be produced at this stage with clever use of the #if and #error directives.

By using below compiler flag, we can stop the process at preprocessing stage.

Compilation

The compilation step is performed on each output of the preprocessor. The compiler parses the pure C++ source

code (now without any preprocessor directives) and converts it into assembly code. Then invokes underlying back -

end(assembler in toolchain) that assembles that code into machine code producing actual binary file in some

format(ELF, COFF, a.out, ...). This object file contains the compiled code (in binary form) of the symbols defined in

the input. Symbols in object files are referred to by name.

Object files can refer to symbols that are not defined. This is the case when you use a declaration, and don't

provide a definition for it. The compiler doesn't mind this, and will happily produce the object file as long as the

source code is well-formed.

Compilers usually let you stop compilation at this point. This is very useful because with it you can compile each

source code file separately. The advantage this provides is that you don't need to recompile everything if you only

change a single file.

g++ -Wall -ansi -o prog prog.cpp

g++ -E prog.cpp

658

The produced object files can be put in special archives called static libraries, for easier reusing later on.

It's at this stage that "regular" compiler errors, like syntax errors or failed overload resolution errors, are reported.

In order to stop the process after the compile step, we can use the -S option:

Assembling

The assembler creates object code. On a UNIX system you may see files with a .o suffix (.OBJ on MSDOS) to indicate

object code files. In this phase the assembler converts those object files from assembly code into machine level

instructions and the file created is a relocatable object code. Hence, the compilation phase generates the

relocatable object program and this program can be used in different places without having to compile again.

To stop the process after the assembly step, you can use the -c option:

Linking

The linker is what produces the final compilation output from the object files the assembler produced. This output

can be either a shared (or dynamic) library (and while the name is similar, they don't have much in common with

static libraries mentioned earlier) or an executable.

It links all the object files by replacing the references to undefined symbols with the correct addresses. Each of

these symbols can be defined in other object files or in libraries. If they are defined in libraries other than the

standard library, you need to tell the linker about them.

At this stage the most common errors are missing definitions or duplicate definitions. The former means that either

the definitions don't exist (i.e. they are not written), or that the object files or libraries where they reside were not

given to the linker. The latter is obvious: the same symbol was defined in two different object files or libraries.

Section 138.7: Compiling with Code::Blocks (Graphical
interface)

1. Download and install Code::Blocks here. If you're on Windows, be careful to select a file for which the name

contains mingw, the other files don't install any compiler.

2. Open Code::Blocks and click on "Create a new project":

g++ -Wall -ansi -S prog.cpp

g++ -Wall -ansi -c prog.cpp

http://www.codeblocks.org/downloads/binaries

659

3. Select "Console application" and click "Go":

4. Click "Next", select "C++", click "Next", select a name for your project and choose a folder to save it in, click

"Next" and then click "Finish".

5. Now you can edit and compile your code. A default code that prints "Hello world!" in the console is already

660

there. To compile and/or run your program, press one of the three compile/run buttons in the toolbar:

To compile without running, press , to run without compiling again, press and to compile and then

run, press .

Compiling and running the default "Hello world!" code gives the following result:

661

Chapter 139: Common compile/linker
errors (GCC)

Section 139.1: undefined reference to `***'

This linker error happens, if the linker can't find a used symbol. Most of the time, this happens if a used library is

not linked against.

qmake:

cmake:

g++ call:

One might also forget to compile and link all used .cpp files (functionsModule.cpp defines the needed function):

Section 139.2: error: '***' was not declared in this scope

This error happens if a unknown object is used.

Variables

Not compiling:

Fix:

LIBS += nameOfLib

TARGET_LINK_LIBRARIES(target nameOfLib)

g++ -o main main.cpp -Llibrary/dir -lnameOfLib

g++ -o binName main.o functionsModule.o

#include <iostream>

int main(int argc, char *argv[])

{

{

int i = 2;

}

std::cout << i << std::endl; // i is not in the scope of the main function return

0;

}

#include <iostream>

int main(int argc, char *argv[])

{

{

int i = 2;

std::cout << i << std::endl;

662

Functions

Most of the time this error occurs if the needed header is not included (e.g. using std::cout without

#include <iostream>)

Not compiling:

Fix:

Or:

}

return 0;

}

#include <iostream>

int main(int argc, char *argv[])

{

doCompile();

return 0;

}

void doCompile()

{

std::cout << "No!" << std::endl;

}

#include <iostream>

void doCompile(); // forward declare the function int

main(int argc, char *argv[])

{

doCompile();

return 0;

}

void doCompile()

{

std::cout << "No!" << std::endl;

}

#include <iostream>

void doCompile() // define the function before using it

{

std::cout << "No!" << std::endl;

}

int main(int argc, char *argv[])

{

doCompile();

return 0;

663

Note: The compiler interprets the code from top to bottom (simplification). Everything must be at least declared (or

defined) before usage.

Section 139.3: fatal error: ***: No such file or directory

The compiler can't find a file (a source file uses #include "someFile.hpp").

qmake:

cmake:

g++ call:

}

INCLUDEPATH += dir/Of/File

include_directories(dir/Of/File)

g++ -o main main.cpp -Idir/Of/File

http://www.cprogramming.com/declare_vs_define.html
http://www.cprogramming.com/declare_vs_define.html

664

Chapter 140: More undefined behaviors in
C++
More examples on how C++ can go wrong.

Continuation from Undefined Behavior

Section 140.1: Referring to non-static members in initializer
lists

Referring to non-static members in initializer lists before the constructor has started executing can result in

undefined behavior. This results since not all members are constructed at this time. From the standard draft:

§ 12.7.1: For an object with a non-trivial constructor, referring to any non-static member or base class of

the object before the constructor begins execution results in undefined behavior.

Example

struct W { int j; };

struct X : public virtual W { };

struct Y {

int *p;

X x;

Y() : p(&x.j) { // undefined, x is not yet constructed

}

};

665

Chapter 141: Unit Testing in C++
Unit testing is a level in software testing that validates the behavior and correctness of units of code.

In C++, "units of code" often refer to either classes, functions, or groups of either. Unit testing is often performed

using specialized "testing frameworks" or "testing libraries" that often use non-trivial syntax or usage patterns.

This topic will review different strategies and unit testing libraries or frameworks.

Section 141.1: Google Test

Google Test is a C++ testing framework maintained by Google. It requires building the gtest library and linking it to

your testing framework when building a test case file.

Minimal Example

// main.cpp

#include <gtest/gtest.h>

#include <iostream>

// Google Test test cases are created using a C++ preprocessor macro

// Here, a "test suite" name and a specific "test name" are provided.

TEST(module_name, test_name) {

std::cout << "Hello world!" << std::endl;

// Google Test will also provide macros for assertions.

ASSERT_EQ(1+1, 2);

}

// Google Test can be run manually from the main() function

// or, it can be linked to the gtest_main library for an already

// set-up main() function primed to accept Google Test test cases.

int main(int argc, char** argv) {

::testing::InitGoogleTest(&argc, argv);

return RUN_ALL_TESTS();

}

// Build command: g++ main.cpp -lgtest

Section 141.2: Catch

Catch is a header only library that allows you to use both TDD and BDD unit test style.

The following snippet is from the Catch documentation page at this link:

SCENARIO("vectors can be sized and resized", "[vector]") {

GIVEN("A vector with some items") {

std::vector v(5);

REQUIRE(v.size() == 5);

REQUIRE(v.capacity() >= 5);

WHEN("the size is increased") {

v.resize(10);

THEN("the size and capacity change") {

REQUIRE(v.size() == 10);

https://github.com/google/googletest
https://github.com/philsquared/Catch
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development
https://github.com/philsquared/Catch/blob/master/docs/tutorial.md

666

Conveniently, these tests will be reported as follows when run:

Scenario: vectors can be sized and resized Given: A vector with some items When: more capacity is reserved Then:

the capacity changes but not the size

REQUIRE(v.capacity() >= 10);

}

}

WHEN("the size is reduced") {

v.resize(0);

THEN("the size changes but not capacity") {

REQUIRE(v.size() == 0);

REQUIRE(v.capacity() >= 5);

}

}

WHEN("more capacity is reserved") {

v.reserve(10);

THEN("the capacity changes but not the size") {

REQUIRE(v.size() == 5);

REQUIRE(v.capacity() >= 10);

}

}

WHEN("less capacity is reserved") {

v.reserve(0);

THEN("neither size nor capacity are changed") {

REQUIRE(v.size() == 5);

REQUIRE(v.capacity() >= 5);

}

}

}

}

667

Chapter 142: C++ Debugging and Debug-
prevention Tools & Techniques
A lot of time from C++ developers is spent debugging. This topic is meant to assist with this task and give inspiration

for techniques. Don't expect an extensive list of issues and solutions fixed by the tools or a manual on the

mentioned tools.

Section 142.1: Static analysis

Static analysis is the technique in which on checks the code for patterns linked to known bugs. Using this technique

is less time consuming than a code review, though, its checks are only limited to those programmed in the tool.

Checks can include the incorrect semi-colon behind the if-statement (if (var);) till advanced graph algorithms

which determine if a variable is not initialized.

Compiler warnings

Enabling static analysis is easy, the most simplistic version is already build-in in your compiler:

clang++ -Wall -Weverything -Werror ...

g++ -Wall -Weverything -Werror ...

cl.exe /W4 /WX ...

If you enable these options, you will notice that each compiler will find bugs the others don't and that you will get

errors on techniques which might be valid or valid in a specific context. while (staticAtomicBool); might be

acceptable even if while (localBool); ain't.

So unlike code review, you are fighting a tool which understands your code, tells you a lot of useful bugs and

sometimes disagrees with you. In this last case, you might have to suppress the warning locally.

As the options above enable all warnings, they might enable warnings you don't want. (Why should your code be

C++98 compatible?) If so, you can simply disable that specific warning:

clang++ -Wall -Weverything -Werror -Wno-errortoaccept ...

g++ -Wall -Weverything -Werror -Wno-errortoaccept ...

cl.exe /W4 /WX /wd<no of warning>...

Where compiler warnings assist you during development, they slow down compilation quite a bit. That is why you

might not always want to enable them by default. Either you run them by default or you enable some continuous

integration with the more expensive checks (or all of them).

External tools

If you decide to have some continuous integration, the use of other tools ain't such a stretch. A tool like clang-tidy

has an list of checks which covers a wide range of issues, some examples:

Actual bugs

Prevention of slicing

Asserts with side effects

Readability checks

Misleading indentation

Check identifier naming

Modernization checks

https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-option-warning-level
http://clang.llvm.org/extra/clang-tidy/
http://clang.llvm.org/extra/clang-tidy/checks/list.html

668

Use make_unique()

Use nullptr

Performance checks

Find unneeded copies

Find inefficient algorithm calls

The list might not be that large, as Clang already has a lot of compiler warnings, however it will bring you one step

closer to a high quality code base.

Other tools

Other tools with similar purpose exist, like:

the visual studio static analyzer as external tool

clazy, a Clang compiler plugin for checking Qt code

Conclusion

A lot static analysis tools exist for C++, both build-in in the compiler as external tools. Trying them out doesn't take

that much time for easy setups and they will find bugs you might miss in code review.

Section 142.2: Segfault analysis with GDB

Lets use the same code as above for this example.

First lets compile it

Lets run it with gdb

Now we will be in gdb shell. Type run.

#include <iostream>

void fail() {

int *p1;

int *p2(NULL);

int *p3 = p1;

if (p3) {

std::cout << *p2 << std::endl;

}

}

int main() {

fail();

}

g++ -g -o main main.cpp

gdb ./main

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/opencog/code-snippets/stackoverflow/a.out

Program received signal SIGSEGV, Segmentation fault.

0x0000000000400850 in fail () at debugging_with_gdb.cc:11

https://blogs.msdn.microsoft.com/hkamel/2013/10/24/visual-studio-2013-static-code-analysis-in-depth-what-when-and-how/
https://blogs.kde.org/2015/11/15/new-cqt-code-checks-clazy-static-analyzer

669

We see the segmentation fault is happening at line 11. So the only variable being used at this line is pointer p2. Lets

examine its content typing print.

Now we see that p2 was initialized to 0x0 which stands for NULL. At this line, we know that we are trying to

dereference a NULL pointer. So we go and fix it.

Section 142.3: Clean code

Debugging starts with understanding the code you are trying to debug.

Bad code:

Better code:

11 std::cout << *p2 << std::endl;

(gdb) print p2

$1 = (int *) 0x0

int main() {

int value;

std::vector<int> vectorToSort;

vectorToSort.push_back(42); vectorToSort.push_back(13);

for (int i = 52; i; i = i - 1)

{

vectorToSort.push_back(i *2);

}

/// Optimized for sorting small vectors if

(vectorToSort.size() == 1);

else

{

if (vectorToSort.size() <= 2) std::sort(vectorToSort.begin(),

std::end(vectorToSort));

}

for (value : vectorToSort) std::cout << value << ' ';

return 0; }

std::vector<int> createSemiRandomData() {

std::vector<int> data;

data.push_back(42);

data.push_back(13);

for (int i = 52; i; --i)

vectorToSort.push_back(i *2);

return data;

}

/// Optimized for sorting small vectors void

sortVector(std::vector &v) {

if (vectorToSort.size() == 1)

return;

if (vectorToSort.size() > 2)

return;

std::sort(vectorToSort.begin(), vectorToSort.end());

}

void printVector(const std::vector<int> &v) { for

(auto i : v)

std::cout << i << ' ';

670

Regardless of the coding styles you prefer and use, having a consistent coding (and formatting) style will help you

understanding the code.

Looking at the code above, one can identify a couple of improvements to improve readability and debuggability:

The use of separate functions for separate actions

The use of separate functions allow you to skip over some functions in the debugger if you ain't interested in the

details. In this specific case, you might not be interested in the creation or printing of the data and only want to step

into the sorting.

Another advantage is that you need to read less code (and memorize it) while stepping through the code. You now

only need to read 3 lines of code in main() in order to understand it, instead of the whole function.

The third advantage is that you simply have less code to look at, which helps a trained eye in spotting this bug

within seconds.

Using consistent formatting/constructions

The use of consistent formatting and constructions will remove clutter from the code making it easier to focus on

the code instead of text. A lot of discussions have been fed on the 'right' formatting style. Regardless of that style,

having a single consistent style in the code will improve familiarity and make it easier to focus on the code.

As formatting code is time consuming task, it is recommended to use a dedicated tool for this. Most IDEs have at

least some kind of support for this and can do formatting more consistent than humans.

You might note that the style is not limited to spaces and newlines as we no longer mix the free-style and the

member functions to get begin/end of the container. (v.begin() vs std::end(v)).

Point attention to the important parts of your code.

Regardless of the style you determine to choose, the above code contains a couple of markers which might give you

a hint on what might be important:

A comment stating optimized, this indicates some fancy techniques

Some early returns in sortVector() indicate that we are doing something special

The std::ref() indicates that something is going on with the sortVector()

Conclusion

Having clean code will help you understanding the code and will reduce the time you need to debug it. In the

second example, a code reviewer might even spot the bug at first glance, while the bug might be hidden in the

details in the first one. (PS: The bug is in the compare with 2.)

}

int main() {

auto vectorToSort = createSemiRandomData();

sortVector(std::ref(vectorToSort));

printVector(vectorToSort);

return 0;

}

671

Chapter 143: Optimization in C++

Section 143.1: Introduction to performance

C and C++ are well known as high-performance languages - largely due to the heavy amount of code customization,

allowing a user to specify performance by choice of structure.

When optimizing it is important to benchmark relevant code and completely understand how the code will be used.

Common optimization mistakes include:

Premature optimization: Complex code may perform worse after optimization, wasting time and effort.

First priority should be to write correct and maintainable code, rather than optimized code.

Optimization for the wrong use case: Adding overhead for the 1% might not be worth the slowdown for

the other 99%

Micro-optimization: Compilers do this very efficiently and micro-optimization can even hurt the compilers

ability to further optimize the code

Typical optimization goals are:

To do less work

To use more efficient algorithms/structures

To make better use of hardware

Optimized code can have negative side effects, including:

Higher memory usage

Complex code -being difficult to read or maintain

Compromised API and code design

Section 143.2: Empty Base Class Optimization

An object cannot occupy less than 1 byte, as then the members of an array of this type would have the same

address. Thus sizeof(T)>=1 always holds. It's also true that a derived class cannot be smaller than any of its base

classes. However, when the base class is empty, its size is not necessarily added to the derived class:

In this case, it's not required to allocate a byte for Base within Derived to have a distinct address per type per

object. If empty base class optimization is performed (and no padding is required), then sizeof(Derived) ==

sizeof(int), that is, no additional allocation is done for the empty base. This is possible with multiple base classes

as well (in C++, multiple bases cannot have the same type, so no issues arise from that).

Note that this can only be performed if the first member of Derived differs in type from any of the base classes.

This includes any direct or indirect common bases. If it's the same type as one of the bases (or there's a common

base), at least allocating a single byte is required to ensure that no two distinct objects of the same type have the

same address.

class Base {};

class Derived : public Base

{

public:

int i;

};

672

Section 143.3: Optimizing by executing less code

The most straightforward approach to optimizing is by executing less code. This approach usually gives a fixed

speed-up without changing the time complexity of the code.

Even though this approach gives you a clear speedup, this will only give noticable improvements when the code is

called a lot.

Removing useless code

Version ≥ C++14

From C++14, compilers are allowed to optimize this code to remove the allocation and matching deallocation.

Doing code only once

A similar approach to this optimization can be used to implement a stable version of unique

void func(const A *a); // Some random function

// useless memory allocation + deallocation for the instance auto

a1 = std::make_unique<A>();

func(a1.get());

// making use of a stack object prevents

auto a2 = A{};

func(&a2);

std::map<std::string, std::unique_ptr<A>> lookup;

// Slow insertion/lookup

// Within this function, we will traverse twice through the map lookup an element

// and even a thirth time when it wasn't in

const A *lazyLookupSlow(const std::string &key) { if

(lookup.find(key) != lookup.cend())

lookup.emplace_back(key, std::make_unique<A>());

return lookup[key].get();

}

// Within this function, we will have the same noticeable effect as the slow variant while going at double

speed as we only traverse once through the code

const A *lazyLookupSlow(const std::string &key) {

auto &value = lookup[key];

if (!value)

value =

std::make_unique<A>(); return

value.get();

}

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {

std::vector<std::string> result;

std::set<std::string> checkUnique;

for (const auto &s : v) {

// As insert returns if the insertion was successful, we can deduce if the element was already

in or not

// This prevents an insertion, which will traverse through the map for every unique element

// As a result we can almost gain 50% if v would not contain any duplicates if

(checkUnique.insert(s).second)

result.push_back(s);

}

return result;

}

673

Preventing useless reallocating and copying/moving

In the previous example, we already prevented lookups in the std::set, however the std::vector still contains a

growing algorithm, in which it will have to realloc its storage. This can be prevented by first reserving for the right

size.

Section 143.4: Using e cient containers

Optimizing by using the right data structures at the right time can change the time-complexity of the code.

By using a container which uses a different implementation for storing its elements (hash container instead of tree),

we can transform our implementation to complexity N. As a side effect, we will call the comparison operator for

std::string less, as it only has to be called when the inserted string should end up in the same bucket.

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {

std::vector<std::string> result;

// By reserving 'result', we can ensure that no copying or moving will be done in the vector

// as it will have capacity for the maximum number of elements we will be inserting

// If we make the assumption that no allocation occurs for size zero

// and allocating a large block of memory takes the same time as a small block of memory

// this will never slow down the program

// Side note: Compilers can even predict this and remove the checks the growing from the

generated code

result.reserve(v.size());

std::set<std::string> checkUnique;

for (const auto &s : v) {

// See example above

if (checkUnique.insert(s).second)

result.push_back(s);

}

return result;

}

// This variant of stableUnique contains a complexity of N log(N)

// N > number of elements in v

// log(N) > insert complexity of std::set

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {

std::vector<std::string> result;

std::set<std::string> checkUnique;

for (const auto &s : v) {

// See Optimizing by executing less code

if (checkUnique.insert(s).second)

result.push_back(s);

}

return result;

}

// This variant of stableUnique contains a complexity of N

// N > number of elements in v

// 1 > insert complexity of std::unordered_set

std::vector<std::string> stableUnique(const std::vector<std::string> &v) {

std::vector<std::string> result;

std::unordered_set<std::string> checkUnique;

for (const auto &s : v) {

// See Optimizing by executing less code

if (checkUnique.insert(s).second)

result.push_back(s);

}

return result;

674

Section 143.5: Small Object Optimization

Small object optimization is a technique which is used within low level data structures, for instance the std::string

(Sometimes referred to as Short/Small String Optimization). It's meant to use stack space as a buffer instead of

some allocated memory in case the content is small enough to fit within the reserved space.

By adding extra memory overhead and extra calculations, it tries to prevent an expensive heap allocation. The

benefits of this technique are dependent on the usage and can even hurt performance if incorrectly used.

Example

A very naive way of implementing a string with this optimization would the following:

#include <cstring>

class string final

{

constexpr static auto SMALL_BUFFER_SIZE = 16;

bool _isAllocated{false}; ///< Remember if we allocated memory

char *_buffer{nullptr}; ///< Pointer to the buffer we are using

char _smallBuffer[SMALL_BUFFER_SIZE]= {'\0'}; ///< Stack space used for SMALL OBJECT

OPTIMIZATION

public:

~string()

{

if (_isAllocated)

delete [] _buffer;

}

explicit string(const char *cStyleString)

{

auto stringSize = std::strlen(cStyleString);

_isAllocated = (stringSize >

SMALL_BUFFER_SIZE); if (_isAllocated)

_buffer = new char[stringSize];

else

_buffer = &_smallBuffer[0];

std::strcpy(_buffer, &cStyleString[0]);

}

string(string &&rhs)

: _isAllocated(rhs._isAllocated)

, _buffer(rhs._buffer)

, _smallBuffer(rhs._smallBuffer) //< Not needed if allocated

{

if (_isAllocated)

{

// Prevent double deletion of the memory

rhs._buffer = nullptr;

}

else

{

// Copy over data

std::strcpy(_smallBuffer, rhs._smallBuffer);

_buffer = &_smallBuffer[0];

}

}

675

As you can see in the code above, some extra complexity has been added in order to prevent some new and delete

operations. On top of this, the class has a larger memory footprint which might not be used except in a couple of

cases.

Often it is tried to encode the bool value _isAllocated, within the pointer _buffer with bit manipulation to reduce

the size of a single instance (intel 64 bit: Could reduce size by 8 byte). An optimization which is only possible when

its known what the alignment rules of the platform is.

When to use?

As this optimization adds a lot of complexity, it is not recommended to use this optimization on every single class. It

will often be encountered in commonly used, low-level data structures. In common C++11 standard library

implementations one can find usages in std::basic_string<> and std::function<>.

As this optimization only prevents memory allocations when the stored data is smaller than the buffer, it will only

give benefits if the class is often used with small data.

A final drawback of this optimization is that extra effort is required when moving the buffer, making the move-

operation more expensive than when the buffer would not be used. This is especially true when the buffer contains

a non-POD type.

}

// Other methods, including other constructors, copy constructor,

// assignment operators have been omitted for readability

};

676

Chapter 144: Optimization
When compiling, the compiler will often modify the program to increase performance. This is permitted by the as-if

rule, which allows any and all transformations that do not change observable behavior.

Section 144.1: Inline Expansion/Inlining

Inline expansion (also known as inlining) is compiler optimisation that replaces a call to a function with the body of

that function. This saves the function call overhead, but at the cost of space, since the function may be duplicated

several times.

Inlining is most commonly done for small functions, where the function call overhead is significant compared to the

size of the function body.

Section 144.2: Empty base optimization

The size of any object or member subobject is required to be at least 1 even if the type is an empty class type (that

is, a class or struct that has no non-static data members), in order to be able to guarantee that the addresses of

distinct objects of the same type are always distinct.

However, base class subobjects are not so constrained, and can be completely optimized out from the object

layout:

// source:

int process(int value)

{

return 2 * value;

}

int foo(int a)

{

return process(a);

}

// program, after inlining:

int foo(int a)

{

return 2 * a; // the body of process() is copied into foo()

}

#include <cassert>

struct Base {}; // empty class

struct Derived1 : Base {

int i;

};

int main() {

// the size of any object of empty class type is at least 1

assert(sizeof(Base) == 1);

// empty base optimization applies

assert(sizeof(Derived1) == sizeof(int));

http://en.cppreference.com/w/cpp/language/as_if
http://en.cppreference.com/w/cpp/language/as_if

677

Empty base optimization is commonly used by allocator-aware standard library classes (std::vector, std::function,

std::shared_ptr, etc) to avoid occupying any additional storage for its allocator member if the allocator is stateless.

This is achieved by storing one of the required data members (e.g., begin, end, or capacity pointer for the vector).

Reference: cppreference

}

http://en.cppreference.com/w/cpp/language/ebo

678

Chapter 145: Profiling

Section 145.1: Profiling with gcc and gprof

The GNU gprof profiler, gprof, allows you to profile your code. To use it, you need to perform the following steps:

1. Build the application with settings for generating profiling information

2. Generate profiling information by running the built application

3. View the generated profiling information with gprof

In order to build the application with settings for generating profiling information, we add the -pg flag. So, for

example, we could use

or

and so forth.

Once the application, say app, is built, execute it as usual:

This should produce a file called gmon.out.

To see the profiling results, now run

(note that we provide both the application as well as the generated output).

Of course, you can also pipe or redirect:

and so forth.

The result of the last command should be a table, whose rows are the functions, and whose columns indicate the

number of calls, total time spent, self time spent (that is, time spent in the function excluding calls to children).

Section 145.2: Generating callgraph diagrams with gperf2dot

For more complex applications, flat execution profiles may be difficult to follow. This is why many profiling tools

also generate some form of annotated callgraph information.

gperf2dot converts text output from many profilers (Linux perf, callgrind, oprofile etc.) into a callgraph diagram.

You can use it by running your profiler (example for gprof):

$ gcc -pg *.cpp -o app

$ gcc -O2 -pg *.cpp -o app

$./app

$ gprof app gmon.out

$ gprof app gmon.out | less

compile with profiling flags

g++ *.cpp -pg

https://sourceware.org/binutils/docs/gprof/
https://github.com/jrfonseca/gprof2dot

679

Section 145.3: Profiling CPU Usage with gcc and Google Perf
Tools

Google Perf Tools also provides a CPU profiler, with a slightly friendlier interface. To use it:

1. Install Google Perf Tools

2. Compile your code as usual

3. Add the libprofiler profiler library to your library load path at runtime

4. Use pprof to generate a flat execution profile, or a callgraph diagram

For example:

where:

CPUPROFILE indicates the output file for profiling data

CPUPROFILE_FREQUENCY indicates the profiler sampling frequency;

run to generate profiling data

./main

translate profiling data to text, create image gprof

./main | gprof2dot -s | dot -Tpng -o output.png

compile code

g++ -O3 -std=c++11 main.cpp -o main

run with profiler

LD_PRELOAD=/usr/local/lib/libprofiler.so CPUPROFILE=main.prof CPUPROFILE_FREQUENCY=100000 ./main

https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools

680

$ pprof --text ./main main.prof

PROFILE: interrupts/evictions/bytes = 67/15/2016

pprof --text --lines ./main main.prof

Using local file ./main.

Using local file main.prof.

Total: 67 samples

22 32.8% 32.8% 67 100.0% longRunningFoo ??:0

20 29.9% 62.7% 20 29.9% memmove_ssse3_back

/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1627

4 6.0% 68.7% 4 6.0% memmove_ssse3_back

/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1619

/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1617

1 1.5% 92.5% 1 1.5% memmove_ssse3_back

/build/eglibc-3GlaMS/eglibc-2.19/string/../sysdeps/x86_64/multiarch/memcpy-ssse3-back.S:1623

Use pprof to post-process the profiling data.

You can generate a flat call profile as text:

3 4.5% 73.1% 3 4.5% random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:388

3 4.5% 77.6% 3 4.5% random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:401

2 3.0% 80.6% 2 3.0% munmap

/build/eglibc-3GlaMS/eglibc-2.19/misc/../sysdeps/unix/syscall-template.S:81

2 3.0% 83.6% 12 17.9% random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:298

2 3.0% 86.6% 2 3.0% random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:385

2 3.0% 89.6% 2 3.0% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:26

1 1.5% 91.0% 1 1.5% memmove_ssse3_back

1 1.5% 94.0% 1 1.5% random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:293

1 1.5% 95.5% 1 1.5% random /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random.c:296

1 1.5% 97.0% 1 1.5% random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:371

1 1.5% 98.5% 1 1.5% random_r /build/eglibc-3GlaMS/eglibc-2.19/stdlib/random_r.c:381

1 1.5% 100.0% 1 1.5% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:28

0 0.0% 100.0% 67 100.0% libc_start_main /build/eglibc-3GlaMS/eglibc-2.19/csu/libc-

start.c:287

0 0.0% 100.0% 67 100.0% _start ??:0

0 0.0% 100.0% 67 100.0% main ??:0

0 0.0% 100.0% 14 20.9% rand /build/eglibc-3GlaMS/eglibc-2.19/stdlib/rand.c:27

0 0.0% 100.0% 27 40.3% std::vector::_M_emplace_back_aux ??:0

... or you can generate an annotated callgraph in a pdf with:

pprof --pdf ./main main.prof > out.pdf

681

Chapter 146: Refactoring Techniques
Refactoring refers to the modification of existing code into an improved version. Although refactoring is often done

while changing code to add features or fix bugs, the term particularly refers improving code without necessarily

adding features or fixing bugs.

Section 146.1: Goto Cleanup

In C++ code bases which used to be C, one can find the pattern goto cleanup. As the goto command makes the

workflow of a function harder to understand, this is often avoided. Often, it can be replaced by return statements,

loops, functions. Though, with the goto cleanup one needs to get rid of cleanup logic.

In C++ one could use RAII to fix this issue:

From this point on, one could continue refactoring the actual code. For example by replacing the VectorRAII by

std::unique_ptr or std::vector.

short calculate(VectorStr **data) {

short result = FALSE;

VectorStr *vec = NULL;

if (!data)

goto cleanup; //< Could become return false

// ... Calculation which 'new's VectorStr

result = TRUE;

cleanup:

delete [] vec;

return result;

}

struct VectorRAII final {

VectorStr *data{nullptr};

VectorRAII() = default;

~VectorRAII() {

delete [] data;

}

VectorRAII(const VectorRAII &) = delete;

};

short calculate(VectorStr **data) {

VectorRAII vec{};

if (!data)

return FALSE; //< Could become return false

// ... Calculation which 'new's VectorStr and stores it in vec.data

return TRUE;

}

682

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

0x5f3759df Chapter 38

1337ninja Chapter 47

3442 Chapter 47

4444 Chapter 143

A. Sarid Chapters 6 and 25

aaronsnoswell Chapter 24

Abhinav Gauniyal Chapter 127

Abyx Chapter 33

Adam Trhon Chapter 142

Adhokshaj Mishra Chapter 138

Aditya Chapter 23

Ajay Chapters 7, 33, 73, 102 and 119

alain Chapter 73

Alejandro Chapter 80

Alexey Guseynov Chapter 72

Alexey Voytenko Chapters 33 and 34

alter igel Chapter 35

amanuel2 Chapters 21, 29, 32, 39 and 128

amchacon Chapter 80

Ami Tavory Chapters 13, 49, 62, 104, 130 and 145

an0o0nym Chapter 3

anatolyg Chapters 49 and 67

anderas Chapters 12, 16, 33, 34, 44, 49 and 73

Andrea Chua Chapters 44, 96 and 131

Andrea Corbelli Chapters 26, 47, 50 and 73

AndyG Chapters 49 and 110

Anonymous1847 Chapter 132

anotherGatsby Chapters 11 and 15

Antonio Barreto Chapter 112

AProgrammer Chapter 12

Aravind .KEN Chapter 39

ArchbishopOfBanterbury Chapters 1, 36 and 138

Artalus Chapter 108

asantacreu Chapter 146

Asu Chapter 26

Ates Goral Chapter 36

Bakhtiar Hasan Chapter 35

Baron Akramovic Chapter 30

Chapters 6, 9, 11, 16, 18, 24, 33, 36, 40, 44, 47, 49, 51, 63, 67, 73, 74, 77, 79,

82, 83, 98, 103, 105, 108, 110 and 138

bcmpinc Chapter 73

Ben H Chapter 1

Ben Steffan Chapter 138

Benjy Kessler Chapter 77

BigONotation Chapter 78

Bim Chapters 39 and 54

Barry

mailto:web@petercv.com
https://stackoverflow.com/users/839932/
https://stackoverflow.com/users/2834504/
https://stackoverflow.com/users/5249858/
https://stackoverflow.com/users/1464444/
https://stackoverflow.com/users/3132173/
https://stackoverflow.com/users/885287/
https://stackoverflow.com/users/2648679/
https://stackoverflow.com/users/343443/
https://stackoverflow.com/users/446252/
https://stackoverflow.com/users/1460520/
https://stackoverflow.com/users/6524169/
https://stackoverflow.com/users/264325/
https://stackoverflow.com/users/3435400/
https://stackoverflow.com/users/1274223/
https://stackoverflow.com/users/6799654/
https://stackoverflow.com/users/3291022/
https://stackoverflow.com/users/5023438/
https://stackoverflow.com/users/5768335/
https://stackoverflow.com/users/2489715/
https://stackoverflow.com/users/3510736/
https://stackoverflow.com/users/2808371/
https://stackoverflow.com/users/509868/
https://stackoverflow.com/users/3198247/
https://stackoverflow.com/users/7193177/
https://stackoverflow.com/users/6503444/
https://stackoverflow.com/users/27678/
https://stackoverflow.com/users/6896866/
https://stackoverflow.com/users/7369809/
https://stackoverflow.com/users/4783169/
https://stackoverflow.com/users/136208/
https://stackoverflow.com/users/6873330/
https://stackoverflow.com/users/5508296/
https://stackoverflow.com/users/5232529/
https://stackoverflow.com/users/6355709/
https://stackoverflow.com/users/6261331/
https://stackoverflow.com/users/23501/
https://stackoverflow.com/users/6879340/
https://stackoverflow.com/users/2860921/
https://stackoverflow.com/users/558366/
https://stackoverflow.com/users/7204614/
https://stackoverflow.com/users/7691497/
https://stackoverflow.com/users/919578/
https://stackoverflow.com/users/826938/
https://stackoverflow.com/users/4396802/
https://stackoverflow.com/users/2069064/

683

Chapters 1, 2, 3, 15, 20, 21, 22, 23, 34, 36, 44, 46, 64, 69, 71, 72, 73, 77, 79, 80,

84, 91, 95, 97, 98, 99, 100, 104, 105, 115, 119, 120, 121, 133 and 134

C.W.Holeman II Chapter 63

CaffeineToCode Chapters 33 and 80

callyalater Chapters 34, 72 and 75

Candlemancer Chapter 36

caps Chapter 47

cb4 Chapter 77

celtschk Chapters 1, 16, 24, 77, 90, 108 and 124

Chachmu Chapter 12

Cheers and hth. Chapters 1, 8, 75, 94 and 106

chema989 Chapter 144

ChemiCalChems Chapters 11, 74 and 106

CHess Chapter 49

chrisb2244 Chapters 1 and 34

ChrisN Chapter 11

Christophe Chapter 25

Christopher Oezbek Chapters 24, 33, 47 and 73

Cid1025 Chapter 114

CinCout Chapters 48 and 49

CodeMouse92 Chapter 77

Cody Gray Chapters 1, 6 and 49

CoffeeandCode Chapter 35

Colin Basnett Chapters 16, 34, 49 and 77

ColleenV Chapter 11

ComicSansMS Chapters 12, 33, 49 and 80

cpplearner Chapter 33

crea7or Chapter 47

CroCo Chapter 6

cshu Chapter 104

Curious Chapters 1 and 47

cute_ptr Chapters 9 and 49

CygnusX1 Chapters 50 and 75

Daemon Chapters 1 and 10

Daksh Gupta Chapters 1, 26, 33, 38, 48, 49 and 115

Dan Hulme Chapter 34

Danh Chapter 107

Daniel Chapters 62 and 67

Daniel Jour Chapter 9

Daniel Käfer Chapter 69

Daniel Stradowski Chapter 49

Daniele Pallastrelli Chapters 33, 107 and 108

darkpsychic Chapters 1 and 26

davidsheldon Chapter 50

DawidPi Chapter 16

Dean Seo Chapter 18

DeepCoder Chapters 1, 24, 49 and 77

deepmax Chapters 16, 84, 113 and 117

define cindy const Chapter 99

defube Chapters 36, 80 and 83

demonplus Chapters 54 and 58

Denkkar Chapter 68

didiz Chapters 3, 80, 81, 85, 86, 87, 88, 105, 112 and 140

Brian

https://stackoverflow.com/users/101954/
https://stackoverflow.com/users/4005742/
https://stackoverflow.com/users/4975646/
https://stackoverflow.com/users/3307308/
https://stackoverflow.com/users/2025214/
https://stackoverflow.com/users/1318479/
https://stackoverflow.com/users/1032073/
https://stackoverflow.com/users/1429351/
https://stackoverflow.com/users/464581/
https://stackoverflow.com/users/6410484/
https://stackoverflow.com/users/3563094/
https://stackoverflow.com/users/2351345/
https://stackoverflow.com/users/3098505/
https://stackoverflow.com/users/3853/
https://stackoverflow.com/users/3723423/
https://stackoverflow.com/users/278842/
https://stackoverflow.com/users/3120862/
https://stackoverflow.com/users/2912665/
https://stackoverflow.com/users/472647/
https://stackoverflow.com/users/366904/
https://stackoverflow.com/users/2297448/
https://stackoverflow.com/users/2209008/
https://stackoverflow.com/users/3735425/
https://stackoverflow.com/users/577603/
https://stackoverflow.com/users/4672588/
https://stackoverflow.com/users/1051830/
https://stackoverflow.com/users/1953533/
https://stackoverflow.com/users/2419922/
https://stackoverflow.com/users/5501675/
https://stackoverflow.com/users/7152606/
https://stackoverflow.com/users/635654/
https://stackoverflow.com/users/2045438/
https://stackoverflow.com/users/5662469/
https://stackoverflow.com/users/967945/
https://stackoverflow.com/users/4115625/
https://stackoverflow.com/users/4758972/
https://stackoverflow.com/users/1116364/
https://stackoverflow.com/users/1079174/
https://stackoverflow.com/users/5449709/
https://stackoverflow.com/users/993040/
https://stackoverflow.com/users/6649800/
https://stackoverflow.com/users/30773/
https://stackoverflow.com/users/4764736/
https://stackoverflow.com/users/921070/
https://stackoverflow.com/users/6639835/
https://stackoverflow.com/users/952747/
https://stackoverflow.com/users/6452255/
https://stackoverflow.com/users/368519/
https://stackoverflow.com/users/462639/
https://stackoverflow.com/users/1873507/
https://stackoverflow.com/users/7902545/
https://stackoverflow.com/users/481267/

684

diegodfrf Chapters 49, 119 and 135

Dietmar Kühl Chapter 60

Dim_ov Chapter 1

dkg Chapter 49

Donald Duck Chapters 1 and 138

Dr t Chapters 1, 12, 49 and 72

Dragma Chapter 34

drov Chapter 47

Duly Kinsky Chapters 49 and 62

Dutow Chapter 71

Edd Chapter 73

Edgar Rokjā n Chapter 62

Edward Chapters 1, 11, 33, 47, 66, 108 and 146

ehudt Chapter 49

Ela782 Chapter 24

elimad Chapter 52

elvis.dukaj Chapter 141

Emil Rowland Chapter 47

emlai Chapter 33

Emmanuel Mathi Chapters 69 and 98

Enamul Hassan Chapters 1, 24, 47, 49, 50, 67 and 138

enzom83 Chapter 36

Error Chapters 48 and 117

Evgeniy Chapter 52

EvgeniyZh Chapter 9

Falias Chapter 49

Fantastic Mr Fox Chapters 1, 24, 34, 47, 49, 50, 68, 75 and 138

fbrereto Chapters 9 and 47

FedeWar Chapters 30 and 77

Florian Chapters 1 and 130

Fox Chapters 49 and 75

foxcub Chapters 33, 49 and 50

Gabriel Chapter 79

Gal Dreiman Chapter 9

Galik Chapters 12, 24, 49, 50, 81 and 113

Gaurav Kumar Garg Chapter 9

Gaurav Sehgal Chapter 76

ggrr Chapter 104

GIRISH kuniyal Chapter 104

granmirupa Chapter 49

Greg Chapter 77

Guillaume Pascal Chapters 62 and 63

Guillaume Racicot Chapter 106

Ha. Chapter 65

hello Chapter 82

Henkersmann Chapter 28

Hindrik Stegenga Chapter 30

holmicz Chapter 11

Holt Chapters 16, 47, 49 and 77

honk Chapters 1, 9, 11, 12, 24, 33, 47, 50, 73, 77, 79 and 82

Humam Helfawi Chapter 1

Hurkyl Chapters 9, 12 and 49

hyoslee Chapter 85

https://stackoverflow.com/users/8186051/
https://stackoverflow.com/users/1120273/
https://stackoverflow.com/users/2355119/
https://stackoverflow.com/users/1013504/
https://stackoverflow.com/users/4284627/
https://stackoverflow.com/users/7886227/
https://stackoverflow.com/users/6624845/
https://stackoverflow.com/users/4289519/
https://stackoverflow.com/users/1705189/
https://stackoverflow.com/users/73657/
https://stackoverflow.com/users/4064372/
https://stackoverflow.com/users/5507349/
https://stackoverflow.com/users/5507349/
https://stackoverflow.com/users/5507349/
https://stackoverflow.com/users/3191481/
https://stackoverflow.com/users/1385661/
https://stackoverflow.com/users/1345959/
https://stackoverflow.com/users/2745573/
https://stackoverflow.com/users/1266688/
https://stackoverflow.com/users/5410879/
https://stackoverflow.com/users/3425536/
https://stackoverflow.com/users/4250197/
https://stackoverflow.com/users/3555000/
https://stackoverflow.com/users/364056/
https://stackoverflow.com/users/8150685/
https://stackoverflow.com/users/3209505/
https://stackoverflow.com/users/1894478/
https://stackoverflow.com/users/2263978/
https://stackoverflow.com/users/1294207/
https://stackoverflow.com/users/153535/
https://stackoverflow.com/users/5501669/
https://stackoverflow.com/users/4763489/
https://stackoverflow.com/users/134793/
https://stackoverflow.com/users/44738/
https://stackoverflow.com/users/293195/
https://stackoverflow.com/users/3580365/
https://stackoverflow.com/users/3807729/
https://stackoverflow.com/users/3141151/
https://stackoverflow.com/users/3475381/
https://stackoverflow.com/users/4822120/
https://stackoverflow.com/users/6770027/
https://stackoverflow.com/users/4532326/
https://stackoverflow.com/users/384507/
https://stackoverflow.com/users/4186872/
https://stackoverflow.com/users/2104697/
https://stackoverflow.com/users/289684/
https://stackoverflow.com/users/3067055/
https://stackoverflow.com/users/2768788/
https://stackoverflow.com/users/5156017/
https://stackoverflow.com/users/1979521/
https://stackoverflow.com/users/2666289/
https://stackoverflow.com/users/2675154/
https://stackoverflow.com/users/4523099/
https://stackoverflow.com/users/1084944/
https://stackoverflow.com/users/7898708/

685

Ian Ringrose Chapter 75

Igor Oks Chapter 108

immerhart Chapters 49 and 139

In silico Chapter 101

Ivan Kush Chapter 63

Jérémy Roy Chapter 44

Jack Chapter 47

Jahid Chapters 47, 71, 72 and 138

James Adkison Chapters 36 and 80

Jared Payne Chapters 33 and 51

Chapters 6, 16, 17, 25, 34, 44, 68, 72, 78, 83, 90, 103, 108, 112, 113, 114, 120,

121 and 138

Jason Watkins Chapters 49, 80, 130 and 138

Jatin Chapters 17 and 35

Jean Chapter 73

Jerry Coffin Chapter 34

Jim Clark Chapter 1

Johan Lundberg Chapters 1, 24, 33, 49, 82, 108, 113 and 138

Johannes Schaub Chapters 11, 24, 35, 37, 44, 73, 74, 101, 105 and 122

John Burger Chapter 31

John DiFini Chapter 43

John London Chapter 23

Jonathan Lee Chapters 78 and 103

Jonathan Mee Chapters 47 and 70

jotik Chapters 1, 33, 34, 47, 71, 72, 92 and 138

JPNotADragon Chapter 9

jpo38 Chapters 47 and 49

Julien Chapter 44

Justin Chapters 1, 16, 17, 33, 70, 77 and 130

Justin Time Chapters 1, 11, 20, 23, 25, 32, 34, 35, 38, 41, 71, 75, 82, 95, 106, 128 and 138

Chapters 1, 3, 6, 12, 15, 27, 33, 35, 44, 49, 59, 63, 73, 83, 89, 91, 106, 107, 115,

118, 123, 126, 130, 138, 142, 143 and 146

K48 Chapter 1

kd1508 Chapter 104

Ken Y Chapters 47 and 75

Kerrek SB Chapters 21, 33 and 34

Keshav Sharma Chapter 1

kiner_shah Chapters 1 and 57

krOoze Chapters 1, 40, 49 and 75

Kunal Tyagi Chapter 37

L.V.Rao Chapter 11

Leandros Chapter 1

legends2k Chapter 39

Let_Me_Be Chapter 24

lorro Chapters 118 and 143

Loufylouf Chapter 73

Luc Danton Chapter 103

maccard Chapter 67

madduci Chapters 115 and 138

Malcolm Chapters 1 and 48

Malick Chapters 1 and 138

manlio Chapters 1, 5, 6, 11, 12, 25, 47, 49, 50, 63, 65, 71, 104, 111 and 138

Marc.2377 Chapter 47

JVApen

Jarod42

https://stackoverflow.com/users/57159/
https://stackoverflow.com/users/44673/
https://stackoverflow.com/users/1347198/
https://stackoverflow.com/users/308661/
https://stackoverflow.com/users/1433373/
https://stackoverflow.com/users/4789256/
https://stackoverflow.com/users/121747/
https://stackoverflow.com/users/3744681/
https://stackoverflow.com/users/4505712/
https://stackoverflow.com/users/709010/
https://stackoverflow.com/users/1118660/
https://stackoverflow.com/users/4762201/
https://stackoverflow.com/users/719263/
https://stackoverflow.com/users/179910/
https://stackoverflow.com/users/5331194/
https://stackoverflow.com/users/1149664/
https://stackoverflow.com/users/34509/
https://stackoverflow.com/users/6445597/
https://stackoverflow.com/users/6230654/
https://stackoverflow.com/users/6521181/
https://stackoverflow.com/users/6141807/
https://stackoverflow.com/users/2642059/
https://stackoverflow.com/users/3919155/
https://stackoverflow.com/users/754534/
https://stackoverflow.com/users/3336423/
https://stackoverflow.com/users/143504/
https://stackoverflow.com/users/1896169/
https://stackoverflow.com/users/5386374/
https://stackoverflow.com/users/6269864/
https://stackoverflow.com/users/2576475/
https://stackoverflow.com/users/1270789/
https://stackoverflow.com/users/596781/
https://stackoverflow.com/users/6130880/
https://stackoverflow.com/users/4688321/
https://stackoverflow.com/users/3007154/
https://stackoverflow.com/users/2292816/
https://stackoverflow.com/users/6911592/
https://stackoverflow.com/users/1070117/
https://stackoverflow.com/users/183120/
https://stackoverflow.com/users/211659/
https://stackoverflow.com/users/6292621/
https://stackoverflow.com/users/2531068/
https://stackoverflow.com/users/726300/
https://stackoverflow.com/users/723918/
https://stackoverflow.com/users/2369389/
https://stackoverflow.com/users/3175443/
https://stackoverflow.com/users/3205529/
https://stackoverflow.com/users/3235496/
https://stackoverflow.com/users/3258851/
https://stackoverflow.com/users/2466431/
https://stackoverflow.com/users/2684539/

686

and 109

marcinj Chapter 66

Marco A. Chapters 58, 63, 75, 100, 118 and 129

Mark Gardner Chapter 1

marquesm91 Chapter 69

Martin York Chapters 5, 12, 24, 49, 73, 77, 82 and 83

MasterHD Chapter 1

MathSquared Chapter 123

Matt Chapters 1 and 138

Matthew Brien Chapter 8

Matthieu M. Chapter 16

Maxito Chapter 77

Meena Alfons Chapter 125

merlinND Chapter 65

Meysam Chapters 33, 47 and 50

Michael Gaskill Chapter 138

Mike H Chapter 9

MikeMB Chapter 67

Mikitori Chapter 59

Mimouni Chapter 1

mindriot Chapters 12 and 143

Misgevolution Chapter 142

MKAROL Chapter 67

mkluwe Chapter 15

MotKohn Chapter 49

Motti Chapters 38, 49 and 104

mpromonet Chapters 13 and 47

MSalters Chapters 63 and 77

MSD Chapter 138

mtb Chapter 119

mtk Chapter 49

Muhammad Aladdin Chapter 1

muXXmit2X Chapter 1

n.m. Chapters 75 and 138

Naor Hadar Chapter 66

Nathan Osman Chapters 1, 130 and 138

Naveen Mittal Chapter 50

Neil A. Chapter 1

Nemanja Boric Chapters 1, 72 and 138

Niall Chapters 24, 47, 49 and 83

Nicholas Chapter 11

Nicol Bolas
Chapters 11, 12, 16, 24, 27, 30, 44, 49, 52, 67, 68, 73, 74, 75, 79, 82, 88, 100

Nikola Vasilev Chapters 2, 48, 53, 54, 55, 57, 91 and 112

Nitinkumar Ambekar Chapter 30

nnrales Chapter 115

NonNumeric Chapter 116

Null Chapters 11, 44, 47, 50, 72 and 82

nwp Chapter 80

Omnifarious Chapter 20

Oz. Chapter 9

pandaman1234 Chapter 49

Pankaj Kumar Boora Chapter 84

patmanpato Chapters 12 and 49

https://stackoverflow.com/users/471160/
https://stackoverflow.com/users/1938163/
https://stackoverflow.com/users/7105391/
https://stackoverflow.com/users/4015174/
https://stackoverflow.com/users/14065/
https://stackoverflow.com/users/2163727/
https://stackoverflow.com/users/1979005/
https://stackoverflow.com/users/859774/
https://stackoverflow.com/users/6630530/
https://stackoverflow.com/users/147192/
https://stackoverflow.com/users/2313339/
https://stackoverflow.com/users/3997133/
https://stackoverflow.com/users/3792942/
https://stackoverflow.com/users/69537/
https://stackoverflow.com/users/2577852/
https://stackoverflow.com/users/966097/
https://stackoverflow.com/users/2881849/
https://stackoverflow.com/users/6065774/
https://stackoverflow.com/users/2822643/
https://stackoverflow.com/users/3233921/
https://stackoverflow.com/users/1083220/
https://stackoverflow.com/users/2079109/
https://stackoverflow.com/users/199201/
https://stackoverflow.com/users/5976576/
https://stackoverflow.com/users/3848/
https://stackoverflow.com/users/3102264/
https://stackoverflow.com/users/15416/
https://stackoverflow.com/users/2082004/
https://stackoverflow.com/users/5520058/
https://stackoverflow.com/users/1135954/
https://stackoverflow.com/users/235860/
https://stackoverflow.com/users/4711812/
https://stackoverflow.com/users/775806/
https://stackoverflow.com/users/2656778/
https://stackoverflow.com/users/193619/
https://stackoverflow.com/users/5453555/
https://stackoverflow.com/users/6719703/
https://stackoverflow.com/users/133707/
https://stackoverflow.com/users/3747990/
https://stackoverflow.com/users/5120389/
https://stackoverflow.com/users/734069/
https://stackoverflow.com/users/6181967/
https://stackoverflow.com/users/2706918/
https://stackoverflow.com/users/4749396/
https://stackoverflow.com/users/1587418/
https://stackoverflow.com/users/3964927/
https://stackoverflow.com/users/3484570/
https://stackoverflow.com/users/167958/
https://stackoverflow.com/users/321937/
https://stackoverflow.com/users/5248907/
https://stackoverflow.com/users/6696267/
https://stackoverflow.com/users/1846282/

687

Patryk Obara Chapter 62

paul Chapters 49 and 145

Paul Beckingham Chapter 49

Pavel Strakhov Chapter 1

PcAF Chapters 33 and 34

Ped7g Chapters 11 and 49

Perette Barella Chapter 7

Peter Chapters 24, 50, 71, 75, 104 and 138

phandinhlan Chapter 75

Pietro Saccardi Chapter 30

plasmacel Chapter 48

pmelanson Chapter 11

Podgorskiy Chapter 17

Praetorian Chapters 49 and 73

Pyves Chapter 11

Qchmqs Chapter 15

Quirk Chapters 1 and 138

R. Martinho Fernandes Chapter 49

Rakete1111 Chapters 11, 12, 24, 33, 34, 35, 36, 44, 47, 49, 73, 77, 80, 104 and 110

ralismark Chapters 104 and 144

RamenChef Chapters 2, 15, 20, 21, 22 and 69

Ravi Chandra Chapters 54 and 67

Reuben Thomas Chapter 40

Richard Dally Chapters 33, 47, 49, 50, 75 and 138

rockoder Chapter 26

rodrigo Chapter 33

Roland Chapters 33, 44, 84, 92, 101 and 114

RomCoo Chapter 12

Ronen Ness Chapter 72

rtmh Chapter 16

Rushikesh Deshpande Chapters 1 and 49

Ryan Haining Chapters 73 and 79

R_Kapp Chapter 124

Saint Chapter 49

SajithP Chapter 67

Samer Tufail Chapter 49

Sean Chapters 35 and 75

Sergey Chapters 9, 13, 19, 34, 38, 77 and 138

Serikov Chapters 12, 47, 49 and 73

Shoe Chapters 1 and 49

sigalor Chapter 114

silvergasp Chapters 34, 49, 75 and 93

SingerOfTheFall Chapter 123

SirGuy Chapter 1

Skipper Chapters 47 and 49

Skywrath Chapter 34

Smeeheey Chapter 77

Snowhawk Chapter 73

SouvikMaji Chapter 50

sp2danny Chapter 103

stackptr Chapter 68

start2learn Chapters 36 and 133

Stephen Chapters 24, 49 and 89

https://stackoverflow.com/users/2033752/
https://stackoverflow.com/users/4128833/
https://stackoverflow.com/users/14356/
https://stackoverflow.com/users/344347/
https://stackoverflow.com/users/4932834/
https://stackoverflow.com/users/4271923/
https://stackoverflow.com/users/5265558/
https://stackoverflow.com/users/4706785/
https://stackoverflow.com/users/3880898/
https://stackoverflow.com/users/1749822/
https://stackoverflow.com/users/2430597/
https://stackoverflow.com/users/1333978/
https://stackoverflow.com/users/2081094/
https://stackoverflow.com/users/241631/
https://stackoverflow.com/users/3527464/
https://stackoverflow.com/users/868770/
https://stackoverflow.com/users/2844164/
https://stackoverflow.com/users/46642/
https://stackoverflow.com/users/3980929/
https://stackoverflow.com/users/6936976/
https://stackoverflow.com/users/6392939/
https://stackoverflow.com/users/820800/
https://stackoverflow.com/users/6041265/
https://stackoverflow.com/users/5037799/
https://stackoverflow.com/users/62849/
https://stackoverflow.com/users/865874/
https://stackoverflow.com/users/3951733/
https://stackoverflow.com/users/5867869/
https://stackoverflow.com/users/1134649/
https://stackoverflow.com/users/2465194/
https://stackoverflow.com/users/2635286/
https://stackoverflow.com/users/1013719/
https://stackoverflow.com/users/5195699/
https://stackoverflow.com/users/6514807/
https://stackoverflow.com/users/3073378/
https://stackoverflow.com/users/5986881/
https://stackoverflow.com/users/26095/
https://stackoverflow.com/users/1690777/
https://stackoverflow.com/users/4899740/
https://stackoverflow.com/users/493122/
https://stackoverflow.com/users/3554605/
https://stackoverflow.com/users/4955829/
https://stackoverflow.com/users/1490355/
https://stackoverflow.com/users/1277769/
https://stackoverflow.com/users/4241435/
https://stackoverflow.com/users/4855159/
https://stackoverflow.com/users/6255513/
https://stackoverflow.com/users/3762339/
https://stackoverflow.com/users/3198508/
https://stackoverflow.com/users/3202093/
https://stackoverflow.com/users/2469027/
https://stackoverflow.com/users/4501684/
https://stackoverflow.com/users/5468596/

688

121

sth Chapters 16 and 49

Stradigos Chapter 113

strangeqargo Chapter 49

SU3 Chapter 103

Sumurai8 Chapters 33, 65 and 83

T.C. Chapters 38 and 49

tambre Chapter 6

Tannin Chapters 83 and 104

Tarod Chapter 52

TartanLlama Chapters 93 and 109

Tejendra Chapter 15

tenpercent Chapters 17, 18, 24, 44 and 75

Tharindu Kumara Chapter 138

The Philomath Chapter 75

theo2003 Chapter 49

ThyReaper Chapters 17, 92, 111 and 115

Toby Chapter 138

Tom Chapter 49

towi Chapter 49

Trevor Hickey Chapters 6, 67 and 104

TriskalJM Chapters 1, 40, 49 and 82

Trygve Laugstøl Chapter 138

tulak.hord Chapter 61

turoni Chapter 3

txtechhelp Chapters 5 and 111

UncleZeiv Chapter 1

user1336087 Chapters 47, 49 and 50

user2176127 Chapters 47 and 49

user3384414 Chapter 24

user3684240 Chapter 33

vdaras Chapter 50

Venki Chapter 16

VermillionAzure Chapters 1, 45, 130 and 141

Vijayabhaskarreddy CH Chapter 42

Ville Chapters 1 and 24

Vladimir Gamalyan Chapter 49

VladimirS Chapter 11

VolkA Chapter 50

W.F. Chapters 16 and 77

w1th0utnam3 Chapter 103

Walter Chapter 1

wasthishelpful Chapter 137

Wolf Chapters 8, 47, 49 and 77

WQYeo Chapters 1 and 8

Wyzard Chapter 50

Xirema Chapter 4

Yakk
Chapters 9, 11, 24, 33, 36, 42, 44, 49, 51, 56, 57, 73, 80, 90, 103, 107, 108 and

Yousuf Azad Chapter 33

ysdx Chapter 16

Yuushi Chapter 80

Φ Xocę 웃 П epeúpa ツ Chapter 8

А л е к с е й Н е у д а ч ин Chapters 5 and 12

https://stackoverflow.com/users/56338/
https://stackoverflow.com/users/280904/
https://stackoverflow.com/users/5006740/
https://stackoverflow.com/users/2640636/
https://stackoverflow.com/users/2209007/
https://stackoverflow.com/users/2756719/
https://stackoverflow.com/users/2176813/
https://stackoverflow.com/users/1918759/
https://stackoverflow.com/users/4719550/
https://stackoverflow.com/users/496161/
https://stackoverflow.com/users/730537/
https://stackoverflow.com/users/2575377/
https://stackoverflow.com/users/3312620/
https://stackoverflow.com/users/6339395/
https://stackoverflow.com/users/6244076/
https://stackoverflow.com/users/4586007/
https://stackoverflow.com/users/1292918/
https://stackoverflow.com/users/888916/
https://stackoverflow.com/users/472245/
https://stackoverflow.com/users/908939/
https://stackoverflow.com/users/4433546/
https://stackoverflow.com/users/245614/
https://stackoverflow.com/users/6114605/
https://stackoverflow.com/users/3681671/
https://stackoverflow.com/users/1152524/
https://stackoverflow.com/users/60531/
https://stackoverflow.com/users/1336087/
https://stackoverflow.com/users/2176127/
https://stackoverflow.com/users/3384414/
https://stackoverflow.com/users/3684240/
https://stackoverflow.com/users/2225297/
https://stackoverflow.com/users/751865/
https://stackoverflow.com/users/3819850/
https://stackoverflow.com/users/6173047/
https://stackoverflow.com/users/5489178/
https://stackoverflow.com/users/5011111/
https://stackoverflow.com/users/3545806/
https://stackoverflow.com/users/25472/
https://stackoverflow.com/users/4324224/
https://stackoverflow.com/users/929037/
https://stackoverflow.com/users/1023390/
https://stackoverflow.com/users/6612932/
https://stackoverflow.com/users/2932052/
https://stackoverflow.com/users/7421086/
https://stackoverflow.com/users/226975/
https://stackoverflow.com/users/5241642/
https://stackoverflow.com/users/1774667/
https://stackoverflow.com/users/5089102/
https://stackoverflow.com/users/637866/
https://stackoverflow.com/users/1085573/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/982161/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/7172363/

689

В л а дим и р С т р е л е ц Chapters 10 and 14

パスカル Chapters 1, 75 and 136

https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/8221170/
https://stackoverflow.com/users/7632486/
https://stackoverflow.com/users/7632486/
https://stackoverflow.com/users/7632486/
https://stackoverflow.com/users/7632486/

	Content list
	About
	Section 1.1: Hello World
	Analysis

	Section 1.2: Comments
	Single-Line Comments
	C-Style/Block Comments
	Importance of Comments
	Comment markers used to disable code

	Section 1.3: The standard C++ compilation process
	Section 1.4: Function
	Function Declaration
	Function Call
	Function Deﬁnition
	Function Overloading
	Default Parameters
	Special Function Calls - Operators

	Section 1.5: Visibility of function prototypes and declarations
	Section 1.6: Preprocessor

	Chapter 2: Literals
	Section 2.1: this
	Section 2.2: Integer literal
	Notes

	Section 2.3: true
	Section 2.4: false
	Section 2.5: nullptr

	Chapter 3: operator precedence
	Section 3.1: Logical && and || operators: short-circuit
	Section 3.2: Unary Operators
	Section 3.3: Arithmetic operators
	Section 3.4: Logical AND and OR operators

	Chapter 4: Floating Point Arithmetic
	Section 4.1: Floating Point Numbers are Weird

	Chapter 5: Bit Operators
	Section 5.1: | - bitwise OR
	Output
	Why

	Section 5.2: ^ - bitwise XOR (exclusive OR)
	Output
	Why

	Section 5.3: & - bitwise AND
	Output
	Why

	Section 5.4: << - left shift
	Output
	Why

	Section 5.5: >> - right shift
	Output
	Why

	Chapter 6: Bit Manipulation
	Section 6.1: Remove rightmost set bit
	C-style bit-manipulation

	Section 6.2: Set all bits
	C-style bit-manipulation

	Section 6.3: Toggling a bit
	C-style bit-manipulation

	Section 6.4: Checking a bit
	C-style bit-manipulation

	Section 6.5: Counting bits set
	Section 6.6: Check if an integer is a power of 2
	Section 6.7: Setting a bit
	C-style bit manipulation
	Using std::bitset

	Section 6.8: Clearing a bit
	C-style bit-manipulation
	Using std::bitset

	Section 6.9: Changing the nth bit to x
	C-style bit-manipulation

	Section 6.10: Bit Manipulation Application: Small to Capital Letter

	Chapter 7: Bit ﬁelds
	Section 7.1: Declaration and Usage

	Chapter 8: Arrays
	Section 8.1: Array initialization
	Section 8.2: A ﬁxed size raw array matrix (that is, a 2D raw array)
	Section 8.3: Dynamically sized raw array
	Section 8.4: Array size: type safe at compile time
	Section 8.5: Expanding dynamic size array by using std::vector
	Section 8.6: A dynamic size matrix using std::vector for storage

	Chapter 9: Iterators
	Section 9.1: Overview
	Iterators are Positions
	From Iterators to Values
	Invalid Iterators
	Navigating with Iterators
	Iterator Concepts
	Iterator traits

	Section 9.2: Vector Iterator
	Section 9.3: Map Iterator
	Section 9.4: Reverse Iterators
	Section 9.5: Stream Iterators
	Section 9.6: C Iterators (Pointers)
	Breaking It Down

	Section 9.7: Write your own generator-backed iterator

	Chapter 10: Basic input/output in c++
	Chapter 11: Loops
	Section 11.1: Range-Based For
	Section 11.2: For loop
	Section 11.3: While loop
	Section 11.4: Do-while loop
	Section 11.5: Loop Control statements : Break and Continue
	Section 11.6: Declaration of variables in conditions
	Section 11.7: Range-for over a sub-range

	Chapter 12: File I/O
	Section 12.1: Writing to a ﬁle
	Section 12.2: Opening a ﬁle
	Section 12.3: Reading from a ﬁle
	Section 12.4: Opening modes
	The ﬁle opening modes that you may specify by design are:

	Section 12.5: Reading an ASCII ﬁle into a std::string
	Section 12.6: Writing ﬁles with non-standard locale settings
	Guidance for use:

	Section 12.7: Checking end of ﬁle inside a loop condition, bad practice?
	Section 12.8: Flushing a stream
	Section 12.9: Reading a ﬁle into a container
	Section 12.10: Copying a ﬁle
	Section 12.11: Closing a ﬁle
	Section 12.12: Reading a `struct` from a formatted text ﬁle
	ﬁle4.txt

	Chapter 13: C++ Streams
	Section 13.1: String streams
	Section 13.2: Printing collections with iostream
	Basic printing
	Implicit type cast
	Generation and transformation
	Arrays

	Chapter 14: Stream manipulators
	Section 14.1: Stream manipulators
	Section 14.2: Output stream manipulators
	Section 14.3: Input stream manipulators

	Chapter 15: Flow Control
	Section 15.1: case
	Section 15.2: switch
	Section 15.3: catch
	Section 15.4: throw
	Section 15.5: default
	Section 15.6: try
	Section 15.7: if
	Section 15.8: else
	Section 15.9: Conditional Structures: if, if..else
	if and else:
	using binary operators :

	Section 15.10: goto
	Section 15.11: Jump statements : break, continue, goto, exit
	The break instruction:
	The continue instruction:
	The goto instruction:
	Example :
	The exit function:

	Section 15.12: return

	Chapter 16: Metaprogramming
	Section 16.1: Calculating Factorials
	Section 16.2: Iterating over a parameter pack
	Section 16.3: Iterating with std::integer_sequence
	Section 16.4: Tag Dispatching
	Section 16.5: Detect Whether Expression is Valid
	Section 16.6: If-then-else
	Section 16.7: Manual distinction of types when given any type T
	Section 16.8: Calculating power with C++11 (and higher)
	Section 16.9: Generic Min/Max with variable argument count

	Chapter 17: const keyword
	Section 17.1: Avoiding duplication of code in const and non- const getter methods
	Section 17.2: Const member functions
	Section 17.3: Const local variables

	Chapter 18: mutable keyword
	Section 18.1: mutable lambdas
	Section 18.2: non-static class member modiﬁer

	Chapter 19: Friend keyword
	Section 19.1: Friend function
	Section 19.2: Friend method
	Section 19.3: Friend class

	Chapter 20: Type Keywords
	Section 20.1: class
	Section 20.2: enum
	Section 20.3: struct
	Section 20.4: union

	Chapter 21: Basic Type Keywords
	Section 21.1: char
	Section 21.2: char16_t
	Section 21.3: char32_t
	Section 21.4: int
	Section 21.5: void
	Section 21.6: wchar_t
	Section 21.7: ﬂoat
	Section 21.8: double
	Section 21.9: long
	Section 21.10: short
	Section 21.11: bool

	Chapter 22: Variable Declaration Keywords
	Section 22.1: decltype
	Section 22.2: const
	Section 22.3: volatile
	Section 22.4: signed
	Section 22.5: unsigned

	Chapter 23: Keywords
	Section 23.1: asm
	Section 23.2: Dierent keywords
	void C++
	Volatile C++
	virtual C++
	Parameters
	this pointer
	try, throw, and catch Statements (C++)
	friend (C++)
	friend functions

	Section 23.3: typename
	Section 23.4: explicit
	Section 23.5: sizeof
	Section 23.6: noexcept

	Chapter 24: Returning several values from a function
	Section 24.1: Using std::tuple
	Section 24.2: Structured Bindings
	Section 24.3: Using struct
	Output:

	Section 24.4: Using Output Parameters
	Section 24.5: Using a Function Object Consumer
	Section 24.6: Using std::pair
	Section 24.7: Using std::array
	Section 24.8: Using Output Iterator
	Section 24.9: Using std::vector

	Chapter 25: Polymorphism
	Section 25.1: Deﬁne polymorphic classes
	The parent class:
	Derived classes

	Section 25.2: Safe downcasting
	Why to downcast ?
	How to downcast ?

	Section 25.3: Polymorphism & Destructors

	Chapter 26: References
	Section 26.1: Deﬁning a reference

	Chapter 27: Value and Reference Semantics
	Section 27.1: Deﬁnitions
	Section 27.2: Deep copying and move support

	Chapter 28: C++ function "call by value" vs. "call by reference"
	Section 28.1: Call by value

	Chapter 29: Copying vs Assignment
	Right Hand Side of the equality for both copy and assignment constructors. For example the assignment constructor : MyClass operator=(MyClass& rhs);
	Section 29.2: Copy Constructor
	Section 29.3: Copy Constructor Vs Assignment Constructor

	Chapter 30: Pointers
	Section 30.1: Pointer Operations
	Section 30.2: Pointer basics
	Creating a pointer variable
	Taking the address of another variable
	Accessing the content of a pointer
	Dereferencing invalid pointers

	Section 30.3: Pointer Arithmetic
	Increment / Decrement
	Addition / Subtraction
	Pointer Diﬀerencing

	Chapter 31: Pointers to members
	Section 31.1: Pointers to static member functions
	Section 31.2: Pointers to member functions
	Section 31.3: Pointers to member variables
	Section 31.4: Pointers to static member variables

	Chapter 32: The This Pointer
	Section 32.1: this Pointer
	Section 32.2: Using the this Pointer to Access Member Data
	Section 32.3: Using the this Pointer to Dierentiate Between Member Data and Parameters
	Section 32.4: this Pointer CV-Qualiﬁers
	Section 32.5: this Pointer Ref-Qualiﬁers

	Chapter 33: Smart Pointers
	Section 33.1: Unique ownership (std::unique_ptr)
	Section 33.2: Sharing ownership (std::shared_ptr)
	Allocating Arrays([]) using shared_ptr
	Ownership Transfer of shared_ptr

	Section 33.3: Sharing with temporary ownership
	Section 33.4: Using custom deleters to create a wrapper to a C interface
	Section 33.5: Unique ownership without move semantics (auto_ptr)
	Section 33.6: Casting std::shared_ptr pointers
	Section 33.7: Writing a smart pointer: value_ptr
	Section 33.8: Getting a shared_ptr referring to this

	Chapter 34: Classes/Structures
	Section 34.1: Class basics
	Section 34.2: Final classes and structs
	Section 34.3: Access speciﬁers
	Keyword Description

	Section 34.4: Inheritance
	Section 34.5: Friendship
	Section 34.6: Virtual Inheritance
	Section 34.7: Private inheritance: restricting base class interface
	Section 34.8: Accessing class members
	Background

	Section 34.9: Member Types and Aliases
	Section 34.10: Nested Classes/Structures
	Section 34.11: Unnamed struct/class
	Section 34.12: Static class members
	Section 34.13: Multiple Inheritance
	Section 34.14: Non-static member functions

	Chapter 35: Function Overloading
	Section 35.1: What is Function Overloading?
	Section 35.2: Return Type in Function Overloading
	Section 35.3: Member Function cv-qualiﬁer Overloading

	Chapter 36: Operator Overloading
	Section 36.1: Arithmetic operators
	Section 36.2: Array subscript operator
	Section 36.3: Conversion operators
	Section 36.4: Complex Numbers Revisited
	Section 36.5: Named operators
	Section 36.6: Unary operators
	Section 36.7: Comparison operators
	Section 36.8: Assignment operator
	Section 36.9: Function call operator
	Section 36.10: Bitwise NOT operator
	Section 36.11: Bit shift operators for I/O

	Chapter 37: Function Template Overloading
	Section 37.1: What is a valid function template overloading?

	Chapter 38: Virtual Member Functions
	Section 38.1: Final virtual functions
	Section 38.2: Using override with virtual in C++11 and later
	Section 38.3: Virtual vs non-virtual member functions
	Section 38.4: Behaviour of virtual functions in constructors and destructors
	Output:

	Section 38.5: Pure virtual functions

	Chapter 39: Inline functions
	Section 39.1: Non-member inline function deﬁnition
	Section 39.3: What is function inlining?

	Chapter 40: Special Member Functions
	Section 40.1: Default Constructor
	Section 40.2: Destructor
	Section 40.3: Copy and swap
	Section 40.4: Implicit Move and Copy

	Chapter 41: Non-Static Member Functions
	Section 41.1: Non-static Member Functions
	Section 41.2: Encapsulation
	Section 41.3: Name Hiding & Importing
	Section 41.4: Virtual Member Functions
	Section 41.5: Const Correctness

	Chapter 42: Constant class member functions
	Section 42.1: constant member function

	Chapter 43: C++ Containers
	Section 43.1: C++ Containers Flowchart

	Chapter 44: Namespaces
	Section 44.1: What are namespaces?
	Section 44.2: Argument Dependent Lookup
	When does ADL not occur

	Section 44.3: Extending namespaces
	Section 44.4: Using directive
	Section 44.5: Making namespaces
	Section 44.6: Unnamed/anonymous namespaces
	Section 44.7: Compact nested namespaces
	Section 44.8: Namespace alias
	Section 44.9: Inline namespace
	Section 44.10: Aliasing a long namespace
	Section 44.11: Alias Declaration scope

	Chapter 45: Header Files
	Section 45.1: Basic Example
	Source Files
	The Compilation Process

	Section 45.2: Templates in Header Files

	Chapter 46: Using declaration
	Section 46.1: Importing names individually from a namespace
	Section 46.2: Redeclaring members from a base class to avoid name hiding
	Section 46.3: Inheriting constructors

	Chapter 47: std::string
	Section 47.1: Tokenize
	Section 47.2: Conversion to (const) char*
	Section 47.3: Using the std::string_view class
	Section 47.4: Conversion to std::wstring
	Section 47.5: Lexicographical comparison
	Section 47.6: Trimming characters at start/end
	Section 47.7: String replacement
	Replace by position
	Replace occurrences of a string with another string

	Section 47.8: Converting to std::string
	Section 47.9: Splitting
	Section 47.10: Accessing a character
	operator[](n)
	at(n)
	front()
	back()

	Section 47.11: Checking if a string is a preﬁx of another
	Section 47.12: Looping through each character
	Section 47.13: Conversion to integers/ﬂoating point types
	Section 47.14: Concatenation
	Section 47.15: Converting between character encodings
	Section 47.16: Finding character(s) in a string

	Chapter 48: std::array
	Parameter Deﬁnition
	Section 48.2: Element access
	Section 48.3: Iterating through the Array
	Section 48.4: Checking size of the Array
	Section 48.5: Changing all array elements at once

	Chapter 49: std::vector
	Section 49.1: Accessing Elements
	Index-based access:
	Iterators:

	Section 49.2: Initializing a std::vector
	Section 49.3: Deleting Elements
	Deleting the last element:
	Deleting element by index:
	Deleting all elements in a range:
	Deleting elements by value:
	Deleting elements by lambda, without creating additional predicate function
	Deleting elements by condition from a loop:
	Deleting elements by condition from a reverse loop:

	Section 49.4: Iterating Over std::vector
	Iterating in the Forward Direction
	Iterating in the Reverse Direction
	Enforcing const elements
	A Note on Eﬃciency

	Section 49.5: vector<bool>: The Exception To So Many, So Many Rules
	Section 49.6: Inserting Elements
	Section 49.7: Using std::vector as a C array
	Section 49.8: Finding an Element in std::vector
	Section 49.9: Concatenating Vectors
	Section 49.10: Matrices Using Vectors
	Section 49.11: Using a Sorted Vector for Fast Element Lookup
	Section 49.12: Reducing the Capacity of a Vector
	Section 49.13: Vector size and capacity
	size:

	Section 49.14: Iterator/Pointer Invalidation
	Section 49.15: Find max and min Element and Respective Index in a Vector
	Section 49.16: Converting an array to std::vector
	Section 49.17: Functions Returning Large Vectors

	Chapter 50: std::map
	Section 50.1: Accessing elements
	Section 50.2: Inserting elements
	Section 50.3: Searching in std::map or in std::multimap
	Section 50.4: Initializing a std::map or std::multimap
	Section 50.5: Checking number of elements
	Section 50.6: Types of Maps
	Regular Map
	Multi-Map
	Hash-Map (Unordered Map)

	Section 50.7: Deleting elements
	Section 50.8: Iterating over std::map or std::multimap
	Section 50.9: Creating std::map with user-deﬁned types as key
	Strict Weak Ordering

	Chapter 51: std::optional
	Section 51.1: Using optionals to represent the absence of a value
	Section 51.2: optional as return value
	Section 51.3: value_or
	Section 51.4: Introduction
	Other approaches to optional
	Optional vs Pointer
	Optional vs Sentinel

	Section 51.5: Using optionals to represent the failure of a function

	Chapter 52: std::function: To wrap any element that is callable
	Section 52.1: Simple usage
	Section 52.3: Binding std::function to a dierent callable types
	Section 52.4: Storing function arguments in std::tuple
	Section 52.5: std::function with lambda and std::bind
	Section 52.6: `function` overhead

	Chapter 53: std::forward_list
	Section 53.1: Example
	Section 53.2: Methods
	Method name Deﬁnition
	Element access
	Iterators
	Capacity
	Modiﬁers
	Operations

	Chapter 54: std::pair
	Section 54.1: Compare operators
	Section 54.2: Creating a Pair and accessing the elements

	Chapter 55: std::atomics
	Section 55.1: atomic types
	Typedef name Full specialization
	Typedef name Full specialization (1)

	Chapter 56: std::variant
	Section 56.1: Create pseudo-method pointers
	Section 56.2: Basic std::variant use
	Section 56.3: Constructing a `std::variant`

	Chapter 57: std::iomanip
	Section 57.1: std::setprecision
	Section 57.2: std::setﬁll
	Section 57.3: std::setiosﬂags
	Section 57.4: std::setw

	Chapter 58: std::any
	Section 58.1: Basic usage

	Chapter 59: std::set and std::multiset
	Section 59.1: Changing the default sort of a set
	Default sort
	Custom sort
	Lambda sort
	Other sort options

	Section 59.2: Deleting values from a set
	Section 59.3: Inserting values in a set
	Section 59.4: Inserting values in a multiset
	Section 59.5: Searching values in set and multiset

	Chapter 60: std::integer_sequence
	Section 60.1: Turn a std::tuple<T...> into function parameters
	Section 60.2: Create a parameter pack consisting of integers
	Section 60.3: Turn a sequence of indices into copies of an element

	Chapter 61: Using std::unordered_map
	Section 61.1: Declaration and Usage

	Chapter 62: Standard Library Algorithms
	Section 62.1: std::next_permutation
	Eﬀects:
	Parameters:
	Return Value:
	Complexity:
	Example:

	Section 62.2: std::for_each
	Eﬀects:
	Parameters:
	Return value:
	Complexity:
	Example:

	Section 62.3: std::accumulate
	Eﬀects:
	Parameters:
	Return value:
	Complexity:
	Example:

	Section 62.4: std::ﬁnd
	Eﬀects
	Parameters
	Return
	Example

	Section 62.5: std::min_element
	Eﬀects
	Parameters
	Return
	Complexity
	Example

	Section 62.6: std::ﬁnd_if
	Eﬀects
	Parameters
	Return
	Example

	Section 62.7: Using std::nth_element To Find The Median (Or Other Quantiles)
	Section 62.8: std::count
	Eﬀects
	Parameters
	Return
	Example

	Section 62.9: std::count_if
	Eﬀects
	Parameters
	Return
	Example

	Chapter 63: The ISO C++ Standard
	Section 63.1: Current Working Drafts
	Section 63.2: C++17
	Language Extensions
	Library Extensions

	Section 63.3: C++11
	Language Extensions General Features
	Library Extensions General

	Section 63.4: C++14
	Deprecated / Removed

	Section 63.5: C++98
	Language Extensions (in respect to C89/C90)
	Library Extensions

	Section 63.6: C++03
	Language Extensions

	Section 63.7: C++20
	Language Extensions
	Library Extensions

	Chapter 64: Inline variables
	Section 64.1: Deﬁning a static data member in the class deﬁnition

	Chapter 65: Random number generation
	Section 65.1: True random value generator
	Section 65.2: Generating a pseudo-random number
	Section 65.3: Using the generator for multiple distributions

	Chapter 66: Date and time using <chrono> header
	Section 66.1: Measuring time using <chrono>
	Section 66.2: Find number of days between two dates

	Chapter 67: Sorting
	Section 67.1: Sorting and sequence containers
	Section 67.2: sorting with std::map (ascending and descending)
	Section 67.3: Sorting sequence containers by overloaded less operator
	Section 67.4: Sorting sequence containers using compare function
	Section 67.5: Sorting sequence containers using lambda expressions (C++11)
	Section 67.6: Sorting built-in arrays
	Section 67.7: Sorting sequence containers with specifed ordering

	Chapter 68: Enumeration
	Section 68.1: Iteration over an enum
	Section 68.2: Scoped enums
	Section 68.3: Enum forward declaration in C++11
	Section 68.4: Basic Enumeration Declaration
	Section 68.5: Enumeration in switch statements

	Chapter 69: Iteration
	Section 69.1: break
	Section 69.2: continue
	Section 69.3: do
	Section 69.4: while
	Section 69.5: range-based for loop

	Chapter 70: Regular expressions
	Signature Description
	Section 70.2: regex_iterator Example
	Section 70.3: Anchors
	Section 70.4: regex_replace Example
	Section 70.5: regex_token_iterator Example
	Section 70.6: Quantiﬁers

	Chapter 71: Implementation-deﬁned behavior
	Section 71.1: Size of integral types
	Size of signed and unsigned integer types
	Minimum bits
	Size of wchar_t
	Data Models
	nter

	Section 71.2: Char might be unsigned or signed
	Section 71.3: Ranges of numeric types
	Section 71.4: Value representation of ﬂoating point types
	Section 71.5: Overﬂow when converting from integer to signed integer
	Section 71.6: Underlying type (and hence size) of an enum
	Section 71.7: Numeric value of a pointer
	Technicalities

	Section 71.8: Number of bits in a byte

	Chapter 72: Exceptions
	Section 72.1: Catching exceptions
	Section 72.2: Rethrow (propagate) exception
	Section 72.3: Best practice: throw by value, catch by const reference
	Section 72.4: Custom exception
	Section 72.5: std::uncaught_exceptions
	Section 72.6: Function Try Block for regular function
	Section 72.7: Nested exception
	Section 72.8: Function Try Blocks In constructor
	Section 72.9: Function Try Blocks In destructor

	Chapter 73: Lambdas
	Parameter Details
	Capture list
	Parameter list
	Function body
	Calling a lambda
	Return Type
	Mutable Lambda
	An example to illustrate the usefulness of lambdas
	Section 73.2: Specifying the return type
	Section 73.3: Capture by value
	Section 73.4: Recursive lambdas
	Using two smart pointers:
	Use a Y-combinator

	Section 73.5: Default capture
	Section 73.6: Class lambdas and capture of this
	Section 73.7: Capture by reference
	Section 73.8: Generic lambdas
	Section 73.9: Using lambdas for inline parameter pack unpacking
	Section 73.10: Generalized capture
	Section 73.11: Conversion to function pointer
	Section 73.12: Porting lambda functions to C++03 using functors

	Chapter 74: Value Categories
	Section 74.1: Value Category Meanings
	Section 74.2: rvalue
	Section 74.3: xvalue
	Section 74.4: prvalue
	Section 74.5: lvalue
	Section 74.6: glvalue

	Chapter 75: Preprocessor
	Section 75.1: Include Guards
	Section 75.2: Conditional logic and cross-platform handling
	Some common tricks:

	Section 75.3: X-macros
	Section 75.4: Macros
	Section 75.5: Predeﬁned macros
	Section 75.6: Preprocessor Operators
	Section 75.7: #pragma once
	Section 75.8: Preprocessor error messages

	Chapter 76: Data Structures in C++
	Section 76.1: Linked List implementation in C++

	Chapter 77: Templates
	Section 77.1: Basic Class Template
	Section 77.2: Function Templates
	Section 77.3: Variadic template data structures
	Section 77.4: Argument forwarding
	Section 77.5: Partial template specialization
	Section 77.6: Template Specialization
	Section 77.7: Alias template
	Section 77.8: Explicit instantiation
	Section 77.9: Non-type template parameter
	Section 77.10: Declaring non-type template arguments with auto
	Empty custom deleter for unique_ptr

	Section 77.11: Template template parameters
	Section 77.12: Default template parameter value

	Chapter 78: Expression templates
	Section 78.1: A basic example illustrating expression templates

	Chapter 79: Curiously Recurring Template Pattern (CRTP)
	Section 79.1: The Curiously Recurring Template Pattern (CRTP)
	Section 79.2: CRTP to avoid code duplication

	Chapter 80: Threading
	Parameter Details
	Section 80.2: Passing a reference to a thread
	Section 80.3: Using std::async instead of std::thread
	Asynchronously calling a function

	Section 80.4: Basic Synchronization
	Section 80.5: Create a simple thread pool
	Section 80.6: Ensuring a thread is always joined
	Section 80.7: Operations on the current thread
	Function Description

	Section 80.8: Using Condition Variables
	Section 80.9: Thread operations
	Section 80.10: Thread-local storage
	Section 80.11: Reassigning thread objects

	Chapter 81: Thread synchronization structures
	Section 81.1: std::condition_variable_any, std::cv_status
	Section 81.2: std::shared_lock
	Section 81.3: std::call_once, std::once_ﬂag
	Section 81.4: Object locking for ecient access

	Chapter 82: The Rule of Three, Five, And Zero
	Section 82.1: Rule of Zero
	Section 82.2: Rule of Five
	Section 82.3: Rule of Three
	Section 82.4: Self-assignment Protection

	Chapter 83: RAII: Resource Acquisition Is Initialization
	Section 83.1: Locking
	Section 83.2: ScopeSuccess (c++17)
	Section 83.3: ScopeFail (c++17)
	Section 83.4: Finally/ScopeExit

	Chapter 84: RTTI: Run-Time Type Information
	Section 84.1: dynamic_cast
	Section 84.2: The typeid keyword
	Section 84.3: Name of a type
	Section 84.4: When to use which cast in c++

	Chapter 85: Mutexes
	Section 85.1: Mutex Types
	Section 85.2: std::lock
	Section 85.3: std::unique_lock, std::shared_lock, std::lock_guard
	Section 85.4: Strategies for lock classes: std::try_to_lock, std::adopt_lock, std::defer_lock
	Section 85.5: std::mutex
	Section 85.6: std::scoped_lock (C++ 17)

	Chapter 86: Recursive Mutex
	Section 86.1: std::recursive_mutex

	Chapter 87: Semaphore
	Section 87.1: Semaphore C++ 11

	Chapter 88: Futures and Promises
	Section 88.1: Async operation classes
	Section 88.2: std::future and std::promise
	Section 88.3: Deferred async example
	Section 88.4: std::packaged_task and std::future
	Section 88.5: std::future_error and std::future_errc
	Inactive promise:
	Double retrieval:

	Section 88.6: std::future and std::async

	Chapter 89: Atomic Types
	Section 89.1: Multi-threaded Access

	Chapter 90: Type Erasure
	Section 90.1: A move-only `std::function`
	Section 90.2: Erasing down to a Regular type with manual vtable
	Section 90.3: Basic mechanism
	Section 90.4: Erasing down to a contiguous buer of T
	Section 90.5: Type erasing type erasure with std::any

	Chapter 91: Explicit type conversions
	Section 91.1: C-style casting
	Section 91.2: Casting away constness
	Section 91.3: Base to derived conversion
	Section 91.4: Conversion between pointer and integer
	Section 91.5: Conversion by explicit constructor or explicit conversion function
	Section 91.6: Implicit conversion
	Section 91.7: Enum conversions
	Section 91.8: Derived to base conversion for pointers to members
	Section 91.9: void* to T*
	Section 91.10: Type punning conversion

	Chapter 92: Unnamed types
	Section 92.1: Unnamed classes
	Section 92.2: As a type alias
	Section 92.3: Anonymous members
	Section 92.4: Anonymous Union

	Chapter 93: Type Traits
	Section 93.1: Type Properties
	Is Constant:
	Is Volatile:
	Is signed:
	Is Unsigned:

	Section 93.2: Standard type traits
	Constants
	Functions
	Types

	Section 93.3: Type relations with std::is_same<T, T>
	Using std::is_same to warn when improperly using a templated class or function.

	Section 93.4: Fundamental type traits
	Is Integral:
	Is Floating Point:
	Is Enum:
	Is Pointer:
	Is Class:

	Chapter 94: Return Type Covariance
	Section 94.1: Covariant result version of the base example, static type checking
	Section 94.2: Covariant smart pointer result (automated cleanup)

	Chapter 95: Layout of object types
	Section 95.1: Class types
	Section 95.2: Arithmetic types
	Narrow character types
	Integer types
	Floating point types

	Section 95.3: Arrays

	Chapter 96: Type Inference
	Section 96.1: Data Type: Auto
	Section 96.2: Lambda auto
	Section 96.3: Loops and auto

	Chapter 97: Typedef and type aliases
	Section 97.1: Basic typedef syntax
	Section 97.2: More complex uses of typedef
	Section 97.3: Declaring multiple types with typedef
	Section 97.4: Alias declaration with "using"

	Chapter 98: type deduction
	Section 98.1: Template parameter deduction for constructors
	Section 98.2: Auto Type Deduction
	Section 98.3: Template Type Deduction

	Chapter 99: Trailing return type
	Section 99.1: Avoid qualifying a nested type name
	Section 99.2: Lambda expressions

	Chapter 100: Alignment
	Section 100.1: Controlling alignment
	Section 100.2: Querying the alignment of a type

	Chapter 101: Perfect Forwarding
	Section 101.1: Factory functions

	Chapter 102: decltype
	Section 102.1: Basic Example
	Section 102.2: Another example

	Chapter 103: SFINAE (Substitution Failure Is Not An Error)
	Section 103.1: What is SFINAE
	Section 103.2: void_t
	Section 103.3: enable_if
	When to use it

	Section 103.4: is_detected
	Section 103.5: Overload resolution with a large number of options
	Section 103.6: trailing decltype in function templates
	Section 103.7: enable_if_all / enable_if_any
	Motivational example
	Usage

	Chapter 104: Undeﬁned Behavior
	Section 104.1: Reading or writing through a null pointer
	Section 104.2: Using an uninitialized local variable
	Section 104.3: Accessing an out-of-bounds index
	Section 104.4: Deleting a derived object via a pointer to a base class that doesn't have a virtual destructor
	Section 104.5: Extending the `std` or `posix` Namespace
	Section 104.6: Invalid pointer arithmetic
	Section 104.7: No return statement for a function with a non- void return type
	Section 104.8: Accessing a dangling reference
	Section 104.9: Integer division by zero
	Section 104.10: Shifting by an invalid number of positions
	Section 104.11: Incorrect pairing of memory allocation and deallocation
	Section 104.12: Signed Integer Overﬂow
	Section 104.13: Multiple non-identical deﬁnitions (the One Deﬁnition Rule)
	Section 104.14: Modifying a const object
	Section 104.15: Returning from a [[noreturn]] function
	Section 104.16: Inﬁnite template recursion
	Section 104.17: Overﬂow during conversion to or from ﬂoating point type
	Section 104.18: Modifying a string literal
	Section 104.19: Accessing an object as the wrong type
	Section 104.20: Invalid derived-to-base conversion for pointers to members
	Section 104.21: Destroying an object that has already been destroyed
	Section 104.22: Access to nonexistent member through pointer to member
	Section 104.23: Invalid base-to-derived static cast
	Section 104.24: Floating point overﬂow
	Section 104.25: Calling (Pure) Virtual Members From Constructor Or Destructor
	Section 104.26: Function call through mismatched function pointer type

	Chapter 105: Overload resolution
	Section 105.1: Categorization of argument to parameter cost
	Section 105.2: Arithmetic promotions and conversions
	Section 105.3: Overloading on Forwarding Reference
	Section 105.4: Exact match
	Section 105.5: Overloading on constness and volatility
	Section 105.6: Name lookup and access checking
	Section 105.7: Overloading within a class hierarchy
	Section 105.8: Steps of Overload Resolution

	Chapter 106: Move Semantics
	Section 106.1: Move semantics
	Section 106.2: Using std::move to reduce complexity from O(n²) to O(n)
	Section 106.3: Move constructor
	Section 106.4: Re-use a moved object
	Section 106.5: Move assignment
	Section 106.6: Using move semantics on containers

	Chapter 107: Pimpl Idiom
	Section 107.1: Basic Pimpl idiom

	Chapter 108: auto
	Section 108.1: Basic auto sample
	Section 108.2: Generic lambda (C++14)
	Section 108.3: auto and proxy objects
	Section 108.4: auto and Expression Templates
	Section 108.5: auto, const, and references
	Section 108.6: Trailing return type

	Chapter 109: Copy Elision
	Section 109.1: Purpose of copy elision
	Section 109.2: Guaranteed copy elision
	Section 109.3: Parameter elision
	Section 109.4: Return value elision
	Section 109.5: Named return value elision
	Section 109.6: Copy initialization elision

	Chapter 110: Fold Expressions
	Section 110.1: Unary Folds
	Section 110.2: Binary Folds
	Section 110.3: Folding over a comma

	Chapter 111: Unions
	Section 111.1: Undeﬁned Behavior
	Section 111.3: Typical Use

	Chapter 112: Design pattern implementation in C++
	Section 112.1: Adapter Pattern
	Example:

	Section 112.2: Observer pattern
	Variation:

	Section 112.3: Factory Pattern
	Section 112.4: Builder Pattern with Fluent API
	Pass the builder around
	Design variant : Mutable object

	Chapter 113: Singleton Design Pattern
	Section 113.1: Lazy Initialization
	The classic lazy evaluated and correctly destroyed singleton.

	Section 113.2: Static deinitialization-safe singleton
	Section 113.3: Thread-safe Singeton
	Section 113.4: Subclasses

	Chapter 114: User-Deﬁned Literals
	Section 114.1: Self-made user-deﬁned literal for binary
	Section 114.2: Standard user-deﬁned literals for duration
	Section 114.3: User-deﬁned literals with long double values
	Section 114.4: Standard user-deﬁned literals for strings
	Section 114.5: Standard user-deﬁned literals for complex

	Chapter 115: Memory management
	Section 115.1: Free Storage (Heap, Dynamic Allocation ...)
	Section 115.2: Placement new
	Section 115.3: Stack

	Chapter 116: C++11 Memory Model
	Atomic Operations
	std::memory_order Meaning
	Sequential Consistency
	Relaxed Ordering
	Release-Acquire Ordering
	Release-Consume Ordering
	Fences
	Section 116.2: Fence example

	Chapter 117: Scopes
	Section 117.1: Global variables
	Section 117.2: Simple block scope

	Chapter 118: static_assert
	Parameter Details

	Chapter 119: constexpr
	Section 119.1: constexpr variables
	Section 119.2: Static if statement
	Section 119.3: constexpr functions

	Chapter 120: One Deﬁnition Rule (ODR)
	Section 120.1: ODR violation via overload resolution
	Section 120.2: Multiply deﬁned function
	Section 120.3: Inline functions

	Chapter 121: Unspeciﬁed behavior
	Section 121.1: Value of an out-of-range enum
	Section 121.2: Evaluation order of function arguments
	Section 121.3: Result of some reinterpret_cast conversions
	Section 121.4: Space occupied by a reference
	Section 121.5: Moved-from state of most standard library classes
	Section 121.6: Result of some pointer comparisons
	Section 121.7: Static cast from bogus void* value
	Section 121.8: Order of initialization of globals across TU

	Chapter 122: Argument Dependent Name Lookup
	Section 122.1: What functions are found

	Chapter 123: Attributes
	Section 123.1: [[fallthrough]]
	Section 123.2: [[nodiscard]]
	Section 123.3: [[deprecated]] and [[deprecated("reason")]]
	Section 123.4: [[maybe_unused]]
	Section 123.5: [[noreturn]]

	Chapter 124: Recursion in C++
	Section 124.1: Using tail recursion and Fibonnaci-style recursion to solve the Fibonnaci sequence
	Section 124.2: Recursion with memoization

	Chapter 125: Arithmitic Metaprogramming
	Section 125.1: Calculating power in O(log n)

	Chapter 126: Callable Objects
	Section 126.1: Function Pointers
	Section 126.2: Classes with operator() (Functors)

	Chapter 127: Client server examples
	Section 127.1: Hello TCP Client
	Section 127.2: Hello TCP Server

	Chapter 128: Const Correctness
	Section 128.1: The Basics
	Section 128.2: Const Correct Class Design
	Section 128.3: Const Correct Function Parameters
	Section 128.4: Const Correctness as Documentation
	const CV-Qualiﬁed Member Functions:

	Chapter 129: Parameter packs
	Section 129.1: A template with a parameter pack
	Section 129.2: Expansion of a parameter pack

	Chapter 130: Build Systems
	Section 130.1: Generating Build Environment with CMake
	Section 130.2: Compiling with GNU make
	Introduction
	Basic rules
	Makeﬁle
	Incremental builds
	Makeﬁle (1)
	Documentation

	Section 130.3: Building with SCons
	Section 130.4: Autotools (GNU)
	Introduction

	Section 130.5: Ninja
	Introduction

	Section 130.6: NMAKE (Microsoft Program Maintenance Utility)
	Introduction

	Chapter 131: Concurrency With OpenMP
	Section 131.1: OpenMP: Parallel Sections
	Sample Code
	Outputs
	OUTPUT A OUTPUT B

	Section 131.2: OpenMP: Parallel Sections
	Output

	Section 131.3: OpenMP: Parallel For Loop
	Section 131.4: OpenMP: Parallel Gathering / Reduction

	Chapter 132: Resource Management
	Section 132.1: Resource Acquisition Is Initialization
	Section 132.2: Mutexes & Thread Safety
	Thread 1 Thread 2

	Chapter 133: Storage class speciﬁers
	Section 133.1: extern
	Section 133.2: register
	Section 133.3: static
	Section 133.4: auto
	Section 133.5: mutable

	Chapter 134: Linkage speciﬁcations
	Section 134.1: Signal handler for Unix-like operating system
	Section 134.2: Making a C library header compatible with C++

	Chapter 135: Digit separators
	Section 135.1: Digit Separator
	Example:

	Chapter 136: C incompatibilities
	Section 136.1: Reserved Keywords
	Section 136.2: Weakly typed pointers
	Section 136.3: goto or switch

	Chapter 137: Side by Side Comparisons of classic C++ examples solved via C++ vs C++11 vs C++14 vs C++17
	Section 137.1: Looping through a container

	Chapter 138: Compiling and Building
	Section 138.1: Compiling with GCC
	Linking with libraries:

	Section 138.2: Compiling with Visual Studio (Graphical Interface) - Hello World
	Section 138.3: Online Compilers
	Section 138.4: Compiling with Visual C++ (Command Line)
	Section 138.5: Compiling with Clang
	Section 138.6: The C++ compilation process
	Preprocessing
	Compilation
	Assembling
	Linking

	Section 138.7: Compiling with Code::Blocks (Graphical interface)

	Chapter 139: Common compile/linker errors (GCC)
	Section 139.1: undeﬁned reference to `***'
	qmake:
	g++ call:

	Section 139.2: error: '***' was not declared in this scope
	Variables
	Functions

	Section 139.3: fatal error: ***: No such ﬁle or directory
	qmake:

	Chapter 140: More undeﬁned behaviors in C++
	Section 140.1: Referring to non-static members in initializer lists

	Chapter 141: Unit Testing in C++
	Section 141.1: Google Test
	Minimal Example

	Section 141.2: Catch

	Chapter 142: C++ Debugging and Debug- prevention Tools & Techniques
	Section 142.1: Static analysis
	Compiler warnings
	External tools
	Other tools
	Conclusion

	Section 142.2: Segfault analysis with GDB
	Section 142.3: Clean code
	The use of separate functions for separate actions
	Using consistent formatting/constructions
	Point attention to the important parts of your code.
	Conclusion

	Chapter 143: Optimization in C++
	Section 143.1: Introduction to performance
	Section 143.2: Empty Base Class Optimization
	Section 143.3: Optimizing by executing less code
	Removing useless code
	Doing code only once
	Preventing useless reallocating and copying/moving

	Section 143.4: Using ecient containers
	Section 143.5: Small Object Optimization
	Example
	When to use?

	Chapter 144: Optimization
	Section 144.1: Inline Expansion/Inlining
	Section 144.2: Empty base optimization

	Chapter 145: Proﬁling
	Section 145.1: Proﬁling with gcc and gprof
	Section 145.2: Generating callgraph diagrams with gperf2dot
	Section 145.3: Proﬁling CPU Usage with gcc and Google Perf Tools

	Chapter 146: Refactoring Techniques
	Section 146.1: Goto Cleanup

	Credits

